Turn off MathJax
Article Contents
Chenyang Cai, Yuanbo Sun, Yi Chen, Zechang Wei, Yibo Wang, Fuling Chen, Wanquan Cai, Jiawen Ji, Yuxin Ji, Yu Fu. Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.06.004
Citation: Chenyang Cai, Yuanbo Sun, Yi Chen, Zechang Wei, Yibo Wang, Fuling Chen, Wanquan Cai, Jiawen Ji, Yuxin Ji, Yu Fu. Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.06.004

Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling

doi: 10.1016/j.jobab.2023.06.004
Funds:

Authors thank the support of the Start-up Funds for Scientific Research at the Nanjing Forestry University (No. 163020337), Jiangsu Specially-appointed Professorship Program (No. Sujiaoshi [2016]20), Science and Technology Innovation Project for Overseas Students of Nanjing City (No. Ningrenshehan [2018]214).

  • Received Date: 2023-04-12
  • Accepted Date: 2023-06-14
  • Rev Recd Date: 2023-06-08
  • Available Online: 2023-08-16
  • Passive cooling strategy shows great potential in mitigating global warming and reducing energy consumption. Because of the high emissivity in the atmospheric transparency window (λ ≈ 8-13 µm), cellulose is considered as a good candidate for radiative cooling. However, traditional cellulose coolers generally show poor solar reflection and can be polluted by dust outside, thereby resulting in poor daytime cooling efficiency. To address these drawbacks, we developed sustainable cellulose nanowhiskers (CNWs)/ZnO composite aerogel films with favorable optical performance, mechanical robustness, and self-cleaning function for efficient daytime radiative cooling, which can be achieved via freeze casting and hot-pressing process. Due to formation of multi-level porous structure and chemical bonds (Si-O-C/Si-O-Si), such aerogel film exhibited high solar reflectance (97%) and high infrared emittance (92.5%). It achieved a sub-ambient temperature drop of 6.9 °C under direct sunlight in hot weather. Most importantly, the surface roughness and low surface energy enable cellulose aerogel film hydrophobicity (contact angle = 133°), thereby resulting in an anti-dust function. This work provides insight into the design of sustainable thermal regulating materials to realize carbon neutrality.

     

