Turn off MathJax
Article Contents
Yunyi Liang, Yonghong Luo, Yingji Wu, Xiaona Li, Quyet Van Le, Jianzhang Li, Changlei Xia. Nucleophilic Amino Acids as a Renewable Alternative to Petrochemically-Derived Amines in Glycerol Epoxy Resins[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2024.01.003
Citation: Yunyi Liang, Yonghong Luo, Yingji Wu, Xiaona Li, Quyet Van Le, Jianzhang Li, Changlei Xia. Nucleophilic Amino Acids as a Renewable Alternative to Petrochemically-Derived Amines in Glycerol Epoxy Resins[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2024.01.003

Nucleophilic Amino Acids as a Renewable Alternative to Petrochemically-Derived Amines in Glycerol Epoxy Resins

doi: 10.1016/j.jobab.2024.01.003
Funds:

This research is funded by the National Key R&D Program of China (No. 2022YFD2200105).

  • Received Date: 2023-11-18
  • Accepted Date: 2023-12-31
  • Rev Recd Date: 2023-12-26
  • Available Online: 2024-01-31
  • The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources, which produce poisonous exhaust when cured. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. Fourier transform infrared (FT-IR) spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER. The elongation at break of Lys-cured GER (GER-Lys) cured at 70 ℃ with a molar ratio of 1꞉0.75 was 75.32%. The fact that elongations at break of GER-Lys (79.43%) were higher than those of GER-Glu (17.33%), respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.

     

