Citation: | Daqian Gao, William D. Shipman, Yaping Sun, Joshua Zev Glahn, Leleda Beraki, Henry C. Hsia. Macroporous scaffolds based on biomass polymers and their applications in wound healing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 14-31. doi: 10.1016/j.jobab.2024.12.001 |
[1] |
Ahmed, S., Khan, R.A., Rashid, T.U., 2025. Cellulose nanocrystal based electrospun nanofiber for biomedical applications-a review. Carbohydr. Polym. 348, 122838.
|
[2] |
Annabi, N., Nichol, J.W., Zhong, X., Ji, C.D., Koshy, S., Khademhosseini, A., Dehghani, F., 2010. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 16, 371-383.
|
[3] |
Babu, S., Shanmugavadivu, A., Selvamurugan, N., 2024. Tunable mechanical properties of chitosan-based biocomposite scaffolds for bone tissue engineering applications: a review. Int. J. Biol. Macromol. 272, 132820.
|
[4] |
Barati, D., Kader, S., Pajoum Shariati, S.R., Moeinzadeh, S., Sawyer, R.H., Jabbari, E., 2017. Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules 18, 398-412.
|
[5] |
Béduer, A., Piacentini, N., Aeberli, L., Da Silva, A., Verheyen, C.A., Bonini, F., Rochat, A., Filippova, A., Serex, L., Renaud, P., Braschler, T., 2018. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomater. 76, 71-79.
|
[6] |
Bernal, P.N., Delrot, P., Loterie, D., Li, Y., Malda, J., Moser, C., Levato, R., 2019. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, e1904209.
|
[7] |
Birajdar, M.S., Lee, J., 2019. Hierarchically structured microgels of SPIONs, nanofibers, and alginate for copper ion removal. J. Ind. Eng. Chem. 77, 303-308.
|
[8] |
Bonnans, C., Chou, J., Werb, Z., 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786-801.
|
[9] |
Bowers, D.T., Song, W., Wang, L.H., Ma, M.L., 2019. Engineering the vasculature for islet transplantation. Acta Biomater. 95, 131-151.
|
[10] |
Broguiere, N., Husch, A., Palazzolo, G., Bradke, F., Madduri, S., Zenobi-Wong, M., 2019. Macroporous hydrogels derived from aqueous dynamic phase separation. Biomaterials 200, 56-65.
|
[11] |
Caldwell A.S., Aguado B.A., Anseth K.S., 2020. Designing microgels for cell culture and controlled assembly of tissue microenvironments. Adv. Funct. Mater. 30, 1907670.
|
[12] |
Caldwell, A.S., Campbell, G.T., Shekiro, K.M.T., Anseth, K.S., 2017. Clickable microgel scaffolds as platforms for 3D cell encapsulation. Adv. Healthc. Mater. 6, 10.1002/adhm.201700254.
|
[13] |
Chen, R.Y., Ma, H.Y., Zhang, L., Bryers, J.D., 2018a. Precision-porous templated scaffolds of varying pore size drive dendritic cell activation. Biotechnol. Bioeng. 115, 1086-1095.
|
[14] |
Chen, W.C., Zhou, H.Z., Weir, M.D., Bao, C.Y., Xu, H.H.K., 2012. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater. 8, 2297-2306.
|
[15] |
Chen, Y.W., Shen, Y.F., Ho, C.C., Yu, J., Wu, Y.H A., Wang, K., Shih, C.T., Shie, M.Y., 2018b. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 679-687.
|
[16] |
Cheng, H., Xiao, D.D., Tang, Y.J., Wang, B.J., Feng, X.L., Lu, M.J., Vancso, G.J., Sui, X.F., 2020. Sponges with Janus character from nanocellulose: preparation and applications in the treatment of hemorrhagic wounds. Adv. Healthc. Mater. 9, e1901796.
|
[17] |
Cheng, W.K., Zhu, Y., Jiang, G.Y., Cao, K.Y., Zeng, S.Q., Chen, W.S., Zhao, D.W., Yu, H.P., 2023. Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 138, 101152.
|
[18] |
Chhabra, R., Peshattiwar, V., Pant, T., Deshpande, A., Modi, D., Sathaye, S., Tibrewala, A., Dyawanapelly, S., Jain, R., Dandekar, P., 2020. In vivo studies of 3D starch-gelatin scaffolds for full-thickness wound healing. ACS Appl. Bio Mater. 3, 2920-2929.
