Volume 10 Issue 3
Aug.  2025
Turn off MathJax
Article Contents
Meiyan Wu, Lei Ding, Xiaoying Bai, Yuxiang Cao, Mehdi Rahmaninia, Bing Li, Bin Li. Cellulose-based suture: State of art, challenge, and future outlook[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 295-309. doi: 10.1016/j.jobab.2024.11.006
Citation: Meiyan Wu, Lei Ding, Xiaoying Bai, Yuxiang Cao, Mehdi Rahmaninia, Bing Li, Bin Li. Cellulose-based suture: State of art, challenge, and future outlook[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 295-309. doi: 10.1016/j.jobab.2024.11.006

Cellulose-based suture: State of art, challenge, and future outlook

doi: 10.1016/j.jobab.2024.11.006
More Information
  • Corresponding author: E-mail address: 18505327777@163.com (B. Li); E-mail address: libin@qibebt.ac.cn (B. Li)
  • Received Date: 2024-08-23
  • Accepted Date: 2024-11-23
  • Rev Recd Date: 2024-11-19
  • Available Online: 2024-12-15
  • Publish Date: 2025-08-01
  • Surgical sutures as the most widely used and high-value implanted materials are of vital importance in wound closure and healing. Among them, cellulose-based sutures with multifunctionality have been developed in recent decades, and are very promising to replace the fossil-based synthetic sutures. Therefore, this paper aims at covering the history and recent advances of cellulose-based suture, mainly including the materials used (e.g., natural cellulose, nanocellulose, and regenerated cellulose), fabrication methods and mechanism of wet spinning and the recently developed interfacial polyelectrolyte complexation spinning, as well as suture application performance (such as mechanical properties, cytocompatibility, biodegradability, absorbable properties, and antibacterial properties). More importantly, it summarizes all cellulose-based sutures, and then delves deep into the challenges and future outlook. Thus, this review provides an important reference for the development of high-end cellulose-based medical sutures.

     

  • Author contributions
    Meiyan Wu, Lei Ding, Xiaoying Bai, Yuxiang Cao, and Mehdi Rahmaninia: writing-original draft preparation. Bing Li, Bin Li: project administration, supervision, writing-reviewing and editing.
    Declaration of competing interest
    The authors declare no conflict of interest.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Al-Attar, N., de Jonge, E., Kocharian, R., Ilie, B., Barnett, E., Berrevoet, F., 2023. Safety and hemostatic effectiveness of SURGICEL® powder in mild and moderate intraoperative bleeding. Clin. Appl. Thromb. Hemost. 29, 1–10.
    Azimi, B., Maleki, H., Gigante, V., Bagherzadeh, R., Mezzetta, A., Milazzo, M., Guazzelli, L., Cinelli, P., Lazzeri, A., Danti, S., 2022. Cellulose-based fiber spinning processes using ionic liquids. Cellulose 29, 3079–3129. doi: 10.1007/s10570-022-04473-1
    Barud, H.S., Barrios, C., Regiani, T., Marques, R.F.C., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y., Ribeiro, S.J.L., 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng. C 28, 515–518.
    Byrne, M., Aly, A., 2019. The surgical suture. Aesthet. Surg. J. 39 (S2), S67–S72. doi: 10.1093/asj/sjz036
    Cai, Y.H., Geng, L.H., Chen, S., Shi, S., Hsiao, B.S., Peng, X.F., 2020. Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness. ACS Appl. Mater. Interfaces 12, 32090–32098. doi: 10.1021/acsami.0c04504
    Castelli, W.A., Nasjleti, C.E., Caffesse, R.E., Diaz-Perez, R., 1978. Gingival response to silk, cotton, and nylon suture materials. Oral Surg. Oral Med. Oral Pathol. 45, 179–185.
    Chen, Y.G., Li, C.X., Zhang, Y., Qi, Y.D., Liu, X.H., Feng, J., Zhang, X.Z., 2022. Hybrid suture coating for dual-staged control over antibacterial actions to match well wound healing progression. Mater. Horiz. 9, 2824–2834. doi: 10.1039/d2mh00591c
    Chu, C.C., 2013. Types and Properties of Surgical sutures. Biotextiles as Medical Implants. Elsevier, Amsterdam, pp. 231–273.
