Turn off MathJax
Article Contents
Kirti Mishra, Samarjeet Singh Siwal, Thandiwe Sithole, Nirankar Singh, Phil Hart, Vijay Kumar Thakur. Biorenewable materials for water remediation: The central role of cellulose in achieving sustainability[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.12.002
Citation: Kirti Mishra, Samarjeet Singh Siwal, Thandiwe Sithole, Nirankar Singh, Phil Hart, Vijay Kumar Thakur. Biorenewable materials for water remediation: The central role of cellulose in achieving sustainability[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2023.12.002

Biorenewable materials for water remediation: The central role of cellulose in achieving sustainability

doi: 10.1016/j.jobab.2023.12.002
Funds:

The authors acknowledge the support from the Department of Chemistry and Research & Development Cell of Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India. Further, SSS would like to acknowledge the financial support provided by the UKRI via Grants No EP/T024607/1. VKT would like to acknowledge the Research support provided by the UKRI via Grant No. EP/T024607/1

and Royal Society via grant number IES\R2\222208.

  • Available Online: 2024-01-31
  • As the population increases and manufacturing grows, greenhouse gas and other harmful emissions increase. Contaminated with chemicals such as dyes, pesticides, pharmaceuticals, oil, heavy metals or radionuclides, wastewater purification has become an urgent issue. Various technologies exist that can remove these contaminants from wastewater sources, but they often demand high energy and/or high cost, and in some cases produce contaminant laden sludge that requires safe disposal. The need for methods which are less capital intensive, less operationally costly and more environmentally friendly is suggested. Cellulose-based materials have emerged as promising candidates for wastewater treatment due to their renewability, low cost, biodegradability, hydrophilicity, and antimicrobial property. In this review article, we focussed on developing sustainable and biodegradable cellulose-based materials for wastewater treatment. This article deals with cellulose-based materials’ scope and their conversion into valuable products like hydrogel, aerogel, cellulose composites, and nanocellulose. The cellulose-based materials have no harmful environmental impact and are plentiful. The modified cellulose-based materials applying as membrane, adsorbent, sorbent, and beads to purify the wastewater were discussed. Finally, the challenges and future prospects of cellulose-based materials for wastewater treatment were considered, emphasizing their potential to be sustainable and eco-friendly alternatives to traditional materials used in wastewater treatment.

     

  • loading
  • [1]
    Abdelhamid, H.N., Mathew, A.P., 2021a. Cellulose-based materials for water remediation: adsorption, catalysis, and antifouling. Front. Chem. Eng. 3, 790314.
    [2]
    Abdelhamid, H.N., Mathew, A.P., 2021b. Cellulose-based materials for water remediation: adsorption, catalysis, and antifouling. Front. Chem. Eng. 3, 790314.
    [3]
    Adebajo, M.O., Frost, R.L., Kloprogge, J.T., Carmody, O., Kokot, S., 2003. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10, 159-170.
    [4]
    Agarwal, U.P., Ralph, S.A., Baez, C., Reiner, R.S., Verrill, S.P., 2017. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24, 1971-1984.
    [5]
    Aguilera, F., Méndez, J., Pásaro, E., Laffon, B., 2010. Review on the effects of exposure to spilled oils on human health. J. Appl. Toxicol. 30, 291-301.
    [6]
    Ahmad, A., 2021. Increase in frequency of nuclear power outages due to changing climate. Nat. Energy 6, 755-762.
    [7]
    Ahmad, M., Wu, F., Cui, Y.H., Zhang, Q.Y., Zhang, B.L., 2020. Preparation of novel bifunctional magnetic tubular nanofibers and their application in efficient and irreversible uranium trap from aqueous solution. ACS Sustainable Chem. Eng. 8, 7825-7838.
    [8]
    Ahmad, M.A., Ahmed, N.B., Adegoke, K.A., Bello, O.S., 2019. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chem. Data Collect. 22, 100249.
