Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Ayyoob Arpanaei, Qiliang Fu, Tripti Singh. Nanotechnology approaches towards biodeterioration-resistant wood: A review[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 3-26. doi: 10.1016/j.jobab.2023.09.001
Citation: Ayyoob Arpanaei, Qiliang Fu, Tripti Singh. Nanotechnology approaches towards biodeterioration-resistant wood: A review[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 3-26. doi: 10.1016/j.jobab.2023.09.001

Nanotechnology approaches towards biodeterioration-resistant wood: A review

doi: 10.1016/j.jobab.2023.09.001
Funds:

The authors acknowledge the financial support from Scion, Rotorua.

  • Available Online: 2024-01-31
  • Publish Date: 2023-09-09
  • Wood can be a suitable alternative to energy-intensive materials in various applications. Nevertheless, its susceptibility to weathering and decay has significantly hindered the broad adoption of the most commercially significant wood species. While current solutions do tackle certain challenges, they often come with disadvantages like high costs, environmental risks, and/or inefficiencies. Nanotechnology-based methods can be employed to mitigate these weaknesses and create durable, sustainable wood materials. In this review, we delve into cutting-edge advancements in the development of biodeterioration-resistant wood through innovative nanotechnology approaches. These methods usually involve the application of nanomaterials, either possessing biocidal properties or serving as carriers for biocides. We systematically describe these approaches and compare them to conventional wood modification methods. Additionally, this review provides a brief overview of the prevalent biodeteriorating organisms and their mechanisms of action, which notably impact the development and choice of a suitable strategy for wood modification/treatment. Given the requirements of biodeteriorating organisms for growth and wood degradation, it is expected that the new nanotechnology-based approaches to enhance wood durability may provide innovative broad-spectrum biocidal nanosystems. These systems can simultaneously induce alterations in the physicochemical properties of wood, thereby constraining the availability of the growth requirements. These alterations can efficiently inhibit the biodeterioration process by decreasing water absorption, restricting access to the wood components, and reducing void spaces within the wood structure. Finally, this review highlights the new opportunities, challenges, and perspectives of nanotechnology methods for biodeterioration-resistant wood, through which some techno-economic, environmental and safety aspects associated with these methods are addressed.

     

  • loading
  • [1]
    Adamová, T., Hradecký, J., Pánek, M., 2020. Volatile organic compounds (VOCs) from wood and wood-based panels: methods for evaluation, potential health risks, and mitigation. Polymers 12, 2289.
    [2]
    Aguayo, M.G., Oviedo, C., Reyes, L., Navarrete, J., Gómez, L., Torres, H., Gaviño, G., Trollund, E., 2021. Radiata pine wood treated with copper nanoparticles: leaching analysis and fungal degradation. Forests 12, 1606.
    [3]
    Ahmadi, A., Sokunbi, M., Patel, T., Chang, M.W., Ahmad, Z., Singh, N., 2022. Influence of critical parameters on cytotoxicity induced by mesoporous silica nanoparticles. Nanomaterials 12, 2016.
    [4]
    Al-Zahrani, S.S., Bora, R.S., Al-Garni, S.M., 2021. Antimicrobial activity of chitosan nanoparticles. Biotechnol. Biotechnol. Equip. 35, 1874-1880.
    [5]
    Amburgey, T.L., 2008. Insects that infest seasoned wood in structures. In: Development of Commercial Wood Preservatives, ACS Symposium Series. New York, American Chemical Society, 3-32.
    [6]
    Anastasiadis, S.H., Chrissopoulou, K., Stratakis, E., Kavatzikidou, P., Kaklamani, G., Ranella, A., 2022. How the physicochemical properties of manufactured nanomaterials affect their performance in dispersion and their applications in biomedicine: a review. Nanomaterials 12, 552.
    [7]
    Arendsen, L.P., Thakar, R., Sultan, A.H., 2019. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 32, e00125-e00118.
    [8]
    Ayanleye, S., Udele, K., Nasir, V., Zhang, X.F., Militz, H., 2022. Durability and protection of mass timber structures: a review. J. Build. Eng. 46, 103731.
    [9]
    Aydın, S., Terzi, E., Kartal, S.N., Pişkin, S., Kılıç Depren, S., Kantürk Figen, A., 2020. New manufacturing methodology for boron-based rods for remedial treatments of wood: solubilities and some physical and thermal properties of the rods. SN Appl. Sci. 2, 1-12.
    [10]
    Bahmani, M., Schmidt, O., 2018. Plant essential oils for environment-friendly protection of wood objects against fungi. Maderas Cienc. Tecnol. 20, 325-332.
    [11]
    Bain, J., 1978. Lyctus brunneus (Stephens) (Coleoptera: Lyctidae), a powder-post beetle. For. Timber Insects New Zeal. 33, 8.
    [12]
    Bayal, M., Janardhanan, P., Tom, E., Chandran, N., Devadathan, S., Ranjeet, D., Unniyampurath, U., Pilankatta, R., Nair, S.S., 2019. Cytotoxicity of nanoparticles - Are the size and shape only matters? or the media parameters too?: A study on band engineered ZnS nanoparticles and calculations based on equivolume stress model. Nanotoxicology 13, 1005-1020.
    [13]
    Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F., 2019. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25, 112.
    [14]
    Baysal, E., Ozaki, S.K., Yalinkilic, M.K., 2004. Dimensional stabilization of wood treated with furfuryl alcohol catalysed by borates. Wood Sci. Technol. 38, 405-415.
    [15]
    Bergman, R., Puettmann, M., Taylor, A., Skog, K.E., 2014. The carbon impacts of wood products. For. Prod. J. 64, 220-231.
    [16]
    Bhagia, S., Ďurkovič, J., Lagaňa, R., Kardošová, M., Kačík, F., Cernescu, A., Schäfer, P., Yoo, C.G., Ragauskas, A.J., 2022. Nanoscale FTIR and mechanical mapping of plant cell walls for understanding biomass deconstruction. ACS Sustain. Chem. Eng. 10, 3016-3026.
