Turn off MathJax
Article Contents
Sariah Abang, Farrah Wong, Rosalam Sarbatly, Jamilah Sariau, Rubiyah Baini, Normah Awang Besar. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.06.005
Citation: Sariah Abang, Farrah Wong, Rosalam Sarbatly, Jamilah Sariau, Rubiyah Baini, Normah Awang Besar. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.06.005

Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications

doi: 10.1016/j.jobab.2023.06.005
Funds:

This work was financially supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme (No. FRGS/1/2019/TK10/UMS/02/3) and the Universiti Malaysia Sabah through the Niche Fund Scheme (No. SDN0071-2019).

  • Received Date: 2023-04-14
  • Accepted Date: 2023-06-10
  • Rev Recd Date: 2023-05-31
  • Available Online: 2023-08-16
  • Conventional plastics exacerbate climate change by generating substantial amounts of greenhouse gases and solid wastes throughout their lifecycle. To address the environmental and economic challenges associated with petroleum-based plastics, bioplastics have emerged as a viable alternative. Bioplastics are a type of plastic that are either biobased, biodegradable, or both. Due to their biodegradability and renewability, bioplastics are established as earth-friendly materials that can replace nonrenewable plastics. However, early bioplastic development has been hindered by higher production costs and inferior mechanical and barrier properties compared to conventional plastics. Nevertheless, studies have shown that the addition of additives and fillers can enhance bioplastic properties. Recent advancements in bioplastics have incorporated special additives like antibacterial, antifungal, and antioxidant agents, offering added values and unique properties for specific applications in various sectors. For instance, integrating antibacterial additives into bioplastics enables the creation of active food packaging, extending the shelf-life of food by inhibiting spoilage-causing bacteria and microorganisms. Moreover, bioplastics with antioxidant additives can be applied in wound dressings, accelerating wound healing by preventing oxidative damage to cells and tissues. These innovative bioplastic developments offer promising opportunities for developing sustainable and practical solutions in various fields. Within this review are two main focuses: an outline of the bioplastic classifications to understand how they fit in as the coveted conventional plastics substitute and an overview of the recent bioplastic innovations in the antibacterial, antifungal, and antioxidant applications. We cover the use of different polymers and additives, presenting the findings and potential applications within the last decade. Although current research primarily focuses on food packaging and biomedicine, the exploration of bioplastics with specialized properties is still in its early stages, offering a wide range of undiscovered opportunities.

     

  • loading
  • [1]
    Abdullah, A.H.D., Putri, O.D., Fikriyyah, A.K., Nissa, R.C., Hidayat, S., Septiyanto, R.F., Karina, M., Satoto, R., 2020. Harnessing the excellent mechanical, barrier and antimicrobial properties of zinc oxide (ZnO) to improve the performance of starch-based bioplastic. Polym. Plast. Technol. Mater. 59, 1259-1267.
    [2]
    Abe, M.M., Martins, J.R., Sanvezzo, P.B., Macedo, J.V., Branciforti, M.C., Halley, P., Botaro, V.R., Brienzo, M., 2021. Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 13, 2484.
    [3]
    Agustin, Y.E., Padmawijaya, K.S., 2017. Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch. IOP Conf. Ser. Mater. Sci. Eng. 223, 012046.
    [4]
    Alabi, O.A., Ologbonjaye, K.I., Awosolu, O., Alalade, O.E., 2019. Public and environmental health effects of plastic wastes disposal, a review. J. Toxicol. Risk Assess. 5, 021.
    [5]
    Alexy, P., Bakoš, D., Hanzelová, S., Kukolíková, L., Kupec, J., Charvátová, K., Chiellini, E., Cinelli, P., 2003. Poly(vinyl alcohol)-collagen hydrolysate thermoplastic blends, I. experimental design optimisation and biodegradation behaviour. Polym. Test. 22, 801-809.
    [6]
    Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C., Leong, K.H., 2011. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 36, 1015-1049.