    [9]
    Akter, M., Bhattacharjee, M., Dhar, A.K., Rahman, F.B.A., Haque, S., Rashid, T.U., Kabir, S.M.F., 2021. Cellulose-based hydrogels for wastewater treatment: a concise review. Gels 7, 30.
    [10]
    Alila, S., Boufi, S., 2009. Removal of organic pollutants from water by modified cellulose fibres. Ind. Crops Prod. 30, 93-104.
    [11]
    Aloulou, F., Boufi, S., Labidi, J., 2006. Modified cellulose fibres for adsorption of organic compound in aqueous solution. Sep. Purif. Technol. 52, 332-342.
    [12]
    Alyüz, B., Veli, S., 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 167, 482-488.
    [13]
    Anastas, P.T., Lankey, R.L., 2000. Life cycle assessment and green chemistry: the Yin and Yang of industrial ecology. Green Chem. 2, 289-295.
    [14]
    Antal, M., Karhunmaa, K., 2018. The German energy transition in the British, Finnish and Hungarian news media. Nat. Energy 3, 994-1001.
    [15]
    Araki, J., Wada, M., Kuga, S., 2001. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17, 21-27.
    [16]
    Armor, J.N., 1999. The multiple roles for catalysis in the production of H2. Appl. Catal. A 176, 159-176.
    [17]
    Asadi, A., Miller, M., Singh, A.V., Moon, R.J., Kalaitzidou, K., 2017. Lightweight sheet molding compound (SMC) composites containing cellulose nanocrystals. Compos. Struct. 160, 211-219.
    [18]
    Asadullah, M., Asaduzzaman, M., Kabir, M.S., Mostofa, M.G., Miyazawa, T., 2010. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 174, 437-443.
    [19]
    Askari, S., Khodaei, M.M., Jafarzadeh, M., Mikaeili, A., 2022. In-situ formation of Ag NPs on the ribonic γ-lactone-modified UiO-66-NH2: an effective catalyst for organic synthesis and antibacterial applications. Process. Biochem. 122, 149-165.
    [20]
    Azizi Samir, M.A., Alloin, F., Dufresne, A., 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612-626.
    [21]
    Bai, Z.H., Liu, Q., Zhang, H.S., Liu, J.Y., Yu, J., Wang, J., 2020. A novel 3D reticular anti-fouling bio-adsorbent for uranium extraction from seawater: polyethylenimine and guanidyl functionalized hemp fibers. Chem. Eng. J. 382, 122555.
    [22]
    Banavath, H.N., Bhardwaj, N.K., Ray, A.K., 2011. A comparative study of the effect of refining on charge of various pulps. Bioresour. Technol. 102, 4544-4551.
    [23]
    Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., Pandey, R.A., 2010. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod. Biorefin. 4, 77-93.
    [24]
    Barakat, M.A., 2011. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361-377.
    [25]
    Bhattacharyya, K.G., Sarma, A., 2003. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes Pigm. 57, 211-222.
    [26]
    Bin Bakri, M.K., Rahman, M.R., 2022. Applications of Cellulose Materials and Their composites. Fundamentals and Recent Advances in Nanocomposites Based On Polymers and Nanocellulose. Amsterdam: Elsevier, 267-284.
    [27]
    Brooks, B.W., Lazorchak, J.M., Howard, M.D.A., Johnson, M.V V., Morton, S.L., Perkins, D.A.K., Reavie, E.D., Scott, G.I., Smith, S.A., Steevens, J.A., 2016. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 35, 6-13.
    [28]
    Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A., Hackett, L.A., Hallett, J.P., Herzog, H.J., Jackson, G., Kemper, J., Krevor, S., Maitland, G.C., Matuszewski, M., Metcalfe, I.S., Petit, C., Puxty, G., Reimer, J., Reiner, D.M., Rubin, E.S., Scott, S.A., Shah, N., Smit, B., Martin Trusler, J.P., Webley, P., Wilcox, J., Mac Dowell, N., 2018. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062-1176.