    [17]
    Bi, W.Z., Li, H.T., Hui, D., Gaff, M., Lorenzo, R., Corbi, I., Corbi, O., Ashraf, M., 2021. Effects of chemical modification and nanotechnology on wood properties. Nanotechnol. Rev. 10, 978-1008.
    [18]
    Borges, C.C., Tonoli, G.H.D., Cruz, T.M., Duarte, P.J., Junqueira, T.A., 2018. Nanoparticles-based wood preservatives: the next generation of wood protection? CERNE 24, 397-407.
    [19]
    Bossert, D., Geers, C., Placencia Peña, M.I., Volkmer, T., Rothen-Rutishauser, B., Petri-Fink, A., 2020. Size and surface charge dependent impregnation of nanoparticles in soft- and hardwood. Chemistry 2, 361-373.
    [20]
    Brelid, P.L., 2013. Benchmarking and State of the Art Report for Modified Wood. SP Rep. No. 54, SP Tech. Res. Inst. Sweden, Stock. Sweden, 1-31.
    [21]
    Burgert, I., Cabane, E., Zollfrank, C., Berglund, L., 2015. Bio-inspired functional wood-based materials-hybrids and replicates. Int. Mater. Rev. 60, 431-450.
    [22]
    Cabral Almada, C., Montibus, M., Ham-Pichavant, F., Tapin-Lingua, S., Labat, G., Silva Perez, D.D.A., Grelier, S., 2021. Growth inhibition of wood-decay fungi by lignin-related aromatic compounds. Eur. J. Wood Wood Prod. 79, 1057-1065.
    [23]
    Cai, T.L., Shen, X.Y., Huang, E.Z., Yan, Y.T., Shen, X.P., Wang, F.Q., Wang, Z., Sun, Q.F., 2020. Ag nanoparticles supported on MgAl-LDH decorated wood veneer with enhanced flame retardancy, water repellency and antimicrobial activity. Colloids Surf. A 598, 124878.
    [24]
    Can, A., Sivrikaya, H., Hazer, B., Palanti, S., 2022. Beech (Fagus orientalis) wood modification through the incorporation of polystyrene-ricinoleic acid copolymer with Ag nanoparticles. Cellulose 29, 1149-1161.
    [25]
    Candelier, K., Thevenon, M.F., Petrissans, A., Dumarcay, S., Gerardin, P., Petrissans, M., 2016. Control of wood thermal treatment and its effects on decay resistance: a review. Ann. For. Sci. 73, 571-583.
    [26]
    Carvalho, S.G., Araujo, V.H.S., Dos Santos, A.M., Duarte, J.L., Silvestre, A.L.P., Fonseca-Santos, B., Villanova, J.C.O., Gremião, M.P.D., Chorilli, M., 2020. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int. J. Pharm. 580, 119214.
    [27]
    Casado-Sanz, Silva-Castro, Ponce-Herrero, Martín-Ramos, Martín-Gil, Acuña-Rello, 2019. White-rot fungi control on Populus spp. wood by pressure treatments with silver nanoparticles, chitosan oligomers and Propolis. Forests 10, 885.
    [28]
    Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L.B., 2020. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642-666.
    [29]
    Chen, J.S., An, L.L., Bae, J.H., Heo, J.W., Han, S.Y., Kim, Y.S., 2021. Green and facile synthesis of aminated lignin-silver complex and its antibacterial activity. Ind. Crops Prod. 173, 114102.
    [30]
    Cheng, L.S., Ren, S.B., Lu, X.N., 2020. Application of eco-friendly waterborne polyurethane composite coating incorporated with nano cellulose crystalline and silver nano particles on wood antibacterial board. Polymers 12, 407.
    [31]
    Chirkova, J., Andersone, I., Irbe, I., Spince, B., Andersons, B., 2011. Lignins as agents for bio-protection of wood. Holzforschung 65: 497-502.
    [32]
    Chittenden, C., Singh, T., 2011. Antifungal activity of essential oils against wood degrading fungi and their applications as wood preservatives. Int. Wood Prod. J. 2, 44-48.
    [33]
    Churkina, G., Organschi, A., Reyer, C.P.O., Ruff, A., Vinke, K., Liu, Z., Reck, B.K., Graedel, T.E., Schellnhuber, H.J., 2020. Buildings as a global carbon sink. Nat. Sustain. 3, 269-276.
    [34]
    Civardi, C., Schlagenhauf, L., Kaiser, J.P., Hirsch, C., Mucchino, C., Wichser, A., Wick, P., Schwarze, F.W.M.R., 2016. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion. J. Nanobiotechnol. 14, 77.
    [35]
    Clausen, C.A., 2012. Enhancing durability of wood-based composites with nanotechnology. Proc. Nanotechnol. Wood Compos. Symp. 218.
    [36]
    Cruces, E., Arancibia-Miranda, N., Manquián-Cerda, K., Perreault, F., Bolan, N., Azócar, M.I., Cubillos, V., Montory, J., Rubio, M.A., Sarkar, B., 2022. Copper/silver bimetallic nanoparticles supported on aluminosilicate geomaterials as antibacterial agents. ACS Appl. Nano Mater. 5, 1472-1483.
    [37]
    Cruz-Luna, A.R., Cruz-Martínez, H., Vásquez-López, A., Medina, D.I., 2021. Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J. Fungi 7, 1033.
    [38]
    Dai, X.H., Qi, Y.R., Luo, H.X., He, Z.X., Wei, L.X., Dong, X.Y., Ma, X.X., Yang, D.Q., Li, Y.F., 2022. Leachability and anti-mold efficiency of nanosilver on poplar wood surface. Polymers 14, 884.
    [39]
    De Filpo, G., Palermo, A.M., Rachiele, F., Nicoletta, F.P., 2013. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 85, 217-222.
    [40]
    de Lima, N.N., de Castro, V.R., Lopes, N.F., Nunes, Í.L., Andrade, F.A., Zanuncio, A.J.V., de Cassia Oliveira Carneiro, A., Araújo, S., 2022. Tannin extracts as a preservative for pine thermo-mechanically densified wood. BioResources 18, 641-652.