    Dimitrijevich, S.D., Tatarko, M., Gracy, R.W., Linsky, C.B., Olsen, C., 1990. Biodegradation of oxidized regenerated cellulose. Carbohydr. Res. 195, 247–256.
    Dufresne, A., Cavaillé, J.Y., Vignon, M.R., 1997. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J. Appl. Polym. Sci. 64, 1185–1194.
    Edlich, R.F., Gubler, K., Wallis, A.G., Clark, J.J., Dahlstrom, J.J., Long 3rd, W.B., 2010. Wound closure sutures and needles: a new perspective. J. Environ. Pathol. Toxicol. Oncol. 29, 339–361.
    Edlich, R.F., Rodeheaver, G.T., Thacker, J.G., 1987. Considerations in the choice of sutures for wound closure of the genitourinary tract. J. Urol. 137, 373–379. doi: 10.1016/s0022-5347(17)44038-9
    Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., Garnier, C., 2023. A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials. Results Eng. 19, 101271.
    Frank, B.P., Smith, C., Caudill, E.R., Lankone, R.S., Carlin, K., Benware, S., Pedersen, J.A., Fairbrother, D.H., 2021. Biodegradation of functionalized nanocellulose. Environ. Sci. Technol. 55, 10744–10757. doi: 10.1021/acs.est.0c07253
    Geng, L.H., Chen, B.Y., Peng, X.F., Kuang, T.R., 2017. Strength and modulus improvement of wet-spun cellulose I filaments by sequential physical and chemical cross-linking. Mater. Des. 136, 45–53.
    Goel, A., 2016. Surgical sutures: a review. Delhi J. Ophthalmol. 26, 159–162. doi: 10.7869/djo.161
    Grande, R., Trovatti, E., Carvalho, A.J.F., Gandini, A., 2017. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J. Mater. Chem. A 5, 13098–13103.
    Guambo, M.P.R., Spencer, L., Vispo, N.S., Vizuete, K., Debut, A., Whitehead, D.C., Santos-Oliveira, R., Alexis, F., 2020. Natural cellulose fibers for surgical suture applications. Polymers 12, 3042. doi: 10.3390/polym12123042
    Guan, Q.F., Han, Z.M., Zhu, Y.B., Xu, W.L., Yang, H.B., Ling, Z.C., Yan, B.B., Yang, K.P., Yin, C.H., Wu, H.G., Yu, S.H., 2021. Bio-inspired Lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 21, 952–958. doi: 10.1021/acs.nanolett.0c03707
    Guo, S.C., Li, X., Zhao, R.M., Gong, Y., 2021. Comparison of life cycle assessment between lyocell fiber and viscose fiber in China. Int. J. Life Cycle Assess. 26, 1545–1555. doi: 10.1007/s11367-021-01916-y
    Håkansson, K.M.O., Fall, A.B., Lundell, F., Yu, S., Krywka, C., Roth, S.V., Santoro, G., Kvick, M., Prahl Wittberg, L., Wågberg, L., Söderberg, L.D., 2014. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018.
    Hu, Y., Catchmark, J.M., 2011. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater. 7, 2835–2845.
    Hutchinson, R.W., George, K., Johns, D., Craven, L., Zhang, G., Shnoda, P., 2013. Hemostatic efficacy and tissue reaction of oxidized regenerated cellulose hemostats. Cellulose 20, 537–545. doi: 10.1007/s10570-012-9828-8
    Imura, Y., Hogan, R.M.C., Jaffe, M., 2014. Dry spinning of synthetic polymer fibers. In: Advances in Filament Yarn Spinning of Textiles and Polymers. Elsevier, Amsterdam, pp. 187–202.
    Iwamoto, S., Isogai, A., Iwata, T., 2011. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12, 831–836. doi: 10.1021/bm101510r
    Jiang, X.Y., Bai, Y.Y., Chen, X.F., Liu, W., 2020. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 5, 16–25. doi: 10.1016/j.jobab.2020.03.002
    Kalita, H., Hazarika, A., Kandimalla, R., Kalita, S., Devi, R., 2018. Development of banana (Musa balbisiana) pseudo stem fiber as a surgical bio-tool to avert post-operative wound infections. RSC Adv, 8, pp. 36791–36801.