    [29]
    Cai, J., Kimura, S., Wada, M., Kuga, S., 2009. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10, 87-94.
    [30]
    Cai, J., Lei, M., Zhang, Q., He, J.R., Chen, T., Liu, S., Fu, S.H., Li, T.T., Liu, G., Fei, P., 2017. Electrospun composite nanofiber mats of Cellulose@Organically modified montmorillonite for heavy metal ion removal: design, characterization, evaluation of absorption performance. Compos. A 92, 10-16.
    [31]
    Chang, C.Y., Zhang, L.N., 2011. Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym. 84, 40-53.
    [32]
    Chen, B., Zheng, Q.F., Zhu, J.L., Li, J.H., Cai, Z.Y., Chen, L.G., Gong, S.Q., 2016a. Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv. 6, 96518-96526.
    [33]
    Chen, M.J., Zhang, X.Q., Zhang, A.P., Liu, C.F., Sun, R.C., 2016b. Direct preparation of green and renewable aerogel materials from crude bagasse. Cellulose 23, 1325-1334.
    [34]
    Chen, W.J., Su, Y.L., Zheng, L.L., Wang, L.J., Jiang, Z.Y., 2009. The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes. J. Membr. Sci. 337, 98-105.
    [35]
    Choi, H.Y., Bae, J.H., Hasegawa, Y., An, S., Kim, I.S., Lee, H., Kim, M., 2020. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 234, 115881.
    [36]
    Chowdhury, S., Chakraborty, S., Saha, P., 2011. Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids Surf. B Biointerfaces 84, 520-527.
    [37]
    Corsellis, Y.Y., Krasovec, M.M., Sylvi, L.L., Cuny, P.P., Militon, C.C., 2016. Oil removal and effects of spilled oil on active microbial communities in close to salt-saturation brines. Extremophiles 20, 235-250.
    [38]
    Cui, J., Xu, X.R., Yang, L.Y., Chen, C.T., Qian, J.S., Chen, X., Sun, D.P., 2020. Soft foam-like UiO-66/polydopamine/bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride. Chem. Eng. J. 395, 125174.
    [39]
    da Silva, A.F.V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., de Oliveira, J.V., 2023. Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. J. Water Process. Eng. 53, 103743.
    [40]
    Dada, E.O., Ojo, I.A., Alade, A.O., Afolabi, T.J., Jimoh, M.O., Dauda, M.O., 2020. Biosorption of bromo-based dyes from wastewater using low-cost adsorbents: a review. J. Sci. Res. Rep., 34-56.
    [41]
    DeLaune, R.D., Wright, A.L., 2011. Projected impact of deepwater horizon oil spill on U.S. gulf coast wetlands. Soil Sci. Soc. Am. J. 75, 1602-1612.
    [42]
    Deniz, F., Karaman, S., 2011. Removal of Basic Red 46 dye from aqueous solution by pine tree leaves. Chem. Eng. J. 170, 67-74.
    [43]
    Deshwal, N., Singh, M.B., Bahadur, I., Kaushik, N., Kaushik, N.K., Singh, P., Kumari, K., 2023. A review on recent advancements on removal of harmful metal/metal ions using graphene oxide: experimental and theoretical approaches. Sci. Total Environ. 858, 159672.
    [44]
    Dhali, K., Ghasemlou, M., Daver, F., Cass, P., Adhikari, B., 2021. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 775, 145871.
    [45]
    Di Vaio, A., Hasan, S., Palladino, R., Hassan, R., 2023. The transition towards circular economy and waste within accounting and accountability models: a systematic literature review and conceptual framework. Environ. Dev. Sustain. 25, 734-810.
    [46]
    Ding, L.L., Zou, B., Gao, W., Liu, Q., Wang, Z.C., Guo, Y.P., Wang, X.F., Liu, Y.H., 2014. Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids Surf. A 446, 1-7.
