Volume 5 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
David W. Wei, Wei Wei, Alec C. Gauthier, Junlong Song, Yongcan Jin, Huining Xiao. Superhydrophobic modification of cellulose and cotton textiles: method-ologies and applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 1-15. doi: 10.1016/j.jobab.2020.03.001
Citation: David W. Wei, Wei Wei, Alec C. Gauthier, Junlong Song, Yongcan Jin, Huining Xiao. Superhydrophobic modification of cellulose and cotton textiles: method-ologies and applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 1-15. doi: 10.1016/j.jobab.2020.03.001

Superhydrophobic modification of cellulose and cotton textiles: method-ologies and applications

doi: 10.1016/j.jobab.2020.03.001
Funds:  This work is supported by NSERC Canada and funding for the Joint International Research Lab of Lignocellulosic Functional Materials at Nanjing Forestry University
More Information
  • Corresponding author: E-mail address: hxiao@unb.ca (H. Xiao)
  • Received Date: 2019-10-20
  • Accepted Date: 2019-11-25
  • Publish Date: 2020-01-01
  • Superhydrophobic cellulose-based products have immense potential in many industries where plastics and other polymers with hydrophobic properties are used. Superhydrophobic cellulose-based plastic is inherently biodegradable, renewable and non-toxic. Finding a suitable replacement of plastics is highly desired since plastics has become an environmental concern. Despite its inherent hydrophilicity, cellulose has unparalleled advantages as a substrate for the production of superhydrophobic materials which has been widely used in self-cleaning, self-healing, oil and water separation, electromagnetic interference shielding, etc. This review includes a comprehensive survey of the progress achieved so far in the production of super-hydrophobic materials based on cellulose and fiber networks. The method-ologies and applications of superhydrophobic-modified cellulose and fiber networks are emphasized. Overall, presented herein is targeting on summarizing some of the aspects that are critical to advance this evolving field of science which may provide new ideas for the developing and exploring of superhydrophobic and green-based materials.


  • loading
  • Alf, M.E., Asatekin, A., Barr, M.C., Baxamusa, S.H., Chelawat, H., Ozaydin-Ince, G., Petruczok, C.D., Sreenivasan, R., Tenhaeff, W.E., Trujillo, N.J., Vaddiraju, S., Xu, J.J., Gleason, K.K., 2009. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22, 1993-2027. doi: 10.1002/adma.200902765
    Arslan, O., Aytac, Z., Uyar, T., 2016. Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl. Mater. Interfaces 8, 19747-19754. doi: 10.1021/acsami.6b05429
    Asatekin, A., Barr, M.C., Baxamusa, S.H., Lau, K.K.S., Tenhaeff, W., Xu, J.J., Gleason, K.K., 2010. Designing polymer surfaces via vapor deposition. Mater. Today 13, 26-33. doi: 10.1016/S1369-7021(10)70081-X
    Ballerini, D.R., Li, X., Shen, W., 2012. Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid. Nanofluidics 13, 769-787. doi: 10.1007/s10404-012-0999-2
    Bhattacharyya, R., 2013. Technological applications of superhydrophobic coatings:needs and challenges. Novus International Journal of Ana-lytical Innovations 2, 1-9. http://cn.bing.com/academic/profile?id=15f886f8b87f8efede934836e377d0d0&encoded=0&v=paper_preview&mkt=zh-cn
    Cai, H.L., Mu, W., Liu, W., Zhang, X.D., Deng, Y.L, 2015. Sol-gel synthesis highly porous titanium dioxide microspheres with cellulose nano-fibrils-based aerogel templates. Inorg. Chem. Commun. 51, 71-74. doi: 10.1016/j.inoche.2014.11.013
    Cao, L.L., Jones, A.K., Sikka, V.K., Wu, J.Z., Gao, D., 2009. Anti-icing superhydrophobic coatings. Langmuir 25, 12444-12448. doi: 10.1021/la902882b