|
[19] |
Chiu, Y.C., Cheng, M.H., Engel, H., Kao, S.W., Larson, J.C., Gupta, S., Brey, E.M., 2011. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32, 6045-6051.
|
[20] |
Choe, G., Kim, S.W., Park, J., Park, J., Kim, S., Kim, Y.S., Ahn, Y., Jung, D.W., Williams, D.R., Lee, J.Y., 2019. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 225, 119513.
|
[21] |
Choi, S.W., Yeh, Y.C., Zhang, Y., Sung, H.W., Xia, Y.N., 2010. Uniform beads with controllable pore sizes for biomedical applications. Small 6, 1492-1498.
|
[22] |
Contessi Negrini, N., Bonnetier, M., Giatsidis, G., Orgill, D.P., Farè, S., Marelli, B., 2019. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater. 87, 61-75.
|
[23] |
Daly, A.C., Riley, L., Segura, T., Burdick, J.A., 2020. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20-43.
|
[24] |
De France, K.J., Xu, F., Hoare, T., 2018. Structured macroporous hydrogels: progress, challenges, and opportunities. Adv. Healthc. Mater. 7, 1700927.
|
[25] |
Deo, K.A., Murali, A., Tronolone, J.J., Mandrona, C., Lee, H.P., Rajput, S., Hargett, S.E., Selahi, A., Sun, Y.X., Alge, D.L., Jain, A., Gaharwar, A.K., 2024. Granular biphasic colloidal hydrogels for 3D bioprinting. Adv. Healthc. Mater. 13, e2303810.
|
[26] |
Ding, X.Y., Yu, Y.R., Li, W.Z., Zhao, Y.J., 2023. In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000-1014.
|
[27] |
Eggermont, L.J., Rogers, Z.J., Colombani, T., Memic, A., Bencherif, S.A., 2020. Injectable cryogels for biomedical applications. Trend. Biotechnol. 38, 418-431.
|
[28] |
Fan, C.J., Wang, D.A., 2017. Macroporous hydrogel scaffolds for three-dimensional cell culture and tissue engineering. Tissue. Eng. Part B Rev. 23, 451-461.
|
[29] |
Fernández-Colino, A., Wolf, F., Keijdener, H., Rütten, S., Schmitz-Rode, T., Jockenhoevel, S., Rodríguez-Cabello, J.C., Mela, P., 2018. Macroporous click-elastin-like hydrogels for tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 88, 140-147.
|
[30] |
Flégeau, K., Pace, R., Gautier, H., Rethore, G., Guicheux, J., Le Visage, C., Weiss, P., 2017. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv. Colloid Interface. Sci. 247, 589-609.
|
[31] |
Gao, D.Q., Ernst, A.U., Wang, X., Wang, L.H., Liu, W.J., Ma, M.L., 2022. Engineering a hierarchical biphasic gel for subcutaneous vascularization. Adv. Healthc. Mater. 11, e2200922.
|
[32] |
Gao, D.Q., Zhang, Y.D., Bowers, D.T., Liu, W.J., Ma, M.L., 2021. Functional hydrogels for diabetic wound management. APL Bioeng. 5, 031503.
|
[33] |
Geraghty, T., LaPorta, G., 2019. Current health and economic burden of chronic diabetic osteomyelitis. Expert Rev. Pharmacoecon. Outcome. Res. 19, 279-286.
|
[34] |
Ghosal, K., Ghosh, S., 2023. Biodegradable polymers from lignocellulosic biomass and synthetic plastic waste: an emerging alternative for biomedical applications. Mater. Sci. Eng. R Rep. 156, 100761.
|
[35] |
Goh, M., Kim, Y., Gwon, K., Min, K., Hwang, Y., Tae, G., 2017. In situ formation of injectable and porous heparin-based hydrogel. Carbohydr. Polym. 174, 990-998.
|
[36] |
Griffin, D.R., Weaver, W.M., Scumpia, P.O., Di Carlo, D., Segura, T., 2015. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737-744.
|
[37] |
Guo, P., Yuan, Y.S., Chi, F.L., 2014. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 622-628.
|
[38] |
Gupte, M.J., Swanson, W.B., Hu, J., Jin, X.B., Ma, H.Y., Zhang, Z.P., Liu, Z.N., Feng, K., Feng, G.J., Xiao, G.Y., Hatch, N., Mishina, Y., Ma, P.X., 2018. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater. 82, 1-11.