    [47]
    Dittenber, D.B., GangaRao, H.V.S., 2012. Critical review of recent publications on use of natural composites in infrastructure. Compos. A 43, 1419-1429.
    [48]
    Domínguez-Robles, J., Peresin, M.S., Tamminen, T., Rodríguez, A., Larrañeta, E., Jääskeläinen, A.S., 2018. Lignin-based hydrogels with super-swelling capacities for dye removal. Int. J. Biol. Macromol. 115, 1249-1259.
    [49]
    Dong, Y.D., Zhang, H., Zhong, G.J., Yao, G., Lai, B., 2021. Cellulose/carbon composites and their applications in water treatment - a review. Chem. Eng. J. 405, 126980.
    [50]
    El Hariri El Nokab, M., Habib, M.H., Alassmy, Y.A., Abduljawad, M.M., Alshamrani, K.M., Sebakhy, K.O., 2022. Solid state NMR a powerful technique for investigating sustainable/renewable cellulose-based materials. Polymers (Basel) 14, 1049.
    [51]
    El-Hag Ali, A., 2012. Removal of heavy metals from model wastewater by using carboxymehyl cellulose/2-acrylamido-2-methyl propane sulfonic acid hydrogels. J. Appl. Polym. Sci. 123, 763-769.
    [52]
    Eqbalpour, M., Andooz, A., Kowsari, E., Ramakrishna, S., Cheshmeh, Z.A., Chinnappan, A., 2023. A comprehensive review on how ionic liquids enhance the pyrolysis of cellulose, lignin, and lignocellulose toward a circular economy. Wiley Interdiscip. Rev. 12, e473.
    [53]
    Escursell, S., Llorach-Massana, P., Roncero, M.B., 2021. Sustainability in e-commerce packaging: a review. J. Clean. Prod. 280, 124314.
    [54]
    Etim, A.O., Musonge, P., Eloka-Eboka, A.C., 2020. Effectiveness of biogenic waste-derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production. Biofuels Bioprod. Biorefin. 14, 620-649.
    [55]
    Fan, P.D., Yuan, Y.L., Ren, J.K., Yuan, B., He, Q., Xia, G.M., Chen, F.X., Song, R., 2017. Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper. Carbohydr. Polym. 162, 108-114.
    [56]
    Fang, Y., Chen, S.F., Luo, X., Wang, C.Y., Yang, R.Z., Zhang, Q.J., Huang, C.Q., Shao, T., 2016. Synthesis and characterization of cellulose triacetate aerogels with ultralow densities. RSC Adv. 6, 54054-54059.
    [57]
    Farghali, M., Mohamed, I.M.A., Osman, A.I., Rooney, D.W., 2023. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. Environ. Chem. Lett. 21, 97-152.
    [58]
    Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., Santos, H.A., 2018. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233-269.
    [59]
    Fu, J.J., Wang, S.Q., He, C.X., Lu, Z.X., Huang, J.D., Chen, Z.L., 2016. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr. Polym. 147, 89-96.
    [60]
    Garvey, C.J., Parker, I.H., Simon, G.P., 2005. On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol. Chem. Phys. 206, 1568-1575.
    [61]
    Gavillon, R., Budtova, T., 2008. Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9, 269-277.
    [62]
    George, J., Sabapathi, S.N., 2015. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45-54.
    [63]
    Giachini, P.A.G.S., Gupta, S.S., Wang, W., Wood, D., Yunusa, M., Baharlou, E., Sitti, M., Menges, A., 2020. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Sci. Adv. 6, eaay0929.
    [64]
    Granata, A., Argyropoulos, D.S., 1995. 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J. Agric. Food Chem. 43, 1538-1544.
    [65]
    Habibi, Y., 2014. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43, 1519-1542.
    [66]
    Hamad, A.A., Hassouna, M.S., Shalaby, T.I., Elkady, M.F., Abd Elkawi, M.A., Hamad, H.A., 2020. Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. Int. J. Biol. Macromol. 151, 1299-1313.