    [41]
    Deng, Y.H., Zhao, H.J., Qian, Y., Lü, L., Wang, B.B., Qiu, X.Q., 2016. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Ind. Crops Prod. 87, 191-197.
    [42]
    Dhiman, N.K., Sidhu, N., Agnihotri, S., Mukherjee, A., Reddy, M.S., 2022. Role of nanomaterials in protecting building materials from degradation and deterioration. Biodegradation and Biodeterioration at the Nanoscale. Amsterdam: Elsevier, 405-475.
    [43]
    Ding, X.C., Richter, D.L., Matuana, L.M., Heiden, P.A., 2011. Efficient one-pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low-leaching wood preservation. Carbohydr. Polym. 86, 58-64.
    [44]
    Ding, Y., Pang, Z.Q., Lan, K., Yao, Y., Panzarasa, G., Xu, L., Ricco, M.L., Rammer, D.R., Zhu, J.Y., Hu, M., Pan, X.J., Li, T., Burgert, I., Hu, L.B., 2023. Emerging engineered wood for building applications. Chem. Rev. 123, 1843-1888.
    [45]
    Do, T.T.H., Ly, T.B.T., Hoang, N.T., Tran, V.T., 2022. A new integrated circular economy index and a combined method for optimization of wood production chain considering carbon neutrality. Chemosphere 311, 137029.
    [46]
    Dollwet, H., Sorenson, J., 1985. Historic uses of copper compounds in medicine. Trace Elem. Med. 2, 80-87.
    [47]
    Donaldson, L.A., 2019. Wood cell wall ultrastructure The key to understanding wood properties and behaviour. IAWA J. 40, 645-672.
    [48]
    Donaldson, L.A., 2022. Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy. Plant Methods 18, 27.
    [49]
    Donath, S., Militz, H., Mai, C., 2004. Wood modification with alkoxysilanes. Wood Sci. Technol. 38, 555-566.
    [50]
    Donath, S., Militz, H., Mai, C., 2006. Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 60, 210-216.
    [51]
    Dong, X.Y., Zhuo, X., Wei, J., Zhang, G., Li, Y.F., 2017. Wood-based nanocomposite derived by in situ formation of organic-inorganic hybrid polymer within wood via a sol-gel method. ACS Appl. Mater. Interfaces 9, 9070-9078.
    [52]
    Eaton, R.A.; Hale, M.D.C., 1993. Wood : Decay, Pests, and Protection. New York: Chapman & Hall London.
    [53]
    Elam, J., Björdal, C.G., 2022. Long-term study on wood degradation in urban soil-water systems - implications for service life of historic foundation piles. Int. Biodeterior. Biodegrad. 167, 105356.
    [54]
    Elieh-Ali-Komi, D., Hamblin, M.R., 2016. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 4, 411-427.
    [55]
    Emmerich, L., Bollmus, S., Militz, H., 2019. Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea): state of the art, recent research activities and future perspectives. Wood Mater. Sci. Eng. 14, 3-18.
    [56]
    Ermeydan, M.A., Cabane, E., Gierlinger, N., Koetz, J., Burgert, I., 2014. Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv. 4, 12981-12988.
    [57]
    Esteves, B.M., Pereira, H.M., 2008. Wood modification by heat treatment: a review. BioResources 4, 370-404.
    [58]
    Evans, P., Matsunaga, H., Kiguchi, M., 2008. Large-scale application of nanotechnology for wood protection. Nat. Nanotechnol. 3, 577.
    [59]
    Evans, P.D., Matsunaga, H., Preston, A.F., Kewish, C.M., 2022. Wood protection for carbon sequestration: a review of existing approaches and future directions. Curr. For. Rep. 8, 181-198.
    [60]
    Fan, X.Z., Yahia, L., Sacher, E., 2021. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 10, 137.
    [61]
    Feng, B., Zhang, S.B., Wang, D., Li, Y.L., Zheng, P., Gao, L., Huo, D., Cheng, L., Wei, S.Y., 2022. Study on antibacterial wood coatings with soybean protein isolate nano-silver hydrosol. Prog. Org. Coat. 165, 106766.
    [62]
    Fierascu, R.C., Doni, M., Fierascu, I., 2020. Selected aspects regarding the restoration/conservation of traditional wood and masonry building materials: a short overview of the last decade findings. Appl. Sci. 10, 1164.
    [63]
    Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233-269.
    [64]
    Freeman, M.H., McIntyre, C.R., 2008. A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. For. Prod. J. 58, 6-27.
    [65]
    Freeman, M.H., Nicholas, D.D., Schultz, T.P., 2006. Nonarsenical wood protection: alternatives for chromated copper arsenate, creosote and pentachlorophenol. Environ. Impacts Treat. Wood 2006, 19-36.
    [66]
    Freeman, M.H., Shupe, T., Vlosky, R., Barnes, H., 2003. Past, present, and future of the wood preservation industry. For. Prod. J. 53, 8-15.
    [67]
    Ganguly, P., Breen, A., Pillai, S.C., 2018. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 4, 2237-2275.
    [68]
    Geng, A.X., Yang, H.Q., Chen, J.X., Hong, Y.X., 2017. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. For. Policy Econ. 85, 192-200.
    [69]
    Gold, R.E., Jones, S.C., 2000. Handbook of Household and Structural Insect Pests, Handbook Series: Entomological Society of America. New York: Entomological Society of America.
    [70]
    Goodell, B., 2001. Wood products: deterioration by insects and marine organisms. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P.B.T. E. (Eds.). Encyclopedia of Materials: Science and Technology. Oxford: Elsevier, 9696-9701.
    [71]
    Goodell, B., 2020. Fungi involved in the biodeterioration and bioconversion of lignocellulose substrates. Genetics and Biotechnology. Cham: Springer International Publishing, 369-397.
    [72]
    Goodell, B., Winandy, J.E., Morrell, J.J., 2020. Fungal degradation of wood: emerging data, new insights and changing perceptions. Coatings 10, 1210.
    [73]
    Greene, J.M., Hosanna, H.R., Willson, B., Quinn, J.C., 2023. Whole life embodied emissions and net-zero emissions potential for a mid-rise office building constructed with mass timber. Sustain. Mater. Technol. 35, e00528.