    Chen, S., Song, Y.J., Xu, F., 2018. Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface. ACS Sustainable Chem. Eng. 6, 5173-5181. doi: 10.1021/acssuschemeng.7b04814
    Chen, S.S., Li, X., Li, Y., Sun, J.Q., 2015. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9, 4070-4076. doi: 10.1021/acsnano.5b00121
    Cortes, A., 2004. Grain size dependence of the bandgap in chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells 82, 21-34. doi: 10.1016/j.solmat.2004.01.002
    Cunha, A.G., Gandini, A., 2010. Turning polysaccharides into hydrophobic materials:a critical review. Part 1. Cellulose. Cellulose 17, 875-889. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216430744/
    Daoud, W.A., Xin, J.H., Zhang, Y.H., Mak, C.L., 2006. Pulsed laser deposition of superhydrophobic thin Teflon films on cellulosic fibers. Thin Solid Films 515, 835-837. doi: 10.1016/j.tsf.2005.12.245
    Deng, Z.Y., Wang, W., Mao, L.H., Wang, C.F., Chen, S., 2014. Versatile superhydrophobic and photocatalytic films generated from TiO2-SiO2@PDMS and their applications on fabrics. J. Mater. Chem. A 2, 4178-4184. doi: 10.1039/C3TA14942K
    Enríquez, J., 2003. Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells 76, 313-322. doi: 10.1016/S0927-0248(02)00283-0
    Eral, H.B., 't Mannetje, D.J.C.M., Oh, J.M., 2013. Contact angle hysteresis:a review of fundamentals and applications. Colloid Polym. Sci. 291, 247-260. doi: 10.1007/s00396-012-2796-6
    Farhadi, S., Farzaneh, M., Kulinich, S.A., 2011. Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 6264-6269. doi: 10.1016/j.apsusc.2011.02.057
    Fu, J.S., Zhang, M.J., Liu, L., Xiao, L.H., Li, M., Ao, Y.H, 2019. Layer-by-Layer electrostatic self-assembly silica/graphene oxide onto carbon fiber surface for enhance interfacial strength of epoxy composites. Mater. Lett. 236, 69-72. doi: 10.1016/j.matlet.2018.10.077
    Gao, J.F., Huang, X.W., Xue, H.G., Tang, L.C., Li, R.K.Y., 2017. Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation. Chem. Eng. J. 326, 443-453. doi: 10.1016/j.cej.2017.05.175
    Gao, R.N., Xiao, S.L., Gan, W.T., Liu, Q., Amer, H., Rosenau, T., Li, J., Lu, Y., 2018. Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation. ACS Sustainable Chem. Eng. 6, 9047-9055. doi: 10.1021/acssuschemeng.8b01397
    He, J., Zhao, H.Y., Li, X.L., Su, D., Zhang, F.R., Ji, H.M., Liu, R., 2018. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 346, 199-207. doi: 10.1016/j.jhazmat.2017.12.045
    Jiang, B., Zhang, H.J., Zhang, L.H., Sun, Y.L., Xu, L.D., Sun, Z.N., Gu, W.H., Chen, Z.X., Yang, H.W., 2017. Novel one-step, in situ thermal polymerization fabrication of robust superhydrophobic mesh for efficient oil/water separation. Ind. Eng. Chem. Res. 56, 11817-11826. doi: 10.1021/acs.iecr.7b03063
    Koch, K., Bhushan, B., Barthlott, W., 2009. Multifunctional surface structures of plants:an inspiration for biomimetics. Prog. Mater. Sci. 54, 137-178. doi: 10.1016/j.pmatsci.2008.07.003
    Kontturi, E., Suchy, M., Penttilä, P., Jean, B., Pirkkalainen, K., Torkkeli, M., Serimaa, R., 2011. Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 12, 770-777. doi: 10.1021/bm101382q
    Li, J., Yan, L., Zhao, Y.Z., Zha, F., Wang, Q.T., Lei, Z.Q., 2015a. One-step fabrication of robust fabrics with both-faced superhydrophobicity for the separation and capture of oil from water. Phys. Chem. Chem. Phys. 17, 6451-6457. doi: 10.1039/C5CP00154D
    Li, S.H., Huang, J.Y., Chen, Z., Chen, G.Q., Lai, Y.K., 2017. A review on special wettability textiles:theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A 5, 31-55. doi: 10.1039/C6TA07984A
    Li, S.H., Huang, J.Y., Ge, M.Z., Cao, C.Y., Deng, S., Zhang, S.N., Chen, G.Q., Zhang, K.Q., Al-Deyab, S.S., Lai, Y.K., 2015b. Self-cleaning cotton:robust flower-like TiO2@Cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation. Adv. Mater. Interfaces 2, 1500220. doi: 10.1002/admi.201500220