    [67]
    Hameed, B.H., 2009a. Grass waste: a novel sorbent for the removal of basic dye from aqueous solution. J. Hazard. Mater. 166, 233-238.
    [68]
    Hameed, B.H., 2009b. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J. Hazard. Mater. 162, 344-350.
    [69]
    Hameed, B.H., Ahmad, A.A., 2009. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164, 870-875.
    [70]
    Heath, L., Thielemans, W., 2010. Cellulose nanowhisker aerogels. Green Chem. 12, 1448-1453.
    [71]
    Hernández-Delgado, E.A., 2015. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: cumulative impacts and synergies. Mar. Pollut. Bull. 101, 5-28.
    [72]
    Herrera-Morales, J., Morales, K., Ramos, D., Ortiz-Quiles, E.O., López-Encarnación, J.M., Nicolau, E., 2017. Examining the use of nanocellulose composites for the sorption of contaminants of emerging concern: an experimental and computational study. ACS Omega 2, 7714-7722.
    [73]
    Hoepfner, S., Ratke, L., Milow, B., 2008. Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15, 121-129.
    [74]
    Hokkanen, S., Bhatnagar, A., Repo, E., Lou, S., Sillanpää, M., 2016. Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(Ⅵ) from aqueous solution. Chem. Eng. J. 283, 445-452.
    [75]
    Islam, M.S., Kao, N., Bhattacharya, S.N., Gupta, R., Bhattacharjee, P.K., 2017. Effect of low pressure alkaline delignification process on the production of nanocrystalline cellulose from rice husk. J. Taiwan Inst. Chem. Engineers 80, 820-834.
    [76]
    Isobe, N., Chen, X.X., Kim, U.J., Kimura, S., Wada, M., Saito, T., Isogai, A., 2013. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J. Hazard. Mater. 260, 195-201.
    [77]
    Jalvo, B., Aguilar-Sanchez, A., Ruiz-Caldas, M.X., Mathew, A.P., 2021. Water filtration membranes based on non-woven cellulose fabrics: effect of nanopolysaccharide coatings on selective particle rejection, antifouling, and antibacterial properties. Nanomaterials 11, 1752.
    [78]
    Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J., Rafiq, S., Shah, N.S., 2017. Cellulose-based materials for the removal of heavy metals from wastewater - an overview. ChemBioEng Rev. 4, 240-256.
    [79]
    Jawad, A.H., Rashid, R.A., Ishak, M.A.M., Wilson, L.D., 2016. Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin. Water Treat. 57, 25194-25206.
    [80]
    Jayarathna, S., Andersson, M., Andersson, R., 2022. Recent advances in starch-based blends and composites for bioplastics applications. Polymers (Basel) 14, 4557.
    [81]
    Jha, A., Kumar, A., 2019. Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess Biosyst. Eng. 42, 1893-1901.
    [82]
    Ji, F., Li, C.L., Tang, B., Xu, J.H., Lu, G., Liu, P., 2012. Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chem. Eng. J. 209, 325-333.
    [83]
    Jiang, F., Hsieh, Y.L., 2014. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J. Mater. Chem. A 2, 350-359.
    [84]
    Kabir, S.M.F., Sikdar, P.P., Haque, B., Bhuiyan, M.A.R., Ali, A., Islam, M.N., 2018. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. 7, 153-174.
    [85]
    Karadagli, I., Schulz, B., Schestakow, M., Milow, B., Gries, T., Ratke, L., 2015. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids 106, 105-114.
    [86]
    Karnitz, O. Jr, Gurgel, L.V.A., de Melo, J.C.P., Botaro, V.R., Melo, T.M.S., de Freitas Gil, R.P., Gil, L.F., 2007. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 98, 1291-1297.