    [74]
    Henn, K.A., Forsman, N., Zou, T., Österberg, M., 2021. Colloidal lignin particles and epoxies for bio-based, durable, and multiresistant nanostructured coatings. ACS Appl. Mater. Interfaces 13, 34793-34806.
    [75]
    Hill, C., 2006. Wood modification: chemical, thermal and other processes. Wiley Series in Renewable Resources. Hoboken: John Wiley & Sons Inc.
    [76]
    Hill, C., Altgen, M., Rautkari, L., 2021. Thermal modification of wood—a review: chemical changes and hygroscopicity. J. Mater. Sci. 56, 6581-6614.
    [77]
    Hong, J.H., An, S., Song, K.Y., Kim, Y.I., Yarin, A.L., Kim, J.J., Yoon, S.S., 2019. Eco-friendly lignin nanofiber mat for protection of wood against attacks by environmentally hazardous fungi. Polym. Test. 74, 113-118.
    [78]
    Hu, J.B., Skinner, C., Ormondroyd, G., Thevenon, M.F., 2023. Life cycle assessment of a novel tannin-boron association for wood protection. Sci. Total Environ. 858, 159739.
    [79]
    Hussain, I., Singh, T., Chittenden, C., 2012. Preparation of chitosan oligomers and characterization: their antifungal activities and decay resistance. Holzforschung 66, 119-125.
    [80]
    Jasmani, L., Rusli, R., Khadiran, T., Jalil, R., Adnan, S., 2020. Application of nanotechnology in wood-based products industry: a review. Nanoscale Res. Lett. 15, 207.
    [81]
    Jiang, P., Zhu, Y., Wu, Y.Q., Lin, Q.Q., Yu, Y.L., Yu, W.J., Huang, Y.X., 2021. Synthesis of flame-retardant, bactericidal, and color-adjusting wood fibers with metal phenolic networks. Ind. Crops Prod. 170, 113796.
    [82]
    Jones, D., Sandberg, D., 2020. A review of wood modification globally-updated findings from COST FP1407. Interdiscip. Perspect. Built Environ. 1: 1-31.
    [83]
    Jones, D., Sandberg, D., Goli, G., Todaro, L., 2019. Wood modification in Europe a state-of-the-art about processes, products and applications. Wood Modification in Europe: A State-of-the-Art about Processes, Products and Applications. Available at: https://doi.org/10.36253/978-88-6453-970-6.
    [84]
    Kalleshwaraswamy, C.M., Shanbhag, R.R., Sundararaj, R., 2022. Wood Degradation by Termites: Ecology, Economics and Protection. Science of Wood Degradation and its Protection. Singapore: Springer, 147-170.
    [85]
    Kalwar, K., Shan, D., 2018. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism: a mini review. Micro Nano Lett. 13, 277-280.
    [86]
    Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., Schroeder, A., 2018. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci. Rep. 8, 7589.
    [87]
    Kartal, S.N., 2006. Combined effect of boron compounds and heat treatments on wood properties: boron release and decay and termite resistance. Holzforschung 60, 455-458.
    [88]
    Kartal, S.N., Green, F., Clausen, C.A., 2009. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int. Biodeterior. Biodegrad. 63, 490-495.
    [89]
    Kartal, S.N., Terzi, E., Yılmaz, H., Goodell, B., 2015. Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegrad. 99, 95-101.
    [90]
    Kemnitz, E., Mahn, S., Krahl, T., 2020. Nano metal fluorides: small particles with great properties. ChemTexts 6, 19.
    [91]
    Khademibami, L., Bobadilha, G.S., 2022. Recent developments studies on wood protection research in academia: a review. Front. For. Glob. Change 5, 793177.
    [92]
    Khademibami, L., Shmulsky, R., Barnes, H.M., Jeremic-nikolic, D., 2018. Nano-chitosan particles as wood preservatives. Am. Wood Prot. Assoc. 114, 24-32.
    [93]
    Kroese, H.W., Dawson, B.S.W., Franich, R.A., 2001. Characterisation of solvent components in light organic solvent preservative (LOSP) treated pine sapwood boards. Holz. Als. Roh. Und Werkstoff. 59, 71-72.
    [94]
    Kushwah, K.S., Verma, D.K., 2021. Biological synthesis of metallic nanoparticles from different plant species, In: Pham, P.V (Ed.). 21st Century Nanostructured Materials. Rijeka: IntechOpen, 1-14.
    [95]
    Lankveld, C., Alexander, J., Bongers, F., Wielders, H., 2015. Accoya ® and Tricoya ® for use in innovative joinery. Proc. Eighth Eur. Conf. Wood Modif, 216-224.
    [96]
    Lebow, S., Lebow, P., Woodward, B., Kirker, G., Arango, R., 2015. Fifty-year durability evaluation of posts treated with industrial wood preservatives. For. Prod. J. 65, 307-313.
    [97]
    Lekounougou, S., Kocaefe, D., 2014. Durability of thermally modifiedPinus banksiana(Jack pine) wood against brown and white rot fungi. Int. Wood Prod. J. 5, 92-97.
    [98]
    Lesar, B., Humar, M., 2011. Use of wax emulsions for improvement of wood durability and sorption properties. Eur. J. Wood Wood Prod. 69, 231-238.
    [99]
    Li, T., Cui, L.Z., Song, X.F., Cui, X.Y., Wei, Y.L., Tang, L., Mu, Y.H., Xu, Z.H., 2022. Wood decay fungi: an analysis of worldwide research. J. Soils Sediments 22, 1688-1702.
    [100]
    Li, W.J., Ren, D., Zhang, X.X., Wang, H.K., Yu, Y., 2016. The furfurylation of wood: a nanomechanical study of modified wood cells. BioResources 11: 3614-3625.
    [101]
    Li, Y.C., Liao, C.Z., Tjong, S.C., 2020. Recent advances in zinc oxide nanostructures with antimicrobial activities. Int. J. Mol. Sci. 21, 8836.