    Kandimalla, R., Kalita, S., Choudhury, B., Devi, D., Kalita, D., Kalita, K., Dash, S., Kotoky, J., 2016. Fiber from ramie plant (Boehmeria nivea): a novel suture biomaterial. Mater. Sci. Eng. C Mater. Biol. Appl. 62, 816–822.
    Kontturi, E., Laaksonen, P., Linder, M.B., Nonappa, Gröschel, A.H., Rojas, O.J., Ikkala, O., 2018. Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, e1703779.
    Lee, W.J., Clancy, A.J., Kontturi, E., Bismarck, A., Shaffer, M.S.P., 2016. Strong and stiff: high-performance cellulose nanocrystal/poly(vinyl alcohol) composite fibers. ACS Appl. Mater. Interfaces 8, 31500–31504. doi: 10.1021/acsami.6b11578
    Lekic, N., Dodds, S.D., 2022. Suture materials, needles, and methods of skin closure: what every hand surgeon should know. J. Hand Surg. Am 47, 160–171.
    Li, H.B., Cheng, F., Chávez-Madero, C., Choi, J., Wei, X.J., Yi, X.T., Zheng, T., He, J.M., 2019. Manufacturing and physical characterization of absorbable oxidized regenerated cellulose braided surgical sutures. Int. J. Biol. Macromol. 134, 56–62. doi: 10.1117/12.2528644
    Li, H.C., Sun, X.M., Huang, Y.R., Peng, Y.H., Liu, J., Ren, L., 2022. Synthetic crosslinker based on amino–yne click to enhance the suture tension of collagen-based corneal repair materials. ACS Appl. Polym. Mater. 4, 4495–4507. doi: 10.1021/acsapm.2c00472
    Li, J., Wan, Y.Z., Li, L.F., Liang, H., Wang, J.H., 2009. Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C 29, 1635–1642.
    Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., Dai, J.Q., Rojas, O.J., Isogai, A., Wågberg, L., Hu, L.B., 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56. doi: 10.1038/s41586-020-03167-7
    Li, T.C., Cooke, I.D., 1994. The value of an absorbable adhesion barrier, Interceed, in the prevention of adhesion reformation following microsurgical adhesiolysis. Br. J. Obstet. Gynaecol. 101, 335–339. doi: 10.1111/j.1471-0528.1994.tb13621.x
    Li, Y.R., Meng, Q., Chen, S.J., Ling, P.X., Kuss, M.A., Duan, B., Wu, S.H., 2023. Advances, challenges, and prospects for surgical suture materials. Acta Biomater. 168, 78–112.
    Liu, C., Du, H.S., Dong, L., Wang, X., Zhang, Y.D., Yu, G., Li, B., Mu, X.D., Peng, H., Liu, H.Z., 2017. Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind. Eng. Chem. Res. 56, 8264–8273. doi: 10.1021/acs.iecr.7b01804
    Liu, W., Liu, K., Du, H.S., Zheng, T., Zhang, N., Xu, T., Pang, B., Zhang, X.Y., Si, C.L., Zhang, K., 2022. Cellulose nanopaper: fabrication, functionalization, and applications. Nanomicro Lett. 14, 104.
    Liu, Y.Y., Fan, Q., Huo, Y., Liu, C., Li, B., Li, Y.M., 2020. Construction of a mesoporous Polydopamine@GO/cellulose nanofibril composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding. ACS Appl. Mater. Interfaces 12, 57410–57420. doi: 10.1021/acsami.0c15465
    Lundahl, M.J., Klar, V., Wang, L., Ago, M., Rojas, O.J., 2017. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19. doi: 10.1021/acs.iecr.6b04010
    Ma, Z.W., Yang, Z., Gao, Q.M., Bao, G.Y., Valiei, A., Yang, F., Huo, R., Wang, C., Song, G.L., Ma, D.L., Gao, Z.H., Li, J.Y., 2021. Bioinspired tough gel sheath for robust and versatile surface functionalization. Sci. Adv. 7, eabc3012.
    Marais, A., Erlandsson, J., Söderberg, L.D., Wågberg, L., 2020. Coaxial spinning of oriented nanocellulose filaments and core–shell structures for interactive materials and fiber-reinforced composites. ACS Appl. Nano Mater. 3, 10246–10251. doi: 10.1021/acsanm.0c02192
    Meade, W.H., Ochsner, A., 1939. Spool cotton as a suture material. J. Am. Med. Assoc. 113, 2230–2231.