    [7]
    Anugrahwidya, R., Armynah, B., Tahir, D., 2022. Composites bioplastic film for various concentration of zinc oxide (ZnO) nanocrystals towards physical properties for high biodegradability in soil and seawater. J. Polym. Environ. 30, 2589-2601.
    [8]
    Armynah, B., Anugrahwidya, R., Tahir, D., 2022. Composite cassava starch/chitosan/pineapple leaf fiber (PALF)/zinc oxide (ZnO), bioplastics with high mechanical properties and faster degradation in soil and seawater. Int. J. Biol. Macromol. 213, 814-823.
    [9]
    Asgher, M., Qamar, S.A., Bilal, M., Iqbal, H.M.N., 2020. Bio-based active food packaging materials, sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 137, 109625.
    [10]
    Ashter, S.A., 2016. New developments. In, Introduction to Bioplastics Engineering. Amsterdam, Elsevier, 251-274.
    [11]
    Aziz, I.A., Robiah Mohamad, C.W.S., Adollah, R., 2019. Fibre based bioplastic film from Morus sp. (mulberry) leaves for medical purpose. J. Phys. Conf. Ser. 1372, 012069.
    [12]
    Baghi, F., Gharsallaoui, A., Dumas, E., Ghnimi, S., 2022. Advancements in biodegradable active films for food packaging, effects of nano/microcapsule incorporation. Foods 11, 760.
    [13]
    Chiloeches, A., Cuervo-Rodríguez, R., López-Fabal, F., Fernández-García, M., Echeverría, C., Muñoz-Bonilla, A., 2022. Antibacterial and compostable polymers derived from biobased itaconic acid as environmentally friendly additives for biopolymers. Polym. Test. 109, 107541.
    [14]
    Chowdhury, M.A., Badrudduza, M., Hossain, N., Rana, M.M., 2022a. Development and characterization of natural sourced bioplastic synthesized from tamarind seeds, berry seeds and licorice root. Appl. Surf. Sci. Adv. 11, 100313.
    [15]
    Chowdhury, M.A., Hossain, N., Noman, T.I., Hasan, A.L., Shafiul, A., Mohammod Abul, K., 2022b. Biodegradable, physical and microbial analysis of tamarind seed starch infused eco-friendly bioplastics by different percentage of Arjuna powder. Results Eng. 13, 100387.
    [16]
    Contessa, C.R., da Rosa, G.S., Moraes, C.C., 2021a. New active packaging based on biopolymeric mixture added with bacteriocin as active compound. Int. J. Mol. Sci. 22, 10628.
    [17]
    Contessa, C.R., de Souza, N.B., Gonçalo, G.B., de Moura, C.M., da Rosa, G.S., Moraes, C.C., 2021b. Development of active packaging based on agar-agar incorporated with bacteriocin of Lactobacillus sakei. Biomolecules 11, 1869.
    [18]
    Coppola, G., Gaudio, M.T., Lopresto, C.G., Calabro, V., Curcio, S., Chakraborty, S., 2021. Bioplastic from renewable biomass, a facile solution for a greener environment. Earth Syst. Environ. 5, 231-251.
    [19]
    Curran, M.A., 2010. Biobased Materials. Kirk-Othmer Encyclopedia of Chemical Technology. New Jersey, John Wiley & Sons, Inc.
    [20]
    Di Bartolo, A., Infurna, G., Dintcheva, N.T., 2021. A review of bioplastics and their adoption in the circular economy. Polymers 13, 1229.
    [21]
    Diana, K., Marlina, Saleha, S., Helwati, H., 2019. Effect of natural ingredients addition as antimicrobial agents in Dioscoreahispida Dennst starch-based biofilm. IOP Conf. Ser. Earth Environ. Sci. 364, 012006.
    [22]
    Eerhart, A.J.J.E., Faaij, A.P.C., Patel, M.K., 2012. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci. 5, 6407-6422.
    [23]
    European Bioplastics, 2021. Bioplastics market development update 2021. Available at: https://docs.european-bioplastics.org/publications/market_data/2021/Report_Bioplastics_Market_Data_2021_short_version.pdf.