    Li, S.H., Zhang, S.B., Wang, X.H., 2008. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24, 5585-5590. doi: 10.1021/la800157t
    Li, S.Z., Xiao, M.M., Zheng, A.N., Xiao, H.N., 2011. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12, 3305-3312. doi: 10.1021/bm200797a
    Lin, J., Zheng, C., Ye, W.J., Wang, H.Q., Feng, D.Y., Li, Q.Y., Huan, B.W., 2015. A facile dip-coating approach to prepare SiO2/fluoropolymer coating for superhydrophobic and superoleophobic fabrics with self-cleaning property. J. Appl. Polym. Sci. 132, 41458. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=968e4b95d459a80af6a2327f90fc6258
    Lin, X.P., Ma, W., Wu, H., Huang, L.L., Chen, L.H., Atsushi T., 2017. Fabrication of cellulose based superhydrophobic microspheres for the production of magnetically actuatable smart liquid marbles. J. of Bioresour. Bioprod. 2(3), 110-115. http://cn.bing.com/academic/profile?id=846b8d41bdb13e6ce255582902506076&encoded=0&v=paper_preview&mkt=zh-cn
    Liu, H., Gao, S.W., Cai, J.S., He, C.L., Mao, J.J., Zhu, T.X., Chen, Z., Huang, J.Y., Meng, K., Zhang, K.Q., Al-Deyab, S., Lai, Y.K., 2016. Re-cent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials. 9, 124. doi: 10.3390/ma9030124
    Liu, Y.H., Liu, Z.L., Liu, Y.P., Hu, H.Y., Li, Y., Yan, P.X., Yu, B., Zhou, F., 2015. One-step modification of fabrics with bioinspired Polydopa-mine@Octadecylamine nanocapsules for robust and healable self-cleaning performance. Small 11, 426-431. doi: 10.1002/smll.201402383
    Lu, Y., Sathasivam, S., Song, J., Crick, C.R., Carmalt, C.J., Parkin, I.P., 2015. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132-1135. doi: 10.1126/science.aaa0946
    Mi, H.Y., Jing, X., Huang, H.X., Peng, X.F., Turng, L.S., 2018. Superhydrophobic graphene/cellulose/silica aerogel with hierarchical structure as superabsorbers for high efficiency selective oil absorption and recovery. Ind. Eng. Chem. Res. 57, 1745-1755. doi: 10.1021/acs.iecr.7b04388
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941.
    Moridi Mahdieh, Z., Shekarriz, S., Afshar Taromi, F., Montazer, M, 2018. Obtention of 74:26 polyester/cellulose fabric blend with su-per-hydrophobic and super-hydrophilic properties by air Corona discharge treatment and their characterization. Carbohydr. Polym. 198, 17-25. doi: 10.1016/j.carbpol.2018.06.007
    Nechyporchuk, O., Bordes, R., Köhnke, T., 2017. Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl. Mater. Interfaces 9, 39069-39077. doi: 10.1021/acsami.7b13466
    Nguyen-Tri, P., Altiparmak, F., Nguyen, N., Tuduri, L., Ouellet-Plamondon, C.M., Prud'homme, R.E., 2019. Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. ACS Omega 4, 7829-7837. doi: 10.1021/acsomega.9b00688
    Nyström, D., Lindqvist, J., Östmark, E., Antoni, P., Carlmark, A., Hult, A., Malmström, E., 2009. Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization. ACS Appl. Mater. Interfaces 1, 816-823. doi: 10.1021/am800235e
    Oh, M.J., Lee, S.Y., Paik, K.H., 2011. Preparation of hydrophobic self-assembled monolayers on paper surface with silanes. J. Ind. Eng. Chem. 17, 149-153. doi: 10.1016/j.jiec.2010.12.014
    Pasquini, D., Belgacem, M.N., Gandini, A., da Silva Curvelo, A.A., 2006. Surface esterification of cellulose fibers:Characterization by DRIFT and contact angle measurements. J. Colloid Interface Sci. 295, 79-83. doi: 10.1016/j.jcis.2005.07.074
    Patrick, M., Godwin, Y.P., Xiao, H.N., Muhammad, T.A., 2019. Progress in the preparation and application of modified bi-ochar for improving heavy metal ion removal from wastewater. J. of Bioresour. Bioprod. 4(1), 31-42.