|
[39] |
Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T., 2008. Wound repair and regeneration. Nature 453, 314-321.
|
[40] |
Hammer, J., Han, L.H., Tong, X.M., Yang, F., 2014. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering. Tissue Eng. Part C Methods 20, 169-176.
|
[41] |
Han, G., Ceilley, R., 2017. Chronic wound healing: a review of current management and treatments. Adv. Ther. 34, 599-610.
|
[42] |
Han, L.H., Lai, J.H., Yu, S., Yang, F., 2013a. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials 34, 4251-4258.
|
[43] |
Han, L.H., Yu, S., Wang, T.Y., Behn, A.W., Yang, F., 2013b. Microribbon-like elastomers for fabricating macroporous and highly flexible scaffolds that support cell proliferation in 3D. Adv. Funct. Mater. 23, 346-358.
|
[44] |
Heinrich, M.A., Liu, W.J., Jimenez, A., Yang, J.Z., Akpek, A., Liu, X., Pi, Q.M., Mu, X., Hu, N., Schiffelers, R.M., Prakash, J., Xie, J.W., Zhang, Y.S., 2019. 3D bioprinting: from benches to translational applications. Small 15, e1805510.
|
[45] |
Hernández-González, A.C., Téllez-Jurado, L., Rodríguez-Lorenzo, L.M., 2020. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr. Polym. 229, 115514.
|
[46] |
Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.J., Ramadan, M.H., Hudson, A.R., Feinberg, A.W., 2015. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758.
|
[47] |
Hori, A., Watabe, Y., Yamada, M., Yajima, Y., Utoh, R., Seki, M., 2019. One-step formation of microporous hydrogel sponges encapsulating living cells by utilizing bicontinuous dispersion of aqueous polymer solutions. ACS Appl. Bio Mater. 2, 2237-2245.
|
[48] |
Hou, S.J., Lake, R., Park, S., Edwards, S., Jones, C., Jeong, K.J., 2018. Injectable macroporous hydrogel formed by enzymatic cross-linking of gelatin microgels. ACS Appl. Bio Mater. 1, 1430-1439.
|
[49] |
Hou, S.W., Xia, Z.P., Pan, J.J., Wang, N., Gao, H.C., Ren, J.L., Xia, X.K., 2024. Bacterial cellulose applied in wound dressing materials: production and functional modification - A review. Macromol. Biosci. 24, e2300333.
|
[50] |
Huang, W.C., Ying, R., Wang, W., Guo, Y.N., He, Y.J., Mo, X.Y., Xue, C.H., Mao, X.Z., 2020. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing. Adv. Funct. Mater. 30, 2000644.
|
[51] |
Huang, X.X., Ma, C., Xu, Y.C., Cao, J.F., Li, J.C., Li, J.Z., Shi, S.Q., Gao, Q., 2022. A tannin-functionalized soy protein-based adhesive hydrogel as a wound dressing. Ind. Crop. Prod. 182, 114945.
|
[52] |
Huebsch, N., Lippens, E., Lee, K., Mehta, M., Koshy, S.T., Darnell, M.C., Desai, R.M., Madl, C.M., Xu, M., Zhao, X.H., Chaudhuri, O., Verbeke, C., Kim, W.S., Alim, K., Mammoto, A., Ingber, D.E., Duda, G.N., Mooney, D.J., 2015. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269-1277.
|
[53] |
Hunt, T.K., Hopf, H.W., 1997. Wound healing and wound infection. What surgeons and anesthesiologists can do. Surg. Clin. North Am. 77, 587-606.
|
[54] |
Ianovici, I., Zagury, Y., Redenski, I., Lavon, N., Levenberg, S., 2022. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials 284, 121487.
|
[55] |
Jeon, O., Bin Lee, Y., Hinton, T.J., Feinberg, A.W., Alsberg, E., 2019. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 12, 61-70.
|
[56] |
Jiang, B., Akar, B., Waller, T.M., Larson, J.C., Appel, A.A., Brey, E.M., 2014. Design of a composite biomaterial system for tissue engineering applications. Acta Biomater. 10, 1177-1186.
|
[57] |
Ke, M.F., Wang, Z.J., Dong, Q., Chen, F.X., He, L., Huselstein, C., Wang, X.H., Chen, Y., 2021. Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury. Nanoscale 13, 15743-15754.