    [24]
    European Bioplastics, 2022a. Fact sheet - what are bioplastics? Available at: https://docs.european-bioplastics.org/publications/fs/EuBP_FS_What_are_bioplastics.pdf.
    [25]
    European Bioplastics, 2022b. Bioplastics - industry standards & labels. Available at: https://docs.european-bioplastics.org/publications/fs/EUBP_FS_Standards.pdf.
    [26]
    Fahim, I.S., Chbib, H., Mahmoud, H.M., 2019. The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustain. Chem. Pharm. 12, 100142.
    [27]
    García-Guzmán, L., Cabrera-Barjas, G., Soria-Hernández, C.G., Castaño, J., Guadarrama-Lezama, A.Y., Rodríguez Llamazares, S., 2022. Progress in starch-based materials for food packaging applications. Polysaccharides 3, 136-177.
    [28]
    Gea, S., Pasaribu, K.M., Sarumaha, A.A., Rahayu, S., 2022. Cassava starch/bacterial cellulose-based bioplastics with Zanthoxylum acanthopodium. Biodiversitas J. Biol. Divers. 23, 2601-2608.
    [29]
    Gironi, F., Piemonte, V., 2011. Bioplastics and petroleum-based plastics, strengths and weaknesses. Energy Sources A 33, 1949-1959.
    [30]
    Guzman-Puyol, S., Hierrezuelo, J., Benítez, J.J., Tedeschi, G., Porras-Vázquez, J.M., Heredia, A., Athanassiou, A., Romero, D., Heredia-Guerrero, J.A., 2022. Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. Int. J. Biol. Macromol. 209, 1985-1994.
    [31]
    Hajikhani, M., Emam-Djomeh, Z., Askari, G., 2021. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int. J. Biol. Macromol. 172, 143-153.
    [32]
    Han, J., Shin, S.H., Park, K.M., Kim, K.M., 2015. Characterization of physical, mechanical, and antioxidant properties of soy protein-based bioplastic films containing carboxymethylcellulose and catechin. Food Sci. Biotechnol. 24, 939-945.
    [33]
    Harini, K., Chandra Mohan, C., Ramya, K., Karthikeyan, S., Sukumar, M., 2018. Effect of Punica granatum peel extracts on antimicrobial properties in walnut shell cellulose reinforced bio-thermoplastic starch films from cashew nut shells. Carbohydr. Polym. 184, 231-242.
    [34]
    Ibrahim, N.I., Shahar, F.S., Sultan, M.T.H., Shah, A.U.M., Safri, S.N.A., Mat Yazik, M.H., 2021. Overview of bioplastic introduction and its applications in product packaging. Coatings 11, 1423.
    [35]
    Immonen, K., Willberg-Keyriläinen, P., Ropponen, J., Nurmela, A., Metsä-Kortelainen, S., Kaukoniemi, O.V., Kangas, H., 2021. Thermoplastic cellulose-based compound for additive manufacturing. Molecules 26, 1701.
    [36]
    Jamnongkan, T., Kamlong, N., Thiangtrong, N., Mongkholrattanasit, R., 2018. Comparison the physical and antimicrobial properties of poly(lactic acid) film and its composites with ZnO nanoparticles. Key Eng. Mater. 772, 100-104.
    [37]
    Jia, F., Wang, J.J., Huang, Y.B., Zhao, J.S., Hou, Y., Hu, S.Q., 2021. Development and characterization of gliadin-based bioplastic films enforced by cinnamaldehyde. J. Cereal Sci. 99, 103208.
    [38]
    Jiao, J., Zeng, X.B., Huang, X.B., 2020. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT. Adv. Ind. Eng. Polym. Res. 3, 19-26.
    [39]
    Jordá-Reolid, M., Ibáñez-García, A., Catani, L., Martínez-García, A., 2022. Development of blends to improve flexibility of biodegradable polymers. Polymers 14, 5223.