    [87]
    Kasaeian, A., Javidmehr, M., Mirzaie, M.R., Fereidooni, L., 2023. Integration of solid oxide fuel cells with solar energy systems: a review. Appl. Therm. Eng. 224, 120117.
    [88]
    Kaur, H., Devi, N., Siwal, S.S., Alsanie, W.F., Thakur, M.K., Thakur, V.K., 2023a. Metal-organic framework-based materials for wastewater treatment: superior adsorbent materials for the removal of hazardous pollutants. ACS Omega 8, 9004-9030.
    [89]
    Kaur, H., Siwal, S.S., Kumar, V., Thakur, V.K., 2023b. Deep eutectic solvents toward the detection and extraction of neurotransmitters: an emerging paradigm for biomedical applications. Ind. Eng. Chem. Res.
    [90]
    Kausar, A., Zohra, S.T., Ijaz, S., Iqbal, M., Iqbal, J., Bibi, I., Nouren, S., El Messaoudi, N., Nazir, A., 2023. Cellulose-based materials and their adsorptive removal efficiency for dyes: a review. Int. J. Biol. Macromol. 224, 1337-1355.
    [91]
    Khan, A., Wen, Y.B., Huq, T., Ni, Y.H., 2018. Cellulosic nanomaterials in food and nutraceutical applications: a review. J. Agric. Food Chem. 66, 8-19.
    [92]
    Kim, C.H., Youn, H.J., Lee, H.L., 2015. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 22, 3715-3724.
    [93]
    Kim, D.Y., Kadam, A., Shinde, S., Saratale, R.G., Patra, J., Ghodake, G., 2018. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J. Sci. Food Agric. 98, 849-864.
    [94]
    Kim, S.H., Lee, C.M., Kafle, K., 2013. Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 30, 2127-2141.
    [95]
    Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R., Bharagava, R.N., 2021. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 9, 105012.
    [96]
    Kistler, S.S., 1931. Coherent expanded aerogels and jellies. Nature 127, 741.
    [97]
    Kistler, S.S., 1932. Coherent expanded aerogels. Rubber Chemistry and Technology 5, 600-603.
    [98]
    Kong, L.J., Ruan, Y., Zheng, Q.Y., Su, M.H., Diao, Z.H., Chen, D.Y., Hou, L.A., Chang, X.Y., Shih, K., 2020. Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J. Hazard. Mater. 382, 120784.
    [99]
    Krishna Kumar, A.S., Kalidhasan, S., Rajesh, V., Rajesh, N., 2013. Adsorptive demercuration by virtue of an appealing interaction involving biopolymer cellulose and mercaptobenzothiazole. Ind. Eng. Chem. Res. 52, 11838-11849.
    [100]
    Ku, Y., Jung, I.L., 2001. Photocatalytic reduction of Cr(Ⅵ) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35, 135-142.
    [101]
    Kumar, A.S.K., Kalidhasan, S., Rajesh, V., Rajesh, N., 2012. Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind. Eng. Chem. Res. 51, 58-69.
    [102]
    Kumar, R., Sharma, R.K., Singh, A.P., 2017. Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. J. Mol. Liq. 232, 62-93.
    [103]
    Kumari, S., Chauhan, G.S., Ahn, J.H., 2016. Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem. Eng. J. 304, 728-736.
    [104]
    Lam, S.S., Liew, R.K., Wong, Y.M., Yek, P.N.Y., Ma, N.L., Lee, C.L., Chase, H.A., 2017. Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J. Clean. Prod. 162, 1376-1387.
    [105]
    Landaburu-Aguirre, J., García, V., Pongrácz, E., Keiski, R.L., 2009. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240, 262-269.
    [106]
    Lee, J., Kim, S., You, S.M., Park, Y.K., 2023. Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renew. Sustain. Energy Rev. 178, 113240.
    [107]
    Li, D., Zhu, F.Z., Li, J.Y., Na, P., Wang, N., 2013. Preparation and characterization of cellulose fibers from corn straw as natural oil sorbents. Ind. Eng. Chem. Res. 52, 516-524.