|
[58] |
Kérourédan, O., Washio, A., Handschin, C., Devillard, R., Kokabu, S., Kitamura, C., Tabata, Y., 2024. Bioactive gelatin-sheets as novel biopapers to support prevascularization organized by laser-assisted bioprinting for bone tissue engineering. Biomed. Mater. 19, 025038.
|
[59] |
Kim, W., Kim, G., 2019. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Biofabrication 12, 015007.
|
[60] |
Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J.N., Brock, J., Graham, L., Lu, P., Sakamoto, J., Marsala, M., Chen, S.C., Tuszynski, M.H., 2019. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25, 263-269.
|
[61] |
Koh, J., Griffin, D.R., Archang, M.M., Feng, A.C., Horn, T., Margolis, M., Zalazar, D., Segura, T., Scumpia, P.O., Di Carlo, D., 2019. Enhanced in vivo delivery of stem cells using microporous annealed particle scaffolds. Small 15, e1903147.
|
[62] |
Lan, D.W., Wu, B.Q., Zhang, H.Q., Chen, X., Li, Z., Dai, F.Y., 2023. Novel bioinspired nerve scaffold with high synchrony between biodegradation and nerve regeneration for repair of peripheral nerve injury. Biomacromolecules 24, 5451-5466.
|
[63] |
Las Heras, K., Garcia-Orue, I., Aguirre, J.J., de la Caba, K., Guerrero, P., Igartua, M., Santos-Vizcaino, E., Hernandez, R.M., 2023. Soy protein/β-chitin sponge-like scaffolds laden with human mesenchymal stromal cells from hair follicle or adipose tissue promote diabetic chronic wound healing. Biomater. Adv. 155, 213682.
|
[64] |
Las Heras, K., Santos-Vizcaino, E., Garrido, T., Borja Gutierrez, F., Aguirre, J.J., de la Caba, K., Guerrero, P., Igartua, M., Hernandez, R.M., 2020. Soy protein and chitin sponge-like scaffolds: from natural by-products to cell delivery systems for biomedical applications. Green Chem. 22, 3445-3460.
|
[65] |
Lee, A., Hudson, A.R., Shiwarski, D.J., Tashman, J.W., Hinton, T.J., Yerneni, S., Bliley, J.M., Campbell, P.G., Feinberg, A.W., 2019. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482-487.
|
[66] |
Lee, J., Choi, H.N., Cha, H.J., Yang, Y.J., 2023. Microporous hemostatic sponge based on silk fibroin and starch with increased structural retentivity for contact activation of the coagulation cascade. Biomacromolecules 24, 1763-1773.
|
[67] |
Leem, Y.H., Lee, K.S., Kim, J.H., Seok, H.K., Chang, J.S., Lee, D.H., 2016. Magnesium ions facilitate integrin alpha 2- and alpha 3-mediated proliferation and enhance alkaline phosphatase expression and activity in hBMSCs. J. Tissue Eng. Regen. Med. 10, E527-E536.
|
[68] |
Leijten, J., Seo, J., Yue, K., Santiago, G.T.D., Tamayol, A., Ruiz-Esparza, G.U., Shin, S.R., Sharifi, R., Noshadi, I., Álvarez, M.M., Zhang, Y.S., Khademhosseini, A., 2017. Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. R Rep. 119, 1-35.
|
[69] |
Leonard, A.R., Cumming, M.H., Ali, M.A., Cabral, J.D., 2024. Fish collagen cross-linking strategies to improve mechanical and bioactive capabilities for tissue engineering and regenerative medicine. Adv. Funct. Mater. 34, 2405335.
|
[70] |
Lewis, P.L., Green, R.M., Shah, R.N., 2018. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 69, 63-70.
|
[71] |
Li, H.F., He, W.J., Feng, Q., Chen, J.L., Xu, X.B., Lv, C.H., Zhu, C.C., Dong, H., 2024a. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr. Polym. 323, 121425.
|
[72] |
Li, J.Y., Li, Y.T., Guo, C.L., Wu, X.C., 2024b. Development of quercetin loaded silk fibroin/soybean protein isolate hydrogels for burn wound healing. Chem. Eng. J. 481, 148458.
|
[73] |
Li, M.Y., Qu, H.F., Li, Q., Lu, S.C., Wu, Y., Tang, Z.W., Liu, X.L., Yuan, Z.H., Huang, L.L., Chen, L.H., Wu, H., 2024c. A carboxymethyl cellulose/chitosan-based hydrogel harvests robust adhesive, on-demand detachment and self-healing performances for deep burn healing. Chem. Eng. J. 498, 155552.