  • loading
  • [1]
    Aadil, K.R., Jha, H., 2016. Physico-chemical properties of lignin-alginate based films in the presence of different plasticizers. Iran. Polym. J. 25, 661-670.
    [2]
    Aristri, M.A., Lubis, M.A.R., Yadav, S.M., Antov, P., Papadopoulos, A.N., Pizzi, A., Fatriasari, W., Ismayati, M., Iswanto, A.H., 2021. Recent developments in lignin- and tannin-based non-isocyanate polyurethane resins for wood adhesives: a review. Appl. Sci. 11, 4242.
    [3]
    Baroncini, E.A., Kumar Yadav, S., Palmese, G.R., Stanzione, J.F. III, 2016. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J. Appl. Polym. Sci. 133, 44103.
    [4]
    Barth, A., 2000. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 74, 141-173.
    [5]
    Blake, L.I., Cann, M.J., 2022. Carbon dioxide and the carbamate post-translational modification. Front. Mol. Biosci. 9, 825706.
    [6]
    Cividanes, L.S., Simonetti, E.A.N., Moraes, M.B., Fernandes, F.W., Thim, G.P., 2014. Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: a comprehensive review. Polym. Eng. Sci. 54, 2461-2469.
    [7]
    Elizondo, N.J., Sobral, P.J.A., Menegalli, F.C., 2009. Development of films based on blends of Amaranthus cruentus flour and poly(vinyl alcohol). Carbohydr. Polym. 75, 592-598.
    [8]
    Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.P., Boutevin, B., 2016. Biobased amines: from synthesis to polymers; present and future. Chem. Rev. 116, 14181-14224.
    [9]
    Gaifutdinov, A.M., Andrianova, K.A., Amirova, L.M., Milyukov, V.A., Zagidullin, A.A., Amirov, R.R., 2022. Promising low-viscosity phosphorus-containing epoxy compounds: features of interaction with aromatic amines. Results Eng. 14, 100421.
    [10]
    Gao, T.Y., Wang, F.D., Xu, Y., Wei, C.X., Zhu, S.E., Yang, W., Lu, H.D., 2022. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chem. Eng. J. 428, 131173.
    [11]
    Gu, W.D., Liu, X.R., Ye, Q.Q., Gao, Q., Gong, S.S., Li, J.Z., Shi, S.Q., 2020. Bio-inspired co-deposition strategy of aramid fibers to improve performance of soy protein isolate-based adhesive. Ind. Crops Prod. 150, 112424.
    [12]
    Humphrey, J.M., Chamberlin, A.R., 1997. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243-2266.
    [13]
    Ifuku, S., Nogi, M., Yoshioka, M., Morimoto, M., Yano, H., Saimoto, H., 2010. Fibrillation of dried chitin into 10-20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydr. Polym. 81, 134-139.
    [14]
    Jiang, T.W., Reddy, K.S.K., Chen, Y.C., Wang, M.W., Chang, H.C., Abu-Omar, M.M., Lin, C.H., 2022. Recycling waste polycarbonate to bisphenol A-based oligoesters as epoxy-curing agents, and degrading epoxy thermosets and carbon fiber composites into useful chemicals. ACS Sustainable Chem. Eng. 10, 2429-2440.
    [15]
    Jin, P.K., Song, J.N., Wang, X.C., Jin, X., 2018. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant. J. Environ. Sci. (China) 64, 181-189.
    [16]
    Kang, H.J., Wang, Z., Wang, Y.Y., Zhao, S.J., Zhang, S.F., Li, J.Z., 2019. Development of mainly plant protein-derived plywood bioadhesives via soy protein isolate fiber self-reinforced soybean meal composites. Ind. Crops Prod. 133, 10-17.
    [17]
    Lee, C.H., Wang, Y.Z., 2008. Synthesis and characterization of epoxy-based semi-interpenetrating polymer networks sulfonated polyimides proton-exchange membranes for direct methanol fuel cell applications. J. Polym. Sci. A Polym. Chem. 46, 2262-2276.
    [18]
    Li, Y., Xiao, F., Moon, K.S., Wong, C.P., 2006. Novel curing agent for lead-free electronics: Amino acid. J. Polym. Sci. A Polym. Chem. 44, 1020-1027.
    [19]
    Li, Y., Xiao, F., Wong, C.P., 2007. Novel, environmentally friendly crosslinking system of an epoxy using an amino acid: Tryptophan-cured diglycidyl ether of bisphenol A epoxy. J. Polym. Sci. A Polym. Chem. 45, 181-190.
    [20]
    Liang, Y.Y., Luo, Y.H., Wang, Y., Fei, T.Y., Dai, L.L., Zhang, D.H., Ma, H.Z., Cai, L.P., Xia, C.L., 2023. Effects of lysine on the interfacial bonding of epoxy resin cross-linked soy-based wood adhesive. Molecules 28, 1391.
    [21]
    Luo, Y.H., Wang, Y., Xia, C.L., Ahmad, A., Yang, R., Li, X.N., Shi, S.Q., Li, J.Z., Guo, M., Nadda, A.K., Ahamad, T., Van Le, Q., 2022. Eco-friendly soy protein isolate-based films strengthened by water-soluble glycerin epoxy resin. Prog. Org. Coat. 162, 106566.
    [22]
    Milewski, A., Dydo, P., Jakóbik-Kolon, A., Czechowicz, D., Babilas, D., Burek, M., Waśkiewicz, S., Byczek-Wyrostek, A., Krawczyk, T., Kasprzycka, A., 2018. Preparation of triglycerol from glycerol and epichlorohydrin at room temperature: synthesis optimization and toxicity studies. ACS Sustainable Chem. Eng. 6, 13208-13216.
    [23]
    Pawlukojć, A., Leciejewicz, J., Ramirez-Cuesta, A.J., Nowicka-Scheibe, J., 2005. L-Cysteine: neutron spectroscopy, Raman, IR and ab initio study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 2474-2481.
    [24]
    Rashid, M.A., Liu, W.S., Wei, Y., Jiang, Q.R., 2022. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. Polym. Plast. Technol. Mater. 61, 1740-1782.
    [25]
    Reinhardt, N., Breitsameter, J.M., Drechsler, K., Rieger, B., 2022. Fully bio-based epoxy thermoset based on epoxidized linseed oil and tannic acid. Macromol. Mater. Eng. 307, 2200455.
    [26]
    Shibata, M., Fujigasaki, J., Enjoji, M., Shibita, A., Teramoto, N., Ifuku, S., 2018. Amino acid-cured bio-based epoxy resins and their biocomposites with chitin- and chitosan-nanofibers. Eur. Polym. J. 98, 216-225.
    [27]
    Stagi, L., Farris, R., de Villiers Engelbrecht, L., Mocci, F., Maria Carbonaro, C., Innocenzi, P., 2022. At the root of l-lysine emission in aqueous solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 283, 121717.
    [28]
    Sun, T., Zhang, X.Q., Qiu, B.W., Luo, Y.F., Ling, Y.Q., Chen, Y., Xu, Z.W., Liang, M., Zou, H.W., 2022. Controllable construction of gradient modulus intermediate layer on high strength and high modulus carbon fibers to enhance interfacial properties of epoxy composites by efficient electrochemical grafting. Compos. Part B Eng. 247, 110279.
    [29]
    Teng, N., Dai, J.Y., Wang, S.P., Hu, J.Y., Liu, X.Q., 2022. Hyperbranched flame retardant for epoxy resin modification: simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature. Chem. Eng. J. 428, 131226.
    [30]
    Tesser, R., Santacesaria, E., Di Serio, M., Di Nuzzi, G., Fiandra, V., 2007. Kinetics of glycerol chlorination with hydrochloric acid:   A new route to α, γ-dichlorohydrin. Ind. Eng. Chem. Res. 46, 6456-6465.
    [31]
    Tian, Q., Yuan, Y.C., Rong, M.Z., Zhang, M.Q., 2009. A thermally remendable epoxy resin. J. Mater. Chem. 19, 1289-1296.
    [32]
    Wang, W.T., Yu, B.S., Zhang, Y.W., Peng, M., 2022. Fully aminated rigid-rod aramid reinforced high strength epoxy resin and its composite with carbon fibers. Compos. Sci. Technol. 221, 109324.
    [33]
    Yu, Z., Ma, S.Q., Liu, Y.L., Su, Y., Feng, H.Z., Li, P.Y., Dong, Y.X., Tang, Z.B., Zhang, K.W., Zhu, J., 2022. Facile synthesis of bio-based latent curing agent and its high-Tg epoxy network. Eur. Polym. J. 164, 110965.
    [34]
    Zhang, X., Xu, C.J., Liu, Z., Shi, S.Q., Li, J.Z., Luo, J., Gao, Q., 2022a. A water-resistant and mildewproof soy protein adhesive enhanced by epoxidized xylitol. Ind. Crops Prod. 180, 114794.
    [35]
    Zhang, Y.B., Liu, R., Yu, R.Z., Yang, K.M., Guo, L.L., Yan, H.X., 2022b. Phosphorus-free hyperbranched polyborate flame retardant: ultra-high strength and toughness, reduced fire hazards and unexpected transparency for epoxy resin. Compos. Part B Eng. 242, 110101.
    [36]
    Zhang, Y.H., Yuan, L., Liang, G.Z., Gu, A.J., 2018. Developing reversible self-healing and malleable epoxy resins with high performance and fast recycling through building cross-linked network with new disulfide-containing hardener. Ind. Eng. Chem. Res. 57, 12397-12406.
    [37]
    Zhang, Z., Li, J.S., Wang, Z.Y., Long, S.Y., Jiang, S.J., Liu, G.L., 2020. Preparation and performance characterization of a novel high-performance epoxy resin modified reactive liquid asphalt. Constr. Build. Mater. 263, 120113.
    [38]
    Zhong, Z.K., Sun, X.S., 2007. Plywood adhesives by blending soy protein polymer with phenol-formaldehyde resin. J. Biobased Mater. Bioenergy 1, 380-387.
    [39]
    Zou, G.L., Sun, X.K., Liu, X.H., Zhang, J.J., 2020. Influence factors on using recycled concrete aggregate in foamed asphalt mixtures based on tensile strength and moisture resistance. Constr. Build. Mater. 265, 120363.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return