    [102]
    Li, Y.F., Dong, X.Y., Liu, Y.X., Li, J., Wang, F.H., 2011. Improvement of decay resistance of wood via combination treatment on wood cell wall: swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. Int. Biodeterior. Biodegrad. 65, 1087-1094.
    [103]
    Li, Y.F., Liu, Y.X., Wang, X.M., Wu, Q.L., Yu, H.P., Li, J., 2011. Wood-polymer composites prepared by the in situ polymerization of monomers within wood. J. Appl. Polym. Sci. 119, 3207-3216.
    [104]
    Liang, W.L., Yu, A.X., Wang, G.D., Zheng, F., Jia, J.L., Xu, H.H., 2018. Chitosan-based nanoparticles of avermectin to control pine wood nematodes. Int. J. Biol. Macromol. 112, 258-263.
    [105]
    Lin, L., Cao, J.M., Zhang, J., Cui, Q.L., Liu, Y., 2020. Enhanced anti-mold property and mechanism description of Ag/TiO2 wood-based nanocomposites formation by ultrasound- and vacuum-impregnation. Nanomaterials 10, 682.
    [106]
    Liu, Y., Laks, P., Heiden, P., 2002. Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J. Appl. Polym. Sci. 86, 596-607.
    [107]
    Liu, Y., Laks, P., Heiden, P., 2002. Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J. Appl. Polym. Sci. 86, 615-621.
    [108]
    Liu, Y., Yan, L., Heiden, P., Laks, P., 2001. Use of nanoparticles for controlled release of biocides in solid wood. J. Appl. Polym. Sci. 79, 458-465.
    [109]
    López de Dicastillo, C., Guerrero Correa, M., Martínez, F.B., Streitt, C., José Galotto, M., 2021. Antimicrobial effect of titanium dioxide nanoparticles. In: Mareș, M., Lim, S.H.E., Lai, K.S., Cristina, R.T. (Eds.), Antimicrobial Resistance. Rijeka: IntechOpen, 1-18.
    [110]
    Lozhechnikova, A., Bellanger, H., Michen, B., Burgert, I., Österberg, M., 2017. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl. Surf. Sci. 396, 1273-1281.
    [111]
    Lucia, A., Murace, M., Sartor, G., Keil, G., Cámera, R., Rubio, R.G., Guzmán, E., 2021. Oil in water nanoemulsions loaded with tebuconazole for Populus wood protection against white- and brown-rot fungi. Forests 12, 1234.
    [112]
    Luzi, F., Yang, W.J., Ma, P.M., Torre, L., Puglia, D., 2021. Lignin-based Materials With Antioxidant and Antimicrobial properties. Lignin-Based Materials for Biomedical Applications. Amsterdam: Elsevier, 291-326.
    [113]
    Mantanis, G., Terzi, E., Kartal, S.N., Papadopoulos, A.N., 2014. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. Int. Biodeterior. Biodegrad. 90, 140-144.
    [114]
    Mantanis, G.I., 2017. Chemical modification of wood by acetylation or furfurylation: a review of the present scaled-up technologies. BioResources 12, 4478-4489.
    [115]
    Marais, B.N., Brischke, C., Militz, H., 2022. Wood durability in terrestrial and aquatic environments-a review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 17, 82-105.
    [116]
    Marzbani, P., Mohammadnia-afrouzi, Y., 2014. Investigation on leaching and decay resistance of wood treated with nano-titanium dioxide. Adv. Environ. Biol. 8, 974-978.
    [117]
    Mattos, B.D., Tardy, B.L., Magalhães, W.L.E., Rojas, O.J., 2017. Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release 262, 139-150.
    [118]
    Mindess, S., 2007. Environmental deterioration of timber. In: WIT Transactions on State of the Art in Science and Engineering. Wit Press, 287-305.
    [119]
    Mirda, E., Idroes, R., Khairan, K., Tallei, T.E., Ramli, M., Earlia, N., Maulana, A., Idroes, G.M., Muslem, M., Jalil, Z., 2021. Synthesis of chitosan-silver nanoparticle composite spheres and their antimicrobial activities. Polymers 13, 3990.
    [120]
    Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., Langer, R., 2021. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101-124.
    [121]
    Miyazaki K., Bowman K., 2023. Predictability of fossil fuel CO2 from air quality emissions. Nat. Commun. 14, 1604.
    [122]
    Morin-Crini, N., Lichtfouse, E., Torri, G., Crini, G., 2019. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 17, 1667-1692.
    [123]
    Moya, R., Berrocal, A., Rodriguez-Zuñiga, A., Vega-Baudrit, J., Noguera, S.C., 2014. Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci. 46, 527-538.
    [124]
    Mustata, F., Rosu, D., Varganici, C.D., Rosu, L., Rosca, I., Tudorachi, N., 2022. Assessing the thermal and fungal behavior of eco-friendly epoxy thermosets derived from vegetable oils for wood protective coatings. Prog. Org. Coat. 163, 106612.
    [125]
    Nicholson C., Howat, C., Sargent, R., Technologist, S.S., Thumm, A., Scientist, S., Hinkley, A.S., 2023. Enhancing product information and materials verification. Build 193, 71-73.
    [126]
    Ning, L.L., Zhang, L.L., Zhang, S.D., Wang, W., 2022. How does surfactant affect the hydrophobicity of wax-coated wood? Colloids Surf. A 650, 129606.
    [127]
    Nowrouzi, Z., Mohebby, B., Younesi, H., 2016. Influences of nano-chitosan treatment on certain properties of wood. J. Indian Acad. Wood Sci. 13, 16-20.
    [128]
    Obanda, D.N., Shupe, T.F., Barnes, H.M., 2008. Reducing leaching of boron-based wood preservatives - a review of research. Bioresour. Technol. 99, 7312-7322.
    [129]
    Österberg, M., Sipponen, M.H., Mattos, B.D., Rojas, O.J., 2020. Spherical lignin particles: a review on their sustainability and applications. Green Chem. 22, 2712-2733.
    [130]
    Palanti, S., Vignali, F., Elviri, L., Lucchetti, C., Mucchino, C., Predieri, G., 2017. Effect of amine functionalization and ageing on copper and boron leaching from wood preservatives grafted to siloxane networks. BioResources 12, 4943-4957.