|
[74] |
Li, R., Li, J.M., Xu, J.B., Hong Wong, D.S., Chen, X.Y., Yuan, W.H., Bian, L.M., 2018. Multiscale reconstruction of a synthetic biomimetic micro-niche for enhancing and monitoring the differentiation of stem cells. Biomaterials 173, 87-99.
|
[75] |
Li, S.J., Dan, X., Chen, H., Li, T., Liu, B., Ju, Y.K., Li, Y., Lei, L.J., Fan, X., 2024d Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact. Mater. 40, 597-623.
|
[76] |
Li, X.M., Chen, Y., Kawazoe, N., Chen, G.P., 2017. Influence of microporous gelatin hydrogels on chondrocyte functions. J. Mater. Chem. B 5, 5753-5762.
|
[77] |
Li, Y.C E., 2019. Sustainable biomass materials for biomedical applications. ACS Biomater. Sci. Eng. 5, 2079-2092.
|
[78] |
Liu, G., Abraham, E., 2013. MicroRNAs in immune response and macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 33, 170-177.
|
[79] |
Liu, H.F., Chen, F.X., Zhang, Y.F., Wu, P., Yang, Z.Q., Zhang, S., Xiao, L.F., Deng, Z.M., Cai, L., Wu, M.H., 2022. Facile fabrication of biomimetic silicified gelatin scaffolds for angiogenesis and bone regeneration by a bioinspired polymer-induced liquid precursor. Mater. Des. 222, 111070.
|
[80] |
Liu, Q.S., Chiu, A., Wang, L.H., An, D., Zhong, M., Smink, A.M., de Haan, B.J., de Vos, P., Keane, K., Vegge, A., Chen, E.Y., Song, W., Liu, W.F., Flanders, J., Rescan, C., Grunnet, L.G., Wang, X., Ma, M.L., 2019. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat. Commun. 10, 5262.
|
[81] |
Liu, R., Dai, L., Xu, C.L., Wang, K., Zheng, C.Y., Si, C.L., 2020. Lignin-based micro- and nanomaterials and their composites in biomedical applications. ChemSusChem 13, 4266-4283.
|
[82] |
Loh, Q.L., Choong, C., 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B Rev. 19, 485-502.
|
[83] |
Magno, V., Meinhardt, A., Werner, C., 2020. Polymer hydrogels to guide organotypic and organoid cultures. Adv. Funct. Mater. 30, 2000097.
|
[84] |
Martin, P., Nunan, R., 2015. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 173, 370-378.
|
[85] |
Matoori, S., Veves, A., Mooney, D.J., 2021. Advanced bandages for diabetic wound healing. Sci. Transl. Med. 13, eabe4839.
|
[86] |
Matveeva, V.G., Bronstein, L.M., 2022. From renewable biomass to nanomaterials: does biomass origin matter? Prog. Mater. Sci. 130, 100999.
|
[87] |
Mittal, H., Al Alili, A., Alhassan, S.M., 2020. Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites. Microporous Mesoporous Mater. 299, 110106.
|
[88] |
Mobaraki, M., Ghaffari, M., Yazdanpanah, A., Luo, Y.Y., Mills, D.K., 2020. Bioinks and bioprinting: a focused review. Bioprinting 18, e00080.
|
[89] |
Mohamed, M.A., Fallahi, A., El-Sokkary, A.M.A., Salehi, S., Akl, M.A., Jafari, A., Tamayol, A., Fenniri, H., Khademhosseini, A., Andreadis, S.T., Cheng, C., 2019. Stimuli-responsive hydrogels for manipulation of cell microenvironment: from chemistry to biofabrication technology. Prog. Polym. Sci. 98, 101147.
|
[90] |
Mu, Q.F., Zhang, Q.S., Gao, L., Chu, Z.Y., Cai, Z.Y., Zhang, X.Y., Wang, K., Wei, Y., 2017. Structural evolution and formation mechanism of the soft colloidal arrays in the core of PAAm nanofibers by electrospun packing. Langmuir 33, 10291-10301.
|
[91] |
Murphy, S.V., Atala, A., 2014. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773-785.
|
[92] |
Murphy, S.V., De Coppi, P., Atala, A., 2020. Opportunities and challenges of translational 3D bioprinting. Nat. Biomed. Eng. 4, 370-380.