    [108]
    Li, J., Wang, X.X., Zhao, G.X., Chen, C.L., Chai, Z.F., Alsaedi, A., Hayat, T., Wang, X.K., 2018a. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322-2356.
    [109]
    Li, M., Jiang, H.Y., Xu, D., Yang, Y.T., 2017. A facile method to prepare cellulose whiskers-silica aerogel composites. J. Sol Gel Sci. Technol. 83, 72-80.
    [110]
    Li, N., Bai, R.B., 2005. Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep. Purif. Technol. 42, 237-247.
    [111]
    Li, S., Wang, X., Guo, Y.Y., Hu, J.W., Lin, S.D., Tu, Y.Y., Chen, L.H., Ni, Y.H., Huang, L.L., 2022. Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: a review. J. Clean. Prod. 333, 130171.
    [112]
    Li, Y.X., Cao, L.X., Li, L., Yang, C.F., 2015. In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb2+ adsorption from water. J. Hazard. Mater. 289, 140-148.
    [113]
    Li, Y.X., Li, L., Cao, L.X., Yang, C.F., 2016. Promoting dynamic adsorption of Pb2+ in a single pass flow using fibrous nano-TiO2/cellulose membranes. Chem. Eng. J. 283, 1145-1153.
    [114]
    Li, Y.Y., Wang, B., Ma, M.G., Wang, B., 2018b. Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int. J. Polym. Sci. 2018, 1-18.
    [115]
    Liang, M., Zhang, G., Feng, Y.J., Li, R.L., Hou, P., Zhang, J.S., Wang, J.M., 2018. Facile synthesis of silver nanoparticles on amino-modified cellulose paper and their catalytic properties. J. Mater. Sci. 53, 1568-1579.
    [116]
    Liao, Y.T., Matsagar, B.M., Wu, K.C.W., 2018. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustainable Chem. Eng. 6, 13628-13643.
    [117]
    Liebner, F., Haimer, E., Wendland, M., Neouze, M.A., Schlufter, K., Miethe, P., Heinze, T., Potthast, A., Rosenau, T., 2010. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol. Biosci. 10, 349-352.
    [118]
    Liimatainen, H., Sirviö, J., Sundman, O., Visanko, M., Hormi, O., Niinimäki, J., 2011. Flocculation performance of a cationic biopolymer derived from a cellulosic source in mild aqueous solution. Bioresour. Technol. 102, 9626-9632.
    [119]
    Liu, J., Chen, T.W., Yang, Y.L., Bai, Z.C., Xia, L.R., Wang, M., Lv, X.L., Li, L., 2020. Removal of heavy metal ions and anionic dyes from aqueous solutions using amide-functionalized cellulose-based adsorbents. Carbohydr. Polym. 230, 115619.
    [120]
    Liu, L., Gao, Z.Y., Su, X.P., Chen, X., Jiang, L., Yao, J.M., 2015. Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustainable Chem. Eng. 3, 432-442.
    [121]
    Liu, S.C., Wu, M.B., Ye, H., Liu, L., Ma, L.L., Yao, J.M., 2021. Amidoximated cellulose microspheres synthesized via homogenous reactions for High-Performance extraction of uranium from seawater. Chem. Eng. J. 426, 131378.
    [122]
    Long, L.Y., Weng, Y.X., Wang, Y.Z., 2018. Cellulose aerogels: synthesis, applications, and prospects. Polymers (Basel) 10, 623.
    [123]
    Luo, W., Xiao, G., Tian, F., Richardson, J.J., Wang, Y.P., Zhou, J.F., Guo, J.L., Liao, X.P., Shi, B., 2019. Engineering robust metal-phenolic network membranes for uranium extraction from seawater. Energy Environ. Sci. 12, 607-614.
    [124]
    Ma, H.Y., Hsiao, B.S., Chu, B., 2012. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett. 1, 213-216.