    [40]
    Kaya, M., Akyuz, L., Sargin, I., Mujtaba, M., Salaberria, A.M., Labidi, J., Cakmak, Y.S., Koc, B., Baran, T., Ceter, T., 2017. Incorporation of sporopollenin enhances acid-base durability, hydrophobicity, and mechanical, antifungal and antioxidant properties of chitosan films. J. Ind. Eng. Chem. 47, 236-245.
    [41]
    Klinmalai, P., Srisa, A., Laorenza, Y., Katekhong, W., Harnkarnsujarit, N., 2021. Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging. LWT 152, 112356.
    [42]
    Kongkaoroptham, P., Piroonpan, T., Pasanphan, W., 2021. Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydr. Polym. 257, 117610.
    [43]
    Kulma, A., Skórkowska-Telichowska, K., Kostyn, K., Szatkowski, M., Skała, J., Drulis-Kawa, Z., Preisner, M., Żuk, M., Szperlik, J., Wang, Y.F., Szopa, J., 2015. New flax producing bioplastic fibers for medical purposes. Ind. Crops Prod. 68, 80-89.
    [44]
    Liptow, C., Tillman, A.M., 2012. A comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J. Ind. Ecol. 16, 420-435.
    [45]
    López-de-Dicastillo, C., Alonso, J.M., Catalá, R., Gavara, R., Hernández-Muñoz, P., 2010. Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. J. Agric. Food Chem. 58, 10958-10964.
    [46]
    López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J.M., Catalá, R., Gavara, R., 2004. Overview of active polymer-based packaging technologies for food applications. Food Rev. Int. 20, 357-387.
    [47]
    Luyt, A.S., Malik, S.S., 2019. Can biodegradable plastics solve plastic solid waste accumulation? In, Al-Salem, S.M. (Ed.). Plastics to Energy. Amsterdam, Elsevier, 403-423.
    [48]
    Markovic, G., Visakh, P.M., 2017. Polymer blends, state of art. In, Visakh, P.M., Markovic, G., Pasquini, D. (Eds.). Recent Developments in Polymer Macro, Micro and Nano Blends. Amsterdam, Elsevier, 1-15.
    [49]
    Martínez, I., Partal, P., García-Morales, M., Guerrero, A., Gallegos, C., 2013. Development of protein-based bioplastics with antimicrobial activity by thermo-mechanical processing. J. Food Eng. 117, 247-254.
    [50]
    Merino, D., Bertolacci, L., Paul, U.C., Simonutti, R., Athanassiou, A., 2021. Avocado peels and seeds, processing strategies for the development of highly antioxidant bioplastic films. ACS Appl. Mater. Interfaces 13, 38688-38699.
    [51]
    Merino, D., Quilez-Molina, A.I., Perotto, G., Bassani, A., Spigno, G., Athanassiou, A., 2022. A second life for fruit and vegetable waste, a review on bioplastic films and coatings for potential food protection applications. Green Chem. 24, 4703-4727.
    [52]
    Mohanan, N., Montazer, Z., Sharma, P.K., Levin, D.B., 2020. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 11, 580709.
    [53]
    Mouritz, A.P. 2012. Polymers for aerospace structures. In, Mouritz, A.P. (Ed.). Introduction to Aerospace Materials. Amsterdam, Elsevier, 268-302.
    [54]
    Mubofu, E.B., 2016. Castor oil as a potential renewable resource for the production of functional materials. Sustain. Chem. Process. 4, 11.
    [55]
    Muralidharan, V., Arokianathan, M.S., Balaraman, M., Palanivel, S., 2020. Tannery trimming waste based biodegradable bioplastic, facile synthesis and characterization of properties. Polym. Test. 81, 106250.
    [56]
    Nanda, S., Patra, B.R., Patel, R., Bakos, J., Dalai, A.K., 2022. Innovations in applications and prospects of bioplastics and biopolymers, a review. Environ. Chem. Lett. 20, 379-395.
    [57]
    Nasution, H., Julianti, E., Dalimunthe, N.F., Wulandari, G., 2021. The role of betel (Piper betle) leaf extract and glycerol on physical properties of bioplastic based on sago starch. IOP Conf. Ser. Earth Environ. Sci. 912, 012042.