|
[93] |
Nepal, A., Tran, H.D.N., Nguyen, N.T., Ta, H.T., 2023. Advances in haemostatic sponges: characteristics and the underlying mechanisms for rapid haemostasis. Bioact. Mater. 27, 231-256.
|
[94] |
Nih, L.R., Sideris, E., Carmichael, S.T., Segura, T., 2017. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv. Mater. 29, 1606471.
|
[95] |
Ribeiro, V.P., da Silva Morais, A., Maia, F.R., Canadas, R.F., Costa, J.B., Oliveira, A.L., Oliveira, J.M., Reis, R.L., 2018. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomater. 72, 167-181.
|
[96] |
Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K., 1994. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66, 1739-1758.
|
[97] |
Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K., 2011. Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 84, 107-136.
|
[98] |
Savoji, H., Davenport Huyer, L., Mohammadi, M.H., Lai, B.F.L., Rafatian, N., Bannerman, D., Shoaib, M., Bobicki, E.R., Ramachandran, A., Radisic, M., 2020. 3D printing of vascular tubes using bioelastomer prepolymers by freeform reversible embedding. ACS Biomater. Sci. Eng. 6, 1333-1343.
|
[99] |
Scotti, A., Brugnoni, M., Lopez, C.G., Bochenek, S., Crassous, J.J., Richtering, W., 2020. Flow properties reveal the particle-to-polymer transition of ultra-low crosslinked microgels. Soft Matter 16, 668-678.
|
[100] |
Sergeeva, A., Feoktistova, N., Prokopovic, V., Gorin, D., Volodkin, D., 2015. Design of porous alginate hydrogels by sacrificial CaCO3 templates: pore formation mechanism. Adv. Mater. Interfaces 2, 1500386.
|
[101] |
Sergeeva, A.S., Gorin, D.A., Volodkin, D.V., 2015. In-situ assembly of Ca-alginate gels with controlled pore loading/release capability. Langmuir 31, 10813-10821.
|
[102] |
Shang, L.J., Wang, S., Mao, Y.J., 2024. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: a review. Int. J. Biol. Macromol. 277, 133830.
|
[103] |
Sheffield, P., 1988. Tissue oxygen measurements. In: Davis, J.C. (Ed.). Problem Wounds. New York: Elsevier.
|
[104] |
Sheikhi, A., de Rutte, J., Haghniaz, R., Akouissi, O., Sohrabi, A., Di Carlo, D., Khademhosseini, A., 2019. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials 192, 560-568.
|
[105] |
Shin, D.S., Tokuda, E.Y., Leight, J.L., Miksch, C.E., Brown, T.E., Anseth, K.S., 2018. Synthesis of microgel sensors for spatial and temporal monitoring of protease activity. ACS Biomater. Sci. Eng. 4, 378-387.
|
[106] |
Shin, S.R., Jung, S.M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S.B., Nikkhah, M., Khabiry, M., Azize, M., Kong, J., Wan, K.T., Palacios, T., Dokmeci, M.R., Bae, H., Tang, X.S., Khademhosseini, A., 2013. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7, 2369-2380.
|
[107] |
Sideris, E., Griffin, D.R., Ding, Y.C., Li, S.R., Weaver, W.M., Di Carlo, D., Hsiai, T., Segura, T., 2016. Particle hydrogels based on hyaluronic acid building blocks. ACS Biomater. Sci. Eng. 2, 2034-2041.
|
[108] |
Sing, K.S., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., Siemieniewska, T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603-619.
|
[109] |
Sreedharan, M., Vijayamma, R., Liyaskina, E., Revin, V.V., Ullah, M.W., Shi, Z.J., Yang, G., Grohens, Y., Kalarikkal, N., Ali Khan, K., Thomas, S., 2024. Nanocellulose-based hybrid scaffolds for skin and bone tissue engineering: a 10-year overview. Biomacromolecules 25, 2136-2155.
|
[110] |
Sussman, E.M., Halpin, M.C., Muster, J., Moon, R.T., Ratner, B.D., 2014. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508-1516.
|
[111] |
Tamay, D.G., Dursun Usal, T., Alagoz, A.S., Yucel, D., Hasirci, N., Hasirci, V., 2019. 3D and 4D printing of polymers for tissue engineering applications. Front. Bioeng. Biotechnol. 7, 164.
