Turn off MathJax
Article Contents
Yunyi Liang, Yonghong Luo, Yingji Wu, Xiaona Li, Quyet Van Le, Jianzhang Li, Changlei Xia. Nucleophilic Amino Acids as a Renewable Alternative to Petrochemically-Derived Amines in Glycerol Epoxy Resins[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2024.01.003
Citation: Yunyi Liang, Yonghong Luo, Yingji Wu, Xiaona Li, Quyet Van Le, Jianzhang Li, Changlei Xia. Nucleophilic Amino Acids as a Renewable Alternative to Petrochemically-Derived Amines in Glycerol Epoxy Resins[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2024.01.003

Nucleophilic Amino Acids as a Renewable Alternative to Petrochemically-Derived Amines in Glycerol Epoxy Resins

doi: 10.1016/j.jobab.2024.01.003

This research is funded by the National Key R&D Program of China (No. 2022YFD2200105).

  • Received Date: 2023-11-18
  • Accepted Date: 2023-12-31
  • Rev Recd Date: 2023-12-26
  • Available Online: 2024-01-31
  • The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources, which produce poisonous exhaust when cured. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. Fourier transform infrared (FT-IR) spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER. The elongation at break of Lys-cured GER (GER-Lys) cured at 70 ℃ with a molar ratio of 1꞉0.75 was 75.32%. The fact that elongations at break of GER-Lys (79.43%) were higher than those of GER-Glu (17.33%), respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.