    [131]
    Pan, Y.D., Birdsey, R.A., Fang, J.Y., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S.L., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988-993.
    [132]
    Pánek, M., Reinprecht, L., Hulla, M., 2014. Ten essential oils for beech wood protection - efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. BioResources 9, 5588-5603.
    [133]
    Papadopoulos, A.N., 2023. Nanotechnology and wood science. Nanomaterials 13, 691.
    [134]
    Papadopoulos, A.N., Bikiaris, D.N., Mitropoulos, A.C., Kyzas, G.Z., 2019. Nanomaterials and chemical modifications for enhanced key wood properties: a review. Nanomaterials 9, 607.
    [135]
    Papadopoulos, A.N., Taghiyari, H.R., 2019. Innovative wood surface treatments based on nanotechnology. Coatings 9, 866.
    [136]
    Pati, S.K., Malladi, V.R., Balaji, M., Swain, D., 2014. Deterioration of wood by marine borers in a tropical harbour: influence of environmental parameters and biotic factors. Int. J. Mar. Sci. https://doi.org/10.5376/ijms.2014.04.0013.
    [137]
    Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.S., 2018. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71.
    [138]
    Peralta-Videa, J.R., Huang, Y.X., Parsons, J.G., Zhao, L.J., Lopez-Moreno, L., Hernandez-Viezcas, J.A., Gardea-Torresdey, J.L., 2016. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol. Environ. Eng. 1, 4.
    [139]
    Perdikaki, A., Galeou, A., Pilatos, G., Karatasios, I., Kanellopoulos, N.K., Prombona, A., Karanikolos, G.N., 2016. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle-graphene composites with enhanced antibacterial performance. ACS Appl. Mater. Interfaces 8, 27498-27510.
    [140]
    Poncsák, S., Kocaefe, D., Bouazara, M., Pichette, A., 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci. Technol. 40, 647-663.
    [141]
    Qi, Y.R., Dai, X.H., Wei, L.X., Luo, H.X., Liu, Y.L., Dong, X.Y., Yang, D.Q., Li, Y.F., 2022. Nano-AgCu alloy on wood surface for mold resistance. Nanomaterials 12, 1192.
    [142]
    Ramalingam, V., 2022. Chapter 10: silver nanoparticles for biomedical applications. In: Kesharwani, P., Singh, K.K. (Eds.). Nanoparticle Therapeutics. Academic Press, 359-375.
    [143]
    Reinprecht, L., Iždinský, J., Vidholdová, Z., 2018. Biological resistance and application properties of particleboards containing nano-zinc oxide. Adv. Mater. Sci. Eng. 2018, 1-8.
    [144]
    Reinprecht, L., Repák, M., Iždinský, J., Vidholdová, Z., 2022. Decay resistance of nano-zinc oxide, and PEG 6000, and thermally modified wood. Forests 13, 731.
    [145]
    Ribera, J., Michel, E., Schwarze, F.W.M.R., 2020. Influence of soil characteristics on wood biodeterioration by brown rot fungi. Appl. Sci. 10, 8837.
    [146]
    Riduan, S.N., Zhang, Y.G., 2021. Recent advances of zinc-based antimicrobial materials. Chem. Asian J. 16, 2588-2595.
    [147]
    Rosenberg, M., Visnapuu, M., Saal, K., Danilian, D., Pärna, R., Ivask, A., Kisand, V., 2021. Preparation and characterization of photocatalytically active antibacterial surfaces covered with acrylic matrix embedded nano-ZnO and nano-ZnO/Ag. Nanomaterials 11, 3384.
    [148]
    Rosu, L., Varganici, C.D., Mustata, F., Rusu, T., Rosu, D., Rosca, I., Tudorachi, N., Teacă, C.A., 2018. Enhancing the thermal and fungal resistance of wood treated with natural and synthetic derived epoxy resins. ACS Sustain. Chem. Eng. 6, 5470-5478.
    [149]
    Rowell, R., 2006. Acetylation of wood - Journey from analytical technique to commercial reality. For. Prod. J. 56, 4-12.
    [150]
    Rowell, R.M., 2006. Chemical modification of wood: a short review. Wood Mater. Sci. Eng. 1, 29-33.
    [151]
    Rowell, R.M., Dickerson, J.P., 2014. Acetylation of wood. ACS Symposium Series. Washington, DC: American Chemical Society, 301-327.
    [152]
    Salem, M.Z.M., 2021. Silver Nanoparticle Applications in wood, Wood-Based Panels, and Textiles. Silver Nanomaterials for Agri-Food Applications. Amsterdam: Elsevier, 219-234.
    [153]
    Salem, M.Z.M., Zidan, Y.E., El Hadidi, N.M.N., Mansour, M.M.A., Abo Elgat, W.A.A., 2016. Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. Int. Biodeterior. Biodegrad. 110, 206-226.
    [154]
    Sánchez-Hernández, E., Langa-Lomba, N., González-García, V., Casanova-Gascón, J., Martín-Gil, J., Santiago-Aliste, A., Torres-Sánchez, S., Martín-Ramos, P., 2022. Lignin-chitosan nanocarriers for the delivery of bioactive natural products against wood-decay phytopathogens. Agronomy 12, 461.
    [155]
    Sanchez-Silva, M., Rosowsky, D.V., 2008. Biodeterioration of construction materials: state of the art and future challenges. J. Mater. Civ. Eng. 20, 352-365.
    [156]
    Schubert, M., Panzarasa, G., Burgert, I., 2023. Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123, 1889-1924.
    [157]
    Schultz, T.P., Nicholas, D.D., 2004. Protection of wood against biodeterioration. Encycl. For. Sci. 1274-1282.
    [158]
    Schwarze, F.W.M.R., 2007. Wood decay under the microscope. Fungal Biol. Rev. 21, 133-170.
    [159]
    Semenzin, E., Subramanian, V., Pizzol, L., Zabeo, A., Fransman, W., Oksel, C., Hristozov, D., Marcomini, A., 2019. Controlling the risks of nano-enabled products through the life cycle: the case of nano copper oxide paint for wood protection and nano-pigments used in the automotive industry. Environ. Int. 131, 104901.
    [160]
    Shevelev, A.B., Isakova, E.P., Trubnikova, E.V., La Porta, N., Martens, S., Medvedeva, O.A., Trubnikov, D.V., Akbaev, R.M., Biryukova, Y.K., Zylkova, M.V., Lebedeva, A.A., Smirnova, M.S., Deryabina, Y.I., 2018. A study of antimicrobial activity of polyphenols derived from wood. Bull. Russ. State Med. Univ., 46-49.
    [161]
    Shilova, O.A., Tsvetkova, I.N., Vlasov, D.Y., Ryabusheva, Y.V., Sokolov, G.S., Kychkin, A.K., Văn Nguyên, C., Khoroshavina, Y.V., 2022. Microbiologically induced deterioration and environmentally friendly protection of wood products. Biodegradation and Biodeterioration At the Nanoscale. Amsterdam: Elsevier, 283-321.
    [162]
    Shiny, K.S., Sundararaj, R., Mamatha, N., Lingappa, B., 2019. A new approach to wood protection: preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas Cienc. Tecnol. 21, 347-356.
    [163]
    Shukla, S.R., Kamdem, D.P., 2023. Effect of micronized copper treatments on retention, strength properties, copper leaching and decay resistance of plantation grown Melia dubia Cav. wood. Eur. J. Wood Wood Prod. 81, 513-528.
    [164]
    Singh, A.P., Kim, Y.S., Chavan, R.R., 2022. Advances in understanding microbial deterioration of buried and waterlogged archaeological woods: a review. Forests 13, 394.
    [165]
    Singh, A.P., Kim, Y.S., Singh, T., 2016. Bacterial degradation of wood. Secondary Xylem Biology. Amsterdam: Elsevier, 169-190.
    [166]
    Singh, T., Arpanaei, A., Elustondo, D., Wang, Y., Stocchero, A., West, T.A.P., Fu, Q.L., 2022. Emerging technologies for the development of wood products towards extended carbon storage and CO2 capture. Carbon Capture Sci. Technol. 4, 100057.
    [167]
    Singh, T., Chittenden, C., 2021. Synergistic ability of chitosan and Trichoderma harzianum to control the growth and discolouration of common sapstain fungi of Pinus radiata. Forests 12, 542.
    [168]
    Singh, T., Page, D., Bennett, A., 2014. Effectiveness of on-site remediation treatments for framing timber. Int. Biodeterior. Biodegrad. 86, 136-141.
    [169]
    Singh, T., Simpson, I., Page, D., 2016. Remedial boron treatment of difficult to access timber in buildings. Eur. J. Wood Wood Prod. 74, 703-710.
    [170]
    Singh, T., Singh, A.P., 2012. A review on natural products as wood protectant. Wood Sci. Technol. 46, 851-870.
    [171]
    Singh, T., Vesentini, D., Singh, A.P., Daniel, G., 2008. Effect of chitosan on physiological, morphological, and ultrastructural characteristics of wood-degrading fungi. Int. Biodeterior. Biodegrad. 62, 116-124.
    [172]
    Soo, J.Z., Chai, L.C., Ang, B.C., Ong, B.H., 2020. Enhancing the antibacterial performance of titanium dioxide nanofibers by coating with silver nanoparticles. ACS Appl. Nano Mater. 3, 5743-5751.
    [173]
    Spear, M.J., Curling, S.F., Dimitriou, A., Ormondroyd, G.A., 2021. Review of functional treatments for modified wood. Coatings 11, 327.
    [174]
    Stefanowski, B.K., Spear, M., Pitman, A., 2018. Review of the use of pf and related resins for modification of solid wood. Timber 2018 165-179.
    [175]
    Teng, T.J., Mat Arip, M.N., Sudesh, K., Nemoikina, A., Jalaludin, Z., Ng, E.P., Lee, H.L., 2018. Conventional technology and nanotechnology in wood preservation: a review. BioResources 13: 9220-9252.
    [176]
    Thybring, E.E., Kymäläinen, M., Rautkari, L., 2018. Moisture in modified wood and its relevance for fungal decay. iForest Biogeosci. For. 11, 418-422.
    [177]
    Thygesen, L.G., Ehmcke, G., Barsberg, S., Pilgård, A., 2020. Furfurylation result of Radiata pine depends on the solvent. Wood Sci. Technol. 54, 929-942.
    [178]
    Tran, N.T., Nguyen, T.T.T., Ha, D., Nguyen, T.H., Nguyen, N.N., Baek, K., Nguyen, N.T., Tran, C.K., Tran, T.T.V., Le, H.V., Nguyen, D.M., Hoang, D., 2021. Highly functional materials based on nano-lignin, lignin, and lignin/silica hybrid capped silver nanoparticles with antibacterial activities. Biomacromolecules 22, 5327-5338.
    [179]
    Treu, A., Zimmer, K., Brischke, C., Larnøy, E., Gobakken, L.R., Aloui, F., Cragg, S.M., Flæte, P.O., Humar, M., Westin, M., Borges, L., Williams, J., 2019. Durability and protection of timber structures in marine environments in Europe: an overview. BioResources 14, 10161-10184.
    [180]
    Tsvetkova, I.N., Krasil'nikova, L.N., Khoroshavina, Y.V., Galushko, A.S., Yu, V.F., Kychkin, A.K., Shilova, O.A., 2019. Sol-gel preparation of protective and decorative coatings on wood. J. Sol Gel Sci. Technol. 92, 474-483.
    [181]
    Ulyshen, M.D., Sheehan, T.N., 2021. The importance of termites and fire to dead wood consumption in the longleaf pine ecosystem. Sci. Rep. 11, 24109.
    [182]
    Usmani, S.M., Plarre, R., Hübert, T., Kemnitz, E., 2020, Termite resistance of pine wood treated with nano metal fluorides. Eur. J. Wood Wood Prod. 78, 493-499.