|
[112] |
Tang, Y.M., Lin, S.H., Yin, S., Jiang, F., Zhou, M.L., Yang, G.Z., Sun, N.J., Zhang, W.J., Jiang, X.Q., 2020. In situ gas foaming based on magnesium particle degradation: a novel approach to fabricate injectable macroporous hydrogels. Biomaterials 232, 119727.
|
[113] |
Tang-Schomer, M.D., White, J.D., Tien, L.W., Schmitt, L.I., Valentin, T.M., Graziano, D.J., Hopkins, A.M., Omenetto, F.G., Haydon, P.G., Kaplan, D.L., 2014. Bioengineered functional brain-like cortical tissue. Proc. Natl. Acad. Sci. USA 111, 13811-13816.
|
[114] |
Tasoglu, S., Diller, E., Guven, S., Sitti, M., Demirci, U., 2014. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 5, 3124.
|
[115] |
Thomas, A.M., Shea, L.D., 2014. Cryotemplation for the rapid fabrication of porous, patternable photopolymerized hydrogels. J. Mater. Chem. B 2, 4521-4530.
|
[116] |
Tokatlian, T., Cam, C., Segura, T., 2015. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv. Healthc. Mater. 4, 1084-1091.
|
[117] |
Truong, N.F., Kurt, E., Tahmizyan, N., Lesher-Pérez, S.C., Chen, M., Darling, N.J., Xi, W.X., Segura, T., 2019a. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomater. 94, 160-172.
|
[118] |
Truong, N.F., Lesher-Pérez, S.C., Kurt, E., Segura, T., 2019b. Pathways governing polyethylenimine polyplex transfection in microporous annealed particle scaffolds. Bioconjug. Chem. 30, 476-486.
|
[119] |
Van Den Bulcke, A.I., Bogdanov, B., De Rooze, N., Schacht, E.H., Cornelissen, M., Berghmans, H., 2000. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31-38.
|
[120] |
Varshney, N., Sahi, A.K., Poddar, S., Vishwakarma, N.K., Kavimandan, G., Prakash, A., Mahto, S.K., 2022. Freeze-thaw-induced physically cross-linked superabsorbent polyvinyl alcohol/soy protein isolate hydrogels for skin wound dressing: in vitro and in vivo characterization. ACS Appl. Mater. Interface. 14, 14033-14048.
|
[121] |
Vo, T.N., Shah, S.R., Lu, S., Tatara, A.M., Lee, E.J., Roh, T.T., Tabata, Y., Mikos, A.G., 2016. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 83, 1-11.
|
[122] |
Wang, S., Li, L., Su, D., Robin, K., Brown, K.A., 2018. Patterning porosity in hydrogels by arresting phase separation. ACS Appl. Mater. Interface. 10, 34604-34610.
|
[123] |
Wang, Y.X., Qi, J.J., Zhang, M., Xu, T., Zheng, C.Y., Yuan, Z.H., Si, C.L., 2024. Cellulose-based aerogels, films, and fibers for advanced biomedical applications. Chem. Eng. J. 497, 154434.
|
[124] |
Wang, Z.K., Ganewatta, M.S., Tang, C.B., 2020. Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog. Polym. Sci. 101, 101197.
|
[125] |
Webb, C.W.B., D'Costa, K., Tawagi, E., Antonyshyn, J.A., Hofer, O.P.S., Santerre, J.P., 2024. Electrospun methacrylated natural/synthetic composite membranes for gingival tissue engineering. Acta Biomater. 173, 336-350.
|
[126] |
Wei, X.Y., Luo, Y.X., Huang, P., 2019. 3D bioprinting of alginate scaffolds with controlled micropores by leaching of recrystallized salts. Polym. Bull. 76, 6077-6088.
|
[127] |
Wu, J., Wu, Y., Tang, H., Li, W., Zhao, Z., Shi, X.W., Jiang, H., Yu, L.L., Deng, H.B., 2024. Self-adapting biomass hydrogel embodied with miRNA immunoregulation and long-term bacterial eradiation for synergistic chronic wound therapy. ACS Nano 18, 18379-18392.
|
[128] |
Xu, F., Dodd, M., Sheardown, H., Hoare, T., 2018. Single-step reactive electrospinning of cell-loaded nanofibrous scaffolds as ready-to-use tissue patches. Biomacromolecules 19, 4182-4192.
|
[129] |
Xu, F., Gough, I., Dorogin, J., Sheardown, H., Hoare, T., 2020. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning. Acta Biomater. 104, 135-146.