    Melick, W.F., 1946. The advantages of cotton as a suture material in urological surgery. J. Urol. 56, 602–608. doi: 10.1016/s0022-5347(17)69849-5
    Mertaniemi, H., Escobedo-Lucea, C., Sanz-Garcia, A., Gandía, C., Mäkitie, A., Partanen, J., Ikkala, O., Yliperttula, M., 2016. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82, 208–220.
    Mittal, N., Ansari, F., Gowda V.K., Brouzet, C., Chen, P., Larsson, P.T., Roth, S.V., Lundell, F., Wågberg, L., Kotov, N.A., Söderberg, L.D., 2018. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388. doi: 10.1021/acsnano.8b01084
    Nechyporchuk, O., Håkansson, K.M.O., Gowda V.K., Lundell, F., Hagström, B., Köhnke, T., 2019. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv. Mater. Technol. 4, 1800557.
    Pillai C.K., Sharma C.P., 2010. Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J. Biomater. Appl. 25, 291–366. doi: 10.1177/0885328210384890
    Prabha, S., Sowndarya, J., Ram, P.J.V.S., Rubini, D., Hari, B.V., Aruni, W., Nithyanand, P., 2021. Chitosan-coated surgical sutures prevent adherence and biofilms of mixed microbial communities. Curr. Microbiol. 78, 502–512. doi: 10.1007/s00284-020-02306-7
    Ren, N., Qiao, A.H., Cui, M., Huang, R.L., Qi, W., Su, R.X., 2023. Design and fabrication of nanocellulose-based microfibers by wet spinning. Chem. Eng. Sci. 282, 119320.
    Rosén, T., Hsiao, B.S., Söderberg, L.D., 2021. Elucidating the opportunities and challenges for nanocellulose spinning. Adv. Mater. 33, e2001238.
    Sayyed, A.J., Deshmukh, N.A., Pinjari, D.V., 2019. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940. doi: 10.1007/s10570-019-02318-y
    Scott Taylor, M., Shalaby, S.W., 2013. Sutures. Biomaterials Science. Elsevier, Amsterdam, pp. 1010–1024.
    Sneha, K.R., Steny, P.S., Sailaja, G.S., 2021. Intrinsically radiopaque and antimicrobial cellulose based surgical sutures from mechanically powerful Agave sisalana plant leaf fibers. Biomater. Sci. 9, 7944–7961. doi: 10.1039/d1bm01316e
    Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., Mihhels, K., Kröger, M., Meng, Z.J., Wohlert, J., Tao, H., Cranston, E.D., Kontturi, E., 2023. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123, 1925–2015. doi: 10.1021/acs.chemrev.2c00611
    Spangler, D., Rothenburger, S., Nguyen, K., Jampani, H., Weiss, S., Bhende, S., 2003. In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg. Infect. 4, 255–262. doi: 10.1089/109629603322419599
    Suzuki, S., Ikada, Y., 2011. Barriers to prevent tissue adhesion. In: Biomaterials for Surgical Operation. Humana Press, Totowa, pp. 91–130.
    Thomas, B., Raj, M.C., Athira, K.B., Rubiyah, M.H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627
    Thorek, P., Gradman, R., Glaess, A., 1943. Additional experiences with spool cotton as a suture material. Am. J. Surg. 59, 68–71.
    Toivonen, M.S., Kurki-Suonio, S., Wagermaier, W., Hynninen, V., Hietala, S., Ikkala, O., 2017. Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromolecules 18, 1293–1301. doi: 10.1021/acs.biomac.7b00059
    Torgbo, S., Sukyai, P., 2020. Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications. Polym. Degrad. Stab. 179, 109232.
    Wan, A.C.A., Cutiongco, M.F.A., Tai, B.C.U., Leong, M.F., Lu, H.F., Yim, E.K.F., 2016. Fibers by interfacial polyelectrolyte complexation–processes, materials and applications. Mater. Today 19, 437–450.
    Wan, A.C.A., Liao, I.C., Yim, E.K.F., Leong, K.W., 2004. Mechanism of fiber formation by interfacial polyelectrolyte complexation. Macromolecules 37, 7019–7025.