    [58]
    Naveena, B., Sharma, A., 2020. Review on properties of bio plastics for packaging applications and its advantages. Int. J. Curr. Microbiol. App. Sci. 9, 1428-1432.
    [59]
    Ngo, D.H., Kim, S.K., 2014. Antioxidant effects of chitin, chitosan, and their derivatives. Adv. Food Nutr. Res. 73, 15-31.
    [60]
    Notaro, S., Lovera, E., Paletto, A., 2022a. Consumers’ preferences for bioplastic products, a discrete choice experiment with a focus on purchase drivers. J. Clean. Prod. 330, 129870.
    [61]
    Notaro, S., Lovera, E., Paletto, A., 2022b. Behaviours and attitudes of consumers towards bioplastics, an exploratory study in Italy. J. For. Sci. 68, 121-135.
    [62]
    Pang, J.F., Zheng, M.Y., Sun, R.Y., Wang, A.Q., Wang, X.D., Zhang, T., 2016. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem. 18, 342-359.
    [63]
    Parameswaranpillai, J., Thomas, S., Grohens, Y., 2014. Polymer blends, state of the art, new challenges, and opportunities. In, Thomas, S., Grohens, Y., Jyotishkumar, P. (Eds.). Characterization of Polymer Blends. Weinheim, Wiley-VCH Verlag GmbH & Co. 1-6.
    [64]
    Peñas, M.I., Pérez-Camargo, R.A., Hernández, R., Müller, A.J., 2022. A review on current strategies for the modulation of thermomechanical, barrier, and biodegradation properties of poly (butylene succinate) (PBS) and its random copolymers. Polymers 14, 1025.
    [65]
    Perez-Puyana, V., Felix, M., Romero, A., Guerrero, A., 2017. Development of pea protein-based bioplastics with antimicrobial properties. J. Sci. Food Agric. 97, 2671-2674.
    [66]
    Piemonte, V., Gironi, F., 2011. Land-use change emissions, how green are the bioplastics? Environ. Prog. Sustain. Energy 30, 685-691.
    [67]
    Piemonte, V., Gironi, F., 2012. Bioplastics and GHGs saving, the land use change (LUC) emissions issue. Energy Sources A 34, 1995-2003.
    [68]
    Plastics Europe, 2022. Plastics - the facts 2022. Available at: https://plasticseurope.org/wp-content/uploads/2022/10/PE-PLASTICS-THE-FACTS_V7-Tue_19-10-1.pdf.
    [69]
    Quilez-Molina, A.I., Mazzon, G., Athanassiou, A., Perotto, G., 2022. A novel approach to fabricate edible and heat sealable bio-based films from vegetable biomass rich in pectin. Mater. Today Commun. 32, 103871.
    [70]
    Rahman, M.H., Bhoi, P.R., 2021. An overview of non-biodegradable bioplastics. J. Clean. Prod. 294, 126218.
    [71]
    Reddy, N., Yang, Y.Q., 2013. Thermoplastic films from plant proteins. J. Appl. Polym. Sci. 130, 729-738.
    [72]
    Robertson, G.L., 2014. Biobased but not biodegradable. Food Technology. Available at: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2014/june/features/biobasedpackaging.
    [73]
    Rulkens, R., Koning, C., 2012. Chemistry and technology of polyamides. In, Matyjaszewski, K., Möller, M. (Eds.). Polymer Science, A Comprehensive Reference. Amsterdam, Elsevier, 431-467.
    [74]
    Rydz, J., Musioł, M., Kowalczuk, M., 2019. Polymers tailored for controlled (bio)degradation through end-group and in-chain functionalization. Curr. Org. Synth. 16, 950-952.
    [75]
    Santagata, G., Valerio, F., Cimmino, A., Dal Poggetto, G., Masi, M., di Biase, M., Malinconico, M., Lavermicocca, P., Evidente, A., 2017. Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend, study of a novel bioactive polymeric based system. Eur. Polym. J. 94, 230-247.