  • loading
  • [1]
    Aadil, K.R., Jha, H., 2016. Physico-chemical properties of lignin-alginate based films in the presence of different plasticizers. Iran. Polym. J. 25, 661-670.
    Aristri, M.A., Lubis, M.A.R., Yadav, S.M., Antov, P., Papadopoulos, A.N., Pizzi, A., Fatriasari, W., Ismayati, M., Iswanto, A.H., 2021. Recent developments in lignin- and tannin-based non-isocyanate polyurethane resins for wood adhesives: a review. Appl. Sci. 11, 4242.
    Baroncini, E.A., Kumar Yadav, S., Palmese, G.R., Stanzione, J.F. III, 2016. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J. Appl. Polym. Sci. 133, 44103.
    Barth, A., 2000. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 74, 141-173.
    Blake, L.I., Cann, M.J., 2022. Carbon dioxide and the carbamate post-translational modification. Front. Mol. Biosci. 9, 825706.
    Cividanes, L.S., Simonetti, E.A.N., Moraes, M.B., Fernandes, F.W., Thim, G.P., 2014. Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: a comprehensive review. Polym. Eng. Sci. 54, 2461-2469.
    Elizondo, N.J., Sobral, P.J.A., Menegalli, F.C., 2009. Development of films based on blends of Amaranthus cruentus flour and poly(vinyl alcohol). Carbohydr. Polym. 75, 592-598.
    Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.P., Boutevin, B., 2016. Biobased amines: from synthesis to polymers; present and future. Chem. Rev. 116, 14181-14224.
    Gaifutdinov, A.M., Andrianova, K.A., Amirova, L.M., Milyukov, V.A., Zagidullin, A.A., Amirov, R.R., 2022. Promising low-viscosity phosphorus-containing epoxy compounds: features of interaction with aromatic amines. Results Eng. 14, 100421.
    Gao, T.Y., Wang, F.D., Xu, Y., Wei, C.X., Zhu, S.E., Yang, W., Lu, H.D., 2022. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chem. Eng. J. 428, 131173.
    Gu, W.D., Liu, X.R., Ye, Q.Q., Gao, Q., Gong, S.S., Li, J.Z., Shi, S.Q., 2020. Bio-inspired co-deposition strategy of aramid fibers to improve performance of soy protein isolate-based adhesive. Ind. Crops Prod. 150, 112424.
    Humphrey, J.M., Chamberlin, A.R., 1997. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243-2266.
    Ifuku, S., Nogi, M., Yoshioka, M., Morimoto, M., Yano, H., Saimoto, H., 2010. Fibrillation of dried chitin into 10-20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydr. Polym. 81, 134-139.
    Jiang, T.W., Reddy, K.S.K., Chen, Y.C., Wang, M.W., Chang, H.C., Abu-Omar, M.M., Lin, C.H., 2022. Recycling waste polycarbonate to bisphenol A-based oligoesters as epoxy-curing agents, and degrading epoxy thermosets and carbon fiber composites into useful chemicals. ACS Sustainable Chem. Eng. 10, 2429-2440.
    Jin, P.K., Song, J.N., Wang, X.C., Jin, X., 2018. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant. J. Environ. Sci. (China) 64, 181-189.
    Kang, H.J., Wang, Z., Wang, Y.Y., Zhao, S.J., Zhang, S.F., Li, J.Z., 2019. Development of mainly plant protein-derived plywood bioadhesives via soy protein isolate fiber self-reinforced soybean meal composites. Ind. Crops Prod. 133, 10-17.
    Lee, C.H., Wang, Y.Z., 2008. Synthesis and characterization of epoxy-based semi-interpenetrating polymer networks sulfonated polyimides proton-exchange membranes for direct methanol fuel cell applications. J. Polym. Sci. A Polym. Chem. 46, 2262-2276.
    Li, Y., Xiao, F., Moon, K.S., Wong, C.P., 2006. Novel curing agent for lead-free electronics: Amino acid. J. Polym. Sci. A Polym. Chem. 44, 1020-1027.
    Li, Y., Xiao, F., Wong, C.P., 2007. Novel, environmentally friendly crosslinking system of an epoxy using an amino acid: Tryptophan-cured diglycidyl ether of bisphenol A epoxy. J. Polym. Sci. A Polym. Chem. 45, 181-190.
    Liang, Y.Y., Luo, Y.H., Wang, Y., Fei, T.Y., Dai, L.L., Zhang, D.H., Ma, H.Z., Cai, L.P., Xia, C.L., 2023. Effects of lysine on the interfacial bonding of epoxy resin cross-linked soy-based wood adhesive. Molecules 28, 1391.
    Luo, Y.H., Wang, Y., Xia, C.L., Ahmad, A., Yang, R., Li, X.N., Shi, S.Q., Li, J.Z., Guo, M., Nadda, A.K., Ahamad, T., Van Le, Q., 2022. Eco-friendly soy protein isolate-based films strengthened by water-soluble glycerin epoxy resin. Prog. Org. Coat. 162, 106566.
    Milewski, A., Dydo, P., Jakóbik-Kolon, A., Czechowicz, D., Babilas, D., Burek, M., Waśkiewicz, S., Byczek-Wyrostek, A., Krawczyk, T., Kasprzycka, A., 2018. Preparation of triglycerol from glycerol and epichlorohydrin at room temperature: synthesis optimization and toxicity studies. ACS Sustainable Chem. Eng. 6, 13208-13216.
    Pawlukojć, A., Leciejewicz, J., Ramirez-Cuesta, A.J., Nowicka-Scheibe, J., 2005. L-Cysteine: neutron spectroscopy, Raman, IR and ab initio study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 2474-2481.
    Rashid, M.A., Liu, W.S., Wei, Y., Jiang, Q.R., 2022. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. Polym. Plast. Technol. Mater. 61, 1740-1782.
    Reinhardt, N., Breitsameter, J.M., Drechsler, K., Rieger, B., 2022. Fully bio-based epoxy thermoset based on epoxidized linseed oil and tannic acid. Macromol. Mater. Eng. 307, 2200455.
    Shibata, M., Fujigasaki, J., Enjoji, M., Shibita, A., Teramoto, N., Ifuku, S., 2018. Amino acid-cured bio-based epoxy resins and their biocomposites with chitin- and chitosan-nanofibers. Eur. Polym. J. 98, 216-225.
    Stagi, L., Farris, R., de Villiers Engelbrecht, L., Mocci, F., Maria Carbonaro, C., Innocenzi, P., 2022. At the root of l-lysine emission in aqueous solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 283, 121717.
    Sun, T., Zhang, X.Q., Qiu, B.W., Luo, Y.F., Ling, Y.Q., Chen, Y., Xu, Z.W., Liang, M., Zou, H.W., 2022. Controllable construction of gradient modulus intermediate layer on high strength and high modulus carbon fibers to enhance interfacial properties of epoxy composites by efficient electrochemical grafting. Compos. Part B Eng. 247, 110279.
    Teng, N., Dai, J.Y., Wang, S.P., Hu, J.Y., Liu, X.Q., 2022. Hyperbranched flame retardant for epoxy resin modification: simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature. Chem. Eng. J. 428, 131226.
    Tesser, R., Santacesaria, E., Di Serio, M., Di Nuzzi, G., Fiandra, V., 2007. Kinetics of glycerol chlorination with hydrochloric acid:   A new route to α, γ-dichlorohydrin. Ind. Eng. Chem. Res. 46, 6456-6465.
    Tian, Q., Yuan, Y.C., Rong, M.Z., Zhang, M.Q., 2009. A thermally remendable epoxy resin. J. Mater. Chem. 19, 1289-1296.
    Wang, W.T., Yu, B.S., Zhang, Y.W., Peng, M., 2022. Fully aminated rigid-rod aramid reinforced high strength epoxy resin and its composite with carbon fibers. Compos. Sci. Technol. 221, 109324.
    Yu, Z., Ma, S.Q., Liu, Y.L., Su, Y., Feng, H.Z., Li, P.Y., Dong, Y.X., Tang, Z.B., Zhang, K.W., Zhu, J., 2022. Facile synthesis of bio-based latent curing agent and its high-Tg epoxy network. Eur. Polym. J. 164, 110965.
    Zhang, X., Xu, C.J., Liu, Z., Shi, S.Q., Li, J.Z., Luo, J., Gao, Q., 2022a. A water-resistant and mildewproof soy protein adhesive enhanced by epoxidized xylitol. Ind. Crops Prod. 180, 114794.
    Zhang, Y.B., Liu, R., Yu, R.Z., Yang, K.M., Guo, L.L., Yan, H.X., 2022b. Phosphorus-free hyperbranched polyborate flame retardant: ultra-high strength and toughness, reduced fire hazards and unexpected transparency for epoxy resin. Compos. Part B Eng. 242, 110101.
    Zhang, Y.H., Yuan, L., Liang, G.Z., Gu, A.J., 2018. Developing reversible self-healing and malleable epoxy resins with high performance and fast recycling through building cross-linked network with new disulfide-containing hardener. Ind. Eng. Chem. Res. 57, 12397-12406.
    Zhang, Z., Li, J.S., Wang, Z.Y., Long, S.Y., Jiang, S.J., Liu, G.L., 2020. Preparation and performance characterization of a novel high-performance epoxy resin modified reactive liquid asphalt. Constr. Build. Mater. 263, 120113.
    Zhong, Z.K., Sun, X.S., 2007. Plywood adhesives by blending soy protein polymer with phenol-formaldehyde resin. J. Biobased Mater. Bioenergy 1, 380-387.
    Zou, G.L., Sun, X.K., Liu, X.H., Zhang, J.J., 2020. Influence factors on using recycled concrete aggregate in foamed asphalt mixtures based on tensile strength and moisture resistance. Constr. Build. Mater. 265, 120363.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint