Citation: | Jing Shen, Meiyun Zhang. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 7-13. doi: 10.1016/j.jobab.2024.11.002 |
[1] |
Aryal, P., Hefner, C., Martinez, B., Henry, C.S., 2024. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab Chip 24, 1175-1206.
|
[2] |
Bhaw-Luximon, A., Jhurry, D., 2021. From land and marine resources to advanced nanobiomaterials: real potential for the bioeconomy. Acc. Mater. Res. 2, 134-137.
|
[3] |
Bian, P.W., Dai, Y.Y., Qian, X.R., Chen, W.S., Yu, H.P., Li, J.S., Shen, J., 2014. A process of converting cellulosic fibers to a superhydrophobic fiber product by internal and surface applications of calcium carbonate in combination with bio-wax post-treatment. RSC Adv. 4, 52680-52685.
|
[4] |
Blechschmidt, J., Heinemann, S., 2006. A Short History of Mechanical Pulping. In: Handbook of Pulp, 1073-1074. Available at: https://doi.org/10.1002/9783527619887.ch13.
|
[5] |
Burger, P., 2007. Charles Fenerty and his Paper Invention. Toronto: Library and Archives Canada.
|
[6] |
Chen, H., Zhang, X.L., Zhang, Y.Y., Wang, D.F., Bao, D.L., Que, Y.D., Xiao, W.D., Du, S.X., Ouyang, M., Pantelides, S.T., Gao, H.J., 2019. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036-1040.
|
[7] |
Clapperton, R.H., 2014. The paper-making machine: its invention, evolution, and development. Available at: https://doi.org/10.1016/C2013-0-10000-1.
|
[8] |
Delaney, J.L., Hogan, C.F., Tian, J.F., Shen, W., 2011. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83, 1300-1306.
|
[9] |
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., 2007. Preparation and characterization of graphene oxide paper. Nature 448, 457-460.
|
[10] |
Fan, J., Li, T., Ren, Y.Z., Qian, X.R., Wang, Q.W., Shen, J., Ni, Y.H., 2017. Interaction between two oppositely charged starches in an aqueous medium containing suspended mineral particles as a basis for the generation of cellulose-compatible composites. Ind. Crops Prod. 97, 417-424.
|
[11] |
He, B., Zhang, M., Chen, G., 2019. Papermaking Principle and Engineering. Beijing: Light Industry Press.
|
[12] |
Hills, R.L., 2016. Papermaking in Britain 1488-1988: A Short History. London: Bloomsbury Academic.
|
[13] |
Huang, H.Y., Park, H., Huang, J.X., 2022. Self-crosslinking of graphene oxide sheets by dehydration. Chem 8, 2432-2441.
|
[14] |
Huang, S.N., Zhang, S.X.A., Qian, X.R., Ni, Y.H., He, Z.B., Sheng, L., Shen, J., 2024. Rice-leaf-mimetic cellulosic paper as a substrate for rewritable devices and biolubricant-infused “slippery” surfaces. Chem. Eng. J. 486, 150073.
|
[15] |
Huang, X.J., Qian, X.R., Li, J.S., Lou, S., Shen, J., 2015. Starch/rosin complexes for improving the interaction of mineral filler particles with cellulosic fibers. Carbohydr. Polym. 117, 78-82.
|
[16] |
Huang, X.J., Shen, J., Qian, X.R., 2013. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions. Carbohydr. Polym. 98, 931-935.
|
[17] |
Huang, X.J., Sun, Z.S., Qian, X.R., Li, J.S., Shen, J., 2014. Starch/sodium oleate/calcium chloride modified filler for papermaking: impact of filler modification process conditions and retention systems As evaluated by filler bondability factor in combination with other parameters. Ind. Eng. Chem. Res. 53, 6426-6432.
|
[18] |
Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nair, R.R., 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752-754.
|
[19] |
Khairallah, S.A., Martin, A.A., Lee, J.R.I., Guss, G., Calta, N.P., Hammons, J.A., Nielsen, M.H., Chaput, K., Schwalbach, E., Shah, M.N., Chapman, M.G., Willey, T.M., Rubenchik, A.M., Anderson, A.T., Wang, Y.M., Matthews, M.J., King, W.E., 2020. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368, 660-665.
|
[20] |
Kiiskinen, H., Salminen, K., Lappalainen, T., Asikainen, J., Keranen, J., Hellen, E., 2019. Progress in foam forming technology. TAPPI J. 18, 499-510.
|
[21] |
Li, L.M., Qian, X.R., Shen, J., 2022. Flame-retardant, antibacterial, liquid-barrier, and wet-strength paper enabled by cellulosic fiber-derived additives. Carbohydr. Polym. 293, 119728.
|
[22] |
Li, T., Fan, J., Chen, W.S., Shu, J.Y., Qian, X.R., Wei, H.F., Wang, Q.W., Shen, J., 2016. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production. Carbohydr. Polym. 149, 20-27.
|
[23] |
Li, X., Ballerini, D.R., Shen, W., 2012. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6, 11301-1130113.
|
[24] |
Liu, R., 1978. History of Chinese Ancient Papermaking. Beijing: Light Industry Press.
|
[25] |
Mao, L., Park, H., Soler-Crespo, R.A., Espinosa, H.D., Han, T.H., Nguyen, S.T., Huang, J.X., 2019. Stiffening of graphene oxide films by soft porous sheets. Nat. Commun. 10, 3677.
|
[26] |
Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E., 2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3-10.
|
[27] |
Shen, J., Fatehi, P., 2013. A review on the use of lignocellulose-derived chemicals in wet-end application of papermaking. Curr. Org. Chem. 17, 1647-1654.
|
[28] |
Shen, J., Fatehi, P., Ni, Y.H., 2014. Biopolymers for surface engineering of paper-based products. Cellulose 21, 3145-3160.
|
[29] |
Shen, J., Fatehi, P., Soleimani, P., Ni, Y.H., 2011a. Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud. Bioresour. Technol. 102, 10035-10039.
|
[30] |
Shen, J., Fatehi, P., Soleimani, P., Ni, Y.H., 2012. Lime treatment of prehydrolysis liquor from the kraft-based dissolving pulp production process. Ind. Eng. Chem. Res. 51, 662-667.
|
[31] |
Shen, J., Hubbe, M.A., 2023. Why paper technologists use the terms “wet end” and “wet end chemistry”. BioResources 19, 19-22.
|
[32] |
Shen, J., Kaur, I., Baktash, M.M., He, Z.B., Ni, Y.H., 2013. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Bioresour. Technol. 127, 59-65.
|
[33] |
Shen, J., Liu, W., Li, C., 2005. Effect of cationic water-soluble polymers on rosin emulsification. China Pulp Paper 24, 22-25.
|
[34] |
Shen, J., Song, Z., Qian, X., 2009a. Investigations on the preparation of starch/sodium oleate/alum modified precipitated calcium carbonate filler and its use in papermaking. Appita 62, 360.
|
[35] |
Shen, J., Song, Z.Q., Qian, X.R., Liu, W.X., 2009b. A preliminary investigation into the use of acid-tolerant precipitated calcium carbonate fillers in papermaking of deinked pulp derived from recycled newspaper. BioResources 4, 1178-1189.
|
[36] |
Shen, J., Song, Z.Q., Qian, X.R., Liu, W.X., 2009c. Modification of papermaking grade fillers: a brief review. BioResources 4, 1190-1209.
|
[37] |
Shen, J., Song, Z.Q., Qian, X.R., Liu, W.X., 2009d. Modification of precipitated calcium carbonate filler using sodium silicate/zinc chloride based modifiers to improve acid-resistance and use of the modified filler in papermaking. BioResources 4, 1498-1519.
|
[38] |
Shen, J., Song, Z.Q., Qian, X.R., Ni, Y.H., 2011b. A review on use of fillers in cellulosic paper for functional applications. Ind. Eng. Chem. Res. 50, 661-666.
|
[39] |
Shen, J., Song, Z.Q., Qian, X.R., Ni, Y.H., 2011c. Carbohydrate-based fillers and pigments for papermaking: a review. Carbohydr. Polym. 85, 17-22.