    [125]
    Madaeni, S.S., Gheshlaghi, A., Rekabdar, F., 2013. Membrane treatment of oily wastewater from refinery processes. Asia Pac. J. Chem. Eng. 8, 45-53.
    [126]
    Mahdavinia, G.R., Hasanpour, J., Rahmani, Z., Karami, S., Etemadi, H., 2013. Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye. Cellulose 20, 2591-2604.
    [127]
    Mahmoodi, Y., Mehrnejad, F., Khanmohammadi, S., Shahriari, M., Rahimi, F., Vakili, M.R., Lavasanifar, A., 2022. Molecular insights into the crystalline nanocellulose and human lysozyme interactions: an experimental and theoretical research. Int. J. Biol. Macromol. 213, 83-95.
    [128]
    Maity, J., Ray, S.K., 2017. Removal of Cu (Ⅱ) ion from water using sugar cane bagasse cellulose and gelatin based composite hydrogels. Int. J. Biol. Macromol. 97, 238-248.
    [129]
    Manos, M.J., Kanatzidis, M.G., 2012. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 134, 16441-16446.
    [130]
    Mishra, K., Devi, N., Siwal, S.S., Gupta, V.K., Thakur, V.K., 2023a. Hybrid semiconductor photocatalyst nanomaterials for energy and environmental applications: fundamentals, designing, and prospects. Adv. Sustainable Syst. 7, 2300095.
    [131]
    Mishra, K., Devi, N., Siwal, S.S., Thakur, V.K., 2023b. Insight perspective on the synthesis and morphological role of the noble and non-noble metal-based electrocatalyst in fuel cell application. Appl. Catal. B 334, 122820.
    [132]
    Mishra, K., Siwal, S.S., Nayaka, S.C., Guan, Z.W., Thakur, V.K., 2023c. Waste-to-chemicals: green solutions for bioeconomy markets. Sci. Total Environ. 887, 164006.
    [133]
    Missoum, K., Belgacem, M., Bras, J., 2013. Nanofibrillated cellulose surface modification: a review. Materials (Basel) 6, 1745-1766.
    [134]
    Mohamed, M.A., Abd Mutalib, M., Mohd Hir, Z.A., M Zain, M.F., Mohamad, A.B., Jeffery Minggu, L., Awang, N.A., W Salleh, W.N., 2017. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232-1256.
    [135]
    Mohamed, R.R., Seoudi, R.S., Sabaa, M.W., 2012. Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly (acrylonitrile) hydrogels. Cellulose 19, 947-958.
    [136]
    Mohanpuria, P., Rana, N.K., Yadav, S.K., 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10, 507-517.
    [137]
    Mohsen-Nia, M., Montazeri, P., Modarress, H., 2007. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 217, 276-281.
    [138]
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941-3994.
    [139]
    Moradeeya, P.G., Kumar, M.A., Thorat, R.B., Rathod, M., Khambhaty, Y., Basha, S., 2017. Nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose 24, 1319-1332.
    [140]
    Motloung, M.T., Magagula, S.I., Kaleni, A., Sikhosana, T.S., Lebelo, K., Mochane, M.J., 2023. Recent advances on chemically functionalized cellulose-based materials for arsenic removal in wastewater: a review. Water (Basel) 15, 793.
    [141]
    Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S.M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S.D., Lipponen, J., Vilaplana, F., 2023. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 402, 136815.
    [142]
    Mülhaupt, R., 2013. Green polymer chemistry and bio-based plastics: dreams and reality. Macromol. Chem. Phys. 214, 159-174.
    [143]
    Mulyadi, A., Zhang, Z., Deng, Y.L., 2016. Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl. Mater. Interfaces 8, 2732-2740.
    [144]
    Munirasu, S., Abu Haija, M., Banat, F., 2016. Use of membrane technology for oil field and refinery produced water treatment—a review. Process. Saf. Environ. Prot. 100, 183-202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return