    Wang, B.X., Lv, X.G., Chen, S.Y., Li, Z., Sun, X.X., Feng, C., Wang, H.P., Xu, Y.M., 2016a. In vitro biodegradability of bacterial cellulose by cellulase in simulated body fluid and compatibility in vivo. Cellulose 23, 3187–3198. doi: 10.1007/s10570-016-0993-z
    Wang, L., Lundahl, M.J., Greca, L.G., Papageorgiou, A.C., Borghei, M., Rojas, O.J., 2019. Effects of non-solvents and electrolytes on the formation and properties of cellulose I filaments. Sci. Rep. 9, 16691.
    Wang, S., Lu, A., Zhang, L.N., 2016b. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206.
    Wu, M.Y., Liu, Y.N., Liu, C., Cui, Q., Zheng, X., Fatehi, P., Li, B., 2023a. Core-shell filament with excellent wound healing property made of cellulose nanofibrils and guar gum via interfacial polyelectrolyte complexation spinning. Small 19, e2205867.
    Wu, M.Y., Sukyai, P., Lv, D., Zhang, F., Wang, P.D., Liu, C., Li, B., 2020. Water and humidity-induced shape memory cellulose nanopaper with quick response, excellent wet strength and folding resistance. Chem. Eng. J. 392, 123673.
    Wu, M.Y., Zhang, P., Li, M., Xu, R., Zheng, X., Cui, Q., Cha, R.T., Li, B., 2023b. Bioinspired, robust, and absorbable cellulose nanofibrils/chitosan filament with remarkable cytocompatibility and wound healing properties. ACS Appl. Mater. Interfaces 15, 43468–43478. doi: 10.1021/acsami.3c08525
    Xie, Y.Y., Hu, X.H., Zhang, Y.W., Wahid, F., Chu, L.Q., Jia, S.R., Zhong, C., 2020. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydr. Polym. 229, 115456.
    Xu, Q.Q., Li, Q., Yu, H.P., Li, J., Chen, W.S., 2024. Nanocellulose building block for the construction of hygroscopic aerogels. Acc. Mater. Res. 5, 846–856. doi: 10.1021/accountsmr.4c00085
    Yamane, C., Mori, M., Saito, M., Okajima, K., 1996. Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym. J. 28, 1039–1047. doi: 10.1295/polymj.28.1039
    Yi, Y.D., Zhang, Y., Mansel, B., Wang, Y.N., Prabakar, S., Shi, B., 2022. Effect of dialdehyde carboxymethyl cellulose cross-linking on the porous structure of the collagen matrix. Biomacromolecules 23, 1723–1732. doi: 10.1021/acs.biomac.1c01641
    Yu, X.S., Cheng, C., Peng, X., Zhang, K.X., Yu, X.X., 2022. A self-healing and injectable oxidized quaternized guar gum/carboxymethyl chitosan hydrogel with efficient hemostatic and antibacterial properties for wound dressing. Colloids Surf. B Biointerfaces 209, 112207.
    Zhang, K.T., Ketterle, L., Järvinen, T., Hong, S., Liimatainen, H., 2020a. Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation. Mater. Des. 191, 108594.
    Zhang, K.T., Ketterle, L., Järvinen, T., Lorite, G.S., Hong, S., Liimatainen, H., 2020b. Self-assembly of graphene oxide and cellulose nanocrystals into continuous filament via interfacial nanoparticle complexation. Mater. Des. 193, 108791.
    Zhang, K.T., Liimatainen, H., 2018. Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small 14, e1801937.
    Zhang, S.H., Li, J.W., Chen, S.J., Zhang, X.Y., Ma, J.W., He, J.M., 2020c. Oxidized cellulose-based hemostatic materials. Carbohydr. Polym. 230, 115585.
    Zhou, N., Gao, Y.F., Huo, Y., Zhang, K., Zhu, J., Chen, M.Y., Zhu, L., Dong, Y.H., Gao, H.G., Kim, I.S., Zhang, K.Q., Chen, R.X., Wang, H.L., 2023. Biodegradable micro-nanofiber medical tape with antibacterial and unidirectional moisture permeability. Chem. Eng. J. 474, 145793.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (64) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return