    [76]
    Schmitz, F., Silva de Albuquerque, M.B., Alberton, M.D., Riegel-Vidotti, I.C., Zimmermann, L.M., 2020. Zein films with ZnO and ZnO, Mg quantum dots as functional nanofillers, new nanocomposites for food package with UV-blocker and antimicrobial properties. Polym. Test. 91, 106709.
    [77]
    Science Museum, 2019. The age of plastic, from Parkesine to pollution. Available at: https://www.sciencemuseum.org.uk/objects-and-stories/chemistry/age-plastic-parkesine-pollution.
    [78]
    Shafie, M.H., Samsudin, D., Yusof, R., Gan, C.Y., 2018. Characterization of bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide and choline chloride/glycerol based deep eutectic solvent. Int. J. Biol. Macromol. 118, 1183-1192.
    [79]
    Sisti, L., Totaro, G., Marchese, P., 2016. PBS makes its entrance into the family of biobased plastics. In, Kalia, S., Avérous, L. (Eds.). Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. New Jersey, John Wiley & Sons, Inc. 225-285.
    [80]
    Srisa, A., Harnkarnsujarit, N., 2020. Antifungal films from trans-cinnamaldehyde incorporated poly(lactic acid) and poly(butylene adipate-co-terephthalate) for bread packaging. Food Chem. 333, 127537.
    [81]
    Sudhakar, M.P., Venkatnarayanan, S., Dharani, G., 2022. Fabrication and characterization of bio-nanocomposite films using κ-Carrageenan and Kappaphycus alvarezii seaweed for multiple industrial applications. Int. J. Biol. Macromol. 219, 138-149.
    [82]
    Sujuthi, R.A.F.M., Liew, K.C., 2016. Properties of bioplastic sheets made from different types of starch incorporated with recycled newspaper pulp. Trans. Sci. Technol. 3, 257-264.
    [83]
    Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S.H., Masruchin, N., Gutari, S., Kemala, T., 2021. Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. J. Environ. Health Sci. Eng. 19, 415-425.
    [84]
    Tachibana, Y., Masuda, T., Funabashi, M., Kunioka, M., 2010. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio. Biomacromolecules 11, 2760-2765.
    [85]
    Tedeschi, G., Guzman-Puyol, S., Ceseracciu, L., Paul, U.C., Picone, P., di Carlo, M., Athanassiou, A., Heredia-Guerrero, J.A., 2020. Multifunctional bioplastics inspired by wood composition, effect of hydrolyzed lignin addition to xylan-cellulose matrices. Biomacromolecules 21, 910-920.
    [86]
    Tiseo, I., 2021. Global plastics industry - statistics & facts. Available at: https://www.statista.com/topics/5266/plastics-industry/#topicHeader__wrapper.
    [87]
    Tran, T.N., Mai, B.T., Setti, C., Athanassiou, A., 2020. Transparent bioplastic derived from CO2-based polymer functionalized with oregano waste extract toward active food packaging. ACS Appl. Mater. Interfaces 12, 46667-46677.
    [88]
    Tullo, A.H., 2021. The biodegradable polymer PBAT is hitting the big time. Available at: https://cen.acs.org/business/biobased-chemicals/biodegradable-polymer-PBAT-hitting-big/99/i34.
    [89]
    Umiyati, R., Millati, R., Ariyanto, T., Hidayat, C., 2020. Calophyllum inophyllum extract as a natural enhancer for improving physical properties of bioplastics and natural antimicrobial. Biodiversitas 21, 1794-1802.
    [90]
    Villanueva, M.P., Gioia, C., Sisti, L., Martí, L., Llorens-Chiralt, R., Verstichel, S., Celli, A., 2022. Valorization of ferulic acid from agro-industrial by-products for application in agriculture. Polymers 14, 2874.
    [91]
    Vroman, I., Tighzert, L., 2009. Biodegradable polymers. Materials 2, 307-344.
    [92]
    Wangprasertkul, J., Siriwattanapong, R., Harnkarnsujarit, N., 2021. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control. 123, 107763.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (26) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return