    [183]
    Usmani, S.M., Voss, L., Stephan, I., Hübert, T., Kemnitz, E., 2022. Improved durability of wood treated with nano metal fluorides against brown-rot and white-rot fungi. Appl. Sci. 12, 1727.
    [184]
    van Niekerk, P.B., Brischke, C., Niklewski, J., 2021. Estimating the service life of timber structures concerning risk and influence of fungal decay: a review of existing theory and modelling approaches. Forests 12, 588.
    [185]
    Vega-Vásquez, P., Mosier, N.S., Irudayaraj, J., 2020. Nanoscale drug delivery systems: from medicine to agriculture. Front. Bioeng. Biotechnol. 8, 79.
    [186]
    Wang, D.Y., Ling, Q.H., Nie, Y.J., Zhang, Y., Zhang, W.H., Wang, H., Sun, F.L., 2021. In-situ cross-linking of waterborne epoxy resin inside wood for enhancing its dimensional stability, thermal stability, and decay resistance. ACS Appl. Polym. Mater. 3, 6265-6273.
    [187]
    Wang, L.L., Hu, C., Shao, L.Q., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227-1249.
    [188]
    Weigenand, O., Humar, M., Daniel, G., Militz, H., Mai, C., 2008. Decay resistance of wood treated with amino-silicone compounds. Holzforschung 62, 112-118.
    [189]
    Weththimuni, M.L., Capsoni, D., Malagodi, M., Licchelli, M., 2019. Improving wood resistance to decay by nanostructured ZnO-based treatments. J. Nanomater. 2019, 1-11.
    [190]
    Wimmers, G., 2017. Wood: a construction material for tall buildings. Nat. Rev. Mater. 2, 17051.
    [191]
    Winandy, J.E., Morrell, J.J., 2017. Improving the utility, performance, and durability of wood- and bio-based composites. Ann. For. Sci. 74, 25.
    [192]
    Woźniak, M., 2022. Antifungal agents in wood protection: a review. Molecules 27, 6392.
    [193]
    Woźniak, M., Gromadzka, K., Kwaśniewska-Sip, P., Cofta, G., Ratajczak, I., 2022. Chitosan-caffeine formulation as an ecological preservative in wood protection. Wood Sci. Technol. 56, 1851-1867.
    [194]
    Woźniak, M., Kwaśniewska-Sip, P., Waśkiewicz, A., Cofta, G., Ratajczak, I., 2020. The possibility of Propolis extract application in wood protection. Forests 11, 465.
    [195]
    Wu, X.Y., Yang, F., Gan, J., Kong, Z.Q., Wu, Y., 2021. A superhydrophobic, antibacterial, and durable surface of poplar wood. Nanomaterials 11, 1885.
    [196]
    Xie, Y.J., Hill, C.A.S., Xiao, Z.F., Militz, H., Mai, C., 2010. Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A 41, 806-819.
    [197]
    Yadav, J., Jasrotia, P., Kashyap, P.L., Bhardwaj, A.K., Kumar, S., Singh, M., Singh, G.P., 2021. Nanopesticides: current status and scope for their application in agriculture. Plant Prot. Sci. 58, 1-17.
    [198]
    Yang, L.C., Wu, Y., Yang, F., Wang, W.H., 2021. The effect of antibacterial and waterproof coating prepared from hexadecyltrimethoxysilane and nano-titanium dioxide on wood properties. Front. Mater. 8, 699579.
    [199]
    Yi, L., Yang, Q., Yan, L., Wang, N., 2023. A facile strategy to construct ZnO nanoparticles reinforced transparent fire-retardant coatings for achieving antibacterial activity and long-term fire protection of wood substrates. J. Build. Eng. 72, 106630.
    [200]
    Yona, A.M.C., Žigon, J., Matjaž, P., Petrič, M., 2021. Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: a review. Wood Sci. Technol. 55, 887-918.
    [201]
    Yu, F., 2021. Ecological impacts of fungal wood decay types: a review of current knowledge and future research directions. Ecol. Res. 36, 910-931.
    [202]
    Yu, L., Tian, M., Li, L., Wu, Z., Chen, S., Chen, J., Xi, X., 2020. Study of nano colloidal silica sol based protectant on the prevention of masson pine. Wood Res. 65, 797-808.
    [203]
    Yun, J.Y., Wei, L., Li, W., Gong, D.Q., Qin, H.Y., Feng, X.J., Li, G.J., Ling, Z., Wang, P., Yin, B.S., 2021. Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front. Bioeng. Biotechnol. 9, 683796.
    [204]
    Zabel, R.A., Morrell, J.J., 2020. Wood deterioration agents. In: Zabel, R.A., Morrell, J.J.B.T. (Eds.). Wood Microbiology; Decay and its Prevention. San Diego: Academic Press, 19-54.
    [205]
    Zelinka, S.L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M., Thybring, E.E., Thygesen, L.G., 2022. Review of wood modification and wood functionalization technologies. Forests 13, 1004.
    [206]
    Zhou, H.Y., Wen, D.X., Hao, X.L., Chen, C.F., Zhao, N.H., Ou, R.X., Wang, Q.W., 2023. Nanostructured multifunctional wood hybrids fabricated via in situ mineralization of zinc borate in hierarchical wood structures. Chem. Eng. J. 451, 138308.
    [207]
    Zhou, X.H., Yan, Z.S., Zhou, X.P., Wang, C.M., Liu, H.L., Zhou, H.D., 2022. Retraction notice to an assessment of volatile organic compounds pollutant emissions from wood materials: a review. Chemosphere 308, 136460.
    [208]
    Zhu, Y., Plaza, N., Kojima, Y., Yoshida, M., Zhang, J.W., Jellison, J., Pingali, S.V., O'Neill, H., Goodell, B., 2020. Nanostructural analysis of enzymatic and non-enzymatic brown rot fungal deconstruction of the lignocellulose cell wall. Front. Microbiol. 11, 1389.
    [209]
    Zikeli, F., Romagnoli, M., Mugnozza, G.S., 2022. Lignin Nanoparticles in Coatings For Wood Preservation. Micro and Nanolignin in Aqueous Dispersions and Polymers. Amsterdam: Elsevier, 357-384.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (45) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return