|
[130] |
Xu, K., Sun, X.Y., Chong, C.Y., Ren, L., Tan, L.L., Sun, H.N., Wang, X., Li, L.H., Xia, J.F., Zhang, R.X., Wang, L., 2024. Green starch-based hydrogels with excellent injectability, self-healing, adhesion, photothermal effect, and antibacterial activity for promoting wound healing. ACS Appl. Mater. Interface. 16, 2027-2040.
|
[131] |
Xue, J.Q., Bai, W., Duan, H.Y., Nie, J.J., Du, B.Y., Sun, J.Z., Tang, B.Z., 2018. Tetraphenylethene cross-linked thermosensitive microgels via acylhydrazone bonds: aggregation-induced emission in nanoconfined environments and the cononsolvency effect. Macromolecules 51, 5762-5772.
|
[132] |
Xun, X.W., Li, Y.Q., Ni, M., Xu, Y., Li, J.X., Zhang, D.X., Chen, G.C., Ao, H.Y., Luo, H.L., Wan, Y.Z., Yu, T., 2024. Calcium crosslinked macroporous bacterial cellulose scaffolds with enhanced in situ mineralization and osteoinductivity for cranial bone regeneration. Compos. Part B Eng. 275, 111277.
|
[133] |
Yang, J.R., Li, Y.Q., Liu, Y.B., Li, D.X., Zhang, L., Wang, Q.G., Xiao, Y.M., Zhang, X.D., 2019a. Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo. Acta Biomater. 91, 159-172.
|
[134] |
Yang, W.J., Fortunati, E., Gao, D.Q., Balestra, G.M., Giovanale, G., He, X.Y., Torre, L., Kenny, J.M., Puglia, D., 2018. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain. Chem. Eng. 6, 3502-3514.
|
[135] |
Yang, X., Liu, W., Xi, G.H., Wang, M.S., Liang, B., Shi, Y.F., Feng, Y.K., Ren, X.K., Shi, C.C., 2019b. Fabricating antimicrobial peptide-immobilized starch sponges for hemorrhage control and antibacterial treatment. Carbohydr. Polym. 222, 115012.
|
[136] |
Yang, Y., Ding, N., Du, X.Y., Gao, D.Q., Puglia, D., Wang, F.N., Yang, X., Xu, F., Yang, W.J., 2024. Grafting vitamin B onto lignin to produce highly bioactive materials for wound dressing hydrogels. ACS Sustain. Chem. Eng. 12, 14854-14865.
|
[137] |
Ying, G.L., Jiang, N., Maharjan, S., Yin, Y.X., Chai, R.R., Cao, X., Yang, J.Z., Miri, A.K., Hassan, S., Zhang, Y.S., 2018. Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv. Mater. 30, e1805460.
|
[138] |
Yoshizawa, S., Brown, A., Barchowsky, A., Sfeir, C., 2014. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 10, 2834-2842.
|
[139] |
Yu, C., Schimelman, J., Wang, P.R., Miller, K.L., Ma, X.Y., You, S.T., Guan, J.A., Sun, B.J., Zhu, W., Chen, S.C., 2020. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem. Rev. 120, 10695-10743.
|
[140] |
Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N., Khademhosseini, A., 2015. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254-271.
|
[141] |
Zhang, A.P., Qu, X., Soman, P., Hribar, K.C., Lee, J.W., Chen, S.C., He, S.L., 2012. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266-4270.
|
[142] |
Zhang, J.H., Wehrle, E., Vetsch, J.R., Paul, G.R., Rubert, M., Müller, R., 2019. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed. Mater. 14, 065009.
|
[143] |
Zhang, K., Shi, Z.Q., Zhou, J.K., Xing, Q., Ma, S.S., Li, Q.H., Zhang, Y.T., Yao, M.H., Wang, X.F., Li, Q., Li, J.G., Guan, F.X., 2018. Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J. Mater. Chem. B 6, 2982-2992.
|
[144] |
Zhao, W., Yang, X.Y., Li, L., 2024. Soy protein-based wound dressings: a review of their preparation, properties, and perspectives. ACS Appl. Mater. Interface. 16, 40356-40370.
|
[145] |
Zhu, Y., Hideyoshi, S., Jiang, H.B., Matsumura, Y., Dziki, J.L., LoPresti, S.T., Huleihel, L., Faria, G.N.F., Fuhrman, L.C., Lodono, R., Badylak, S.F., Wagner, W.R., 2018. Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications. Acta Biomater. 73, 112-126.
|