    Peng, H.L., Wang, H., Wu, J.N., Meng, G.H., Wang, Y.X., Shi, Y.L., Liu, Z.Y., Guo, X.H., 2016. Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water. Ind. Eng. Chem. Res. 55, 832-838. doi: 10.1021/acs.iecr.5b03862
    Quan, C., Werner, O., Wågberg, L., Turner, C, 2009. Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide-alkyl ketene dimer solution. J. Supercrit. Fluids 49, 117-124. doi: 10.1016/j.supflu.2008.11.015
    Schlaich, C., Li, M.J., Cheng, C., Donskyi, I.S., Yu, L.X., Song, G., Osorio, E., Wei, Q., Haag, R., 2018. Mussel-inspired polymer-based uni-versal spray coating for surface modification:fast fabrication of antibacterial and superhydrophobic surface coatings. Adv. Mater. Interfaces 5, 1701254. doi: 10.1002/admi.201701254
    Shibraen, M.H.M.A., Yagoub, H., Zhang, X.J., Xu, J., Yang, S.G., 2016. Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film. Appl. Surf. Sci. 370, 1-5. doi: 10.1016/j.apsusc.2016.02.060
    Shulman, L.P., 2008. Miscarriage risk from amniocentesis performed for abnormal maternal serum screening. Yearb. Obstet. Gynecol. Women's Heal. 2008, 36-38.
    Sobhana, S.S.L., Zhang, X., Kesavan, L., Liias, P., Fardim, P, 2017. Layered double hydroxide interfaced stearic acid-Cellulose fibres:a new class of super-hydrophobic hybrid materials. Colloids Surfaces A:Physicochem. Eng. Aspects 522, 416-424. doi: 10.1016/j.colsurfa.2017.03.025
    Song, J.L., Rojas, O.J., 2013. Approaching super-hydrophobicity from cellulosic materials:a review. Nord. Pulp Pap. Res. J. 28, 216-238. doi: 10.3183/npprj-2013-28-02-p216-238
    Stanssens, D., van den Abbeele, H., Vonck, L., Schoukens, G., Deconinck, M., Samyn, P., 2011. Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Mater. Lett. 65, 1781-1784. doi: 10.1016/j.matlet.2011.03.057
    Teisala, H., Tuominen, M., Kuusipalo, J., 2014. Superhydrophobic coatings on cellulose-based materials:fabrication, properties, and applications. Adv. Mater. Interfaces 1, 1300026. doi: 10.1002/admi.201300026
    Thomas, B., Raj, M.C., Athira K, B., Rubiyah M, H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform:from biosources to materials and their applications. Chem. Rev. 118, 11575-11625. doi: 10.1021/acs.chemrev.7b00627
    Tian, M.W., Hu, X.L., Qu, L.J., Du, M.Z., Zhu, S.F., Sun, Y.N., Han, G.T, 2016. Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan. Appl. Surf. Sci. 377, 141-148. doi: 10.1016/j.apsusc.2016.03.183
    Tursi, A., de Vietro, N., Beneduci, A., Milella, A., Chidichimo, F., Fracassi, F., Chidichimo, G