  • loading
  • [1]
    Ali Badshah, M., Leung, E.M., Liu, P., Strzelecka, A.A., Gorodetsky, A.A., 2022. Scalable manufacturing of sustainable packaging materials with tunable thermoregulability. Nat. Sustain. 5, 434-443.
    [2]
    Cai, C.Y., Wei, Z.C., Ding, C.X., Sun, B.J., Chen, W.B., Gerhard, C., Nimerovsky, E., Fu, Y., Zhang, K., 2022. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22, 4106-4114.
    [3]
    Chen, Y.P., Dang, B.K., Fu, J.Z., Wang, C., Li, C.C., Sun, Q.F., Li, H.Q., 2021. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 21, 397-404.
    [4]
    Gamage, S., Banerjee, D., Alam, M.M., Hallberg, T., Åkerlind, C., Sultana, A., Shanker, R., Berggren, M., Crispin, X., Kariis, H., Zhao, D., Jonsson, M.P., 2021. Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28, 9383-9393.
    [5]
    Gamage, S., Kang, E.S.H., Åkerlind, C., Sardar, S., Edberg, J., Kariis, H., Ederth, T., Berggren, M., Jonsson, M.P., 2020. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J. Mater. Chem. C 8, 11687-11694.
    [6]
    Hossain, M.M., Gu, M., 2016. Radiative cooling: principles, progress, and potentials. Adv. Sci. 3, 1500360.
    [7]
    Jaramillo-Fernandez, J., Yang, H., Schertel, L., Whitworth, G.L., Garcia, P.D., Vignolini, S., Sotomayor-Torres, C.M., 2022. Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 9, e2104758.
    [8]
    Li, D., Liu, X., Li, W., Lin, Z.H., Zhu, B., Li, Z.Z., Li, J.L., Li, B., Fan, S.H., Xie, J.W., Zhu, J., 2021. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153-158.
    [9]
    Li, J.L., Liang, Y., Li, W., Xu, N., Zhu, B., Wu, Z., Wang, X.Y., Fan, S.H., Wang, M.H., Zhu, J., 2022. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8, eabj9756.
    [10]
    Li, T., Zhai, Y., He, S.M., Gan, W.T., Wei, Z.Y., Heidarinejad, M., Dalgo, D., Mi, R.Y., Zhao, X.P., Song, J.W., Dai, J.Q., Chen, C.J., Aili, A., Vellore, A., Martini, A., Yang, R.G., Srebric, J., Yin, X.B., Hu, L.B., 2019. A radiative cooling structural material. Science 364, 760-763.
    [11]
    Lin, C.J., Li, Y., Chi, C., Kwon, Y.S., Huang, J.Y., Wu, Z.X., Zheng, J.Z., Liu, G.Z., Tso, C.Y., Chao, C.Y.H., Huang, B.L., 2022. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34, e2109350.
    [12]
    Liu, B.Y., Xue, C.H., Zhong, H.M., Guo, X.J., Wang, H.D., Li, H.G., Du, M.M., Huang, M.C., Wei, R.X., Song, L.G., Chang, B., Wang, Z.K., 2021. Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 9, 24276-24282.
    [13]
    Liu, C.H., Feng, S.J., He, M., Chen, X., Shi, S.N., Bu, X.H., Zhou, Y.M., 2022. 3D Porous cellulose/Si-Al inorganic polymer photonic film with precisely structure-enhanced solar reflectivity for daytime radiative cooling. Mater. Today Commun. 31, 103530.
    [14]
    Mandal, J., Fu, Y.K., Overvig, A.C., Jia, M.X., Sun, K.R., Shi, N.N., Zhou, H., Xiao, X.H., Yu, N.F., Yang, Y., 2018. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315-319.
    [15]
    Peng, Y.C., Fan, L.L., Jin, W.L., Ye, Y.S., Huang, Z.J., Zhai, S., Luo, X., Ma, Y.X., Tang, J., Zhou, J.W., Greenburg, L.C., Majumdar, A., Fan, S.H., Cui, Y., 2022. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5, 339-347.
    [16]
    Raman, A.P., Anoma, M.A., Zhu, L.X., Rephaeli, E., Fan, S.H., 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540-544.
    [17]
    Shanker, R., Ravi Anusuyadevi, P., Gamage, S., Hallberg, T., Kariis, H., Banerjee, D., Svagan, A.J., Jonsson, M.P., 2022. Structurally colored cellulose nanocrystal films as transreflective radiative coolers. ACS Nano 16, 10156-10162.
    [18]
    Sun, H.D., Chen, Y.W., Zeng, W.C., Tang, F.J., Bi, Y.H., Lu, Q.X., Mondal, A.K., Huang, L.L., Chen, L.H., Li, J.G., 2023a. Solution-processable, robust and sustainable cooler via nano-structured engineering. Carbohydr. Polym. 314, 120948.
    [19]
    Sun, H.D., Tang, F.J., Chen, Q.F., Xia, L.M., Guo, C.Y., Liu, H., Zhao, X.P., Zhao, D.L., Huang, L.L., Li, J.G., Chen, L.H., 2023b. A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort. Chem. Eng. J. 455, 139786.
    [20]
    Tian, Y.P., Shao, H., Liu, X.J., Chen, F.Q., Li, Y.S., Tang, C.Y., Zheng, Y., 2021. Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Interfaces 13, 22521-22530.
    [21]
    Tu, Y.D., Wang, R.Z., Zhang, Y.N., Wang, J.Y., 2018. Progress and expectation of atmospheric water harvesting. Joule 2, 1452-1475.
    [22]
    Wang, T., Wu, Y., Shi, L., Hu, X.H., Chen, M., Wu, L.M., 2021. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365.
    [23]
    Wang, X., Liu, X.H., Li, Z.Y., Zhang, H.W., Yang, Z.W., Zhou, H., Fan, T.X., 2020. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562.
    [24]
    Wu, J.R., He, J., Yin, K., Zhu, Z., Xiao, S., Wu, Z.P., Duan, J., 2021. Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling. Nano Lett. 21, 4209-4216.
    [25]
    Zeng, S.N., Pian, S.J., Su, M.Y., Wang, Z.N., Wu, M.Q., Liu, X.H., Chen, M.Y., Xiang, Y.Z., Wu, J.W., Zhang, M.N., Cen, Q.Q., Tang, Y.W., Zhou, X.H., Huang, Z.H., Wang, R., Tunuhe, A., Sun, X.Y., Xia, Z.G., Tian, M.W., Chen, M., Ma, X., Yang, L.Y., Zhou, J., Zhou, H.M., Yang, Q., Li, X., Ma, Y.G., Tao, G.M., 2021. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692-696.
    [26]
    Zhai, Y., Ma, Y.G., David, S.N., Zhao, D.L., Lou, R.N., Tan, G., Yang, R.G., Yin, X.B., 2017. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062-1066.
    [27]
    Zhang, H.W., Ly, K.C.S., Liu, X.H., Chen, Z.H., Yan, M., Wu, Z.L., Wang, X., Zheng, Y.B., Zhou, H., Fan, T.X., 2020. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 117, 14657-14666.
    [28]
    Zhang, K., Lei, X.J., Mo, C.Q., Huang, J., Wang, M., Kang, E.T., Xu, L.Q., 2023. A zero-energy, zero-emission air conditioning fabric. Adv. Sci. 10, e2206925.
    [29]
    Zhao, H.X., Sun, Q.Q., Zhou, J., Deng, X., Cui, J.X., 2020. Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32, e2000870.
    [30]
    Zhong, H.M., Li, Y.N., Zhang, P., Gao, S.W., Liu, B.Y., Wang, Y., Meng, T., Zhou, Y.S., Hou, H.W., Xue, C.H., Zhao, Y., Wang, Z.K., 2021. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15, 10076-10083.
    [31]
    Zhong, S.J., Zhang, J.W., Yuan, S.X., Xu, T.Q., Zhang, X., Xu, L., Zuo, T., Cai, Y., Yi, L.M., 2023. Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling. Chem. Eng. J. 451, 138558.
    [32]
    Zhou, K., Li, W., Patel, B.B., Tao, R., Chang, Y.L., Fan, S.H., Diao, Y., Cai, L.L., 2021. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21, 1493-1499.
    [33]
    Zhou, L., Song, H.M., Liang, J.W., Singer, M., Zhou, M., Stegenburgs, E., Zhang, N., Xu, C., Ng, T., Yu, Z.F., Ooi, B., Gan, Q.Q., 2019. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718-724.
    [34]
    Zhu, W.K., Droguet, B., Shen, Q.C., Zhang, Y., Parton, T.G., Shan, X.W., Parker, R.M., De Volder, M.F.L., Deng, T., Vignolini, S., Li, T., 2022. Structurally colored radiative cooling cellulosic films. Adv. Sci. 9, e2202061.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (27) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return