|
[40] |
Shen, J., Song, Z.Q., Qian, X.R., Yang, F., 2010. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr. Polym. 81, 545-553.
|
[41] |
Smook, G., 2016. Handbook for Pulp & Paper Technologists. Atlanta: Tappi Press.
|
[42] |
Tejado, A., van de Ven, T.G.M., 2010. Why does paper get stronger as it dries? Mater. Today 13, 42-49.
|
[43] |
Villalobos, L.F., Babu, D.J., Hsu, K.J., Van Goethem, C., Agrawal, K.V., 2022. Gas separation membranes with atom-thick nanopores: the potential of nanoporous single-layer graphene. Acc. Mater. Res. 3, 1073-1087.
|
[44] |
Wan, J.M., Qian, X.R., Zhang, M.Y., Song, S.X., Shen, J., 2020a. Edible additives & cellulosic paper. BioResources 15, 2114-2116.
|
[45] |
Wan, J.M., Wang, P., Qian, X.R., Zhang, M.Y., Song, S.X., Wang, M., Guo, Q.Y., Shen, J., 2020b. Bioinspired paper-based nanocomposites enabled by biowax-mineral hybrids and proteins. ACS Sustain. Chem. Eng. 8, 9906-9919.
|
[46] |
Wang, P., Qian, X.R., Shen, J., 2017a. Superhydrophobic coatings with edible biowaxes for reducing or eliminating liquid residues of foods and drinks in containers. BioResources 13, 1-2.
|
[47] |
Wang, Y.S., Huo, H.Y., Qian, X.R., Shen, J., 2020. Colloids, nanostructures, and supramolecular assemblies for papermaking. BioResources 15, 4646-4649.
|
[48] |
Wang, Z., Sahadevan, R., Yeh, C.N., Menkhaus, T.J., Huang, J.X., Fong, H., 2017b. Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration. Nanotechnology 28, 31LT02.
|
[49] |
Wu, Z.C., Chen, Z.H., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., 2004. Transparent, conductive carbon nanotube films. Science 305, 1273-1276.
|
[50] |
Yan, C.Y., Wang, J.X., Kang, W.B., Cui, M.Q., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S., 2014. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022-2027.
|
[51] |
Yang, B., Wang, L., Zhang, M.Y., Luo, J.J., Lu, Z.Q., Ding, X.Y., 2020. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186.
|
[52] |
Yeh, C.N., Raidongia, K., Shao, J.J., Yang, Q.H., Huang, J.X., 2014. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166-170.
|
[53] |
Yu, X.Y., Bian, P.W., Xue, Y., Qian, X.R., Yu, H.P., Chen, W.S., Hu, X.H., Wang, P., Wu, D., Duan, Q.H., Li, L.M., Shen, J., Ni, Y.H., 2017. Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into “sticky” superhydrophobic paper. Carbohydr. Polym. 174, 95-102.
|
[54] |
Yuan, Z.F., Cheng, N., Li, J.Q., Yuan, H.Y., Peng, J.M., Qian, X.R., Ni, Y.H., He, Z.B., Shen, J., 2024. Bridging papermaking and hydrogel production: nanoparticle-loaded cellulosic hollow fibers with pitted walls as skeleton materials for multifunctional electromagnetic hydrogels. Int. J. Biol. Macromol. 274, 133280.
|
[55] |
Yuan, Z.F., Lin, H.J., Qian, X.R., Shen, J., 2019. Converting a dilute slurry of hollow tube-like papermaking fibers into dynamic hydrogels. J. Bioresour. Bioprod. 4, 214-221.
|
[56] |
Zhai, R., Cu, R., Qian, X., Shen, J., 2023. Separators for lithium-ion batteries: a composite network of cellulosic fibers and zirconia fibers enhanced with fiber-derived additives. China Pulp Paper, 42, 1-10.
|
[57] |
Zhu, H.L., Li, Y.Y., Fang, Z.Q., Xu, J.J., Cao, F.Y., Wan, J.Y., Preston, C., Yang, B., Hu, L.B., 2014. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8, 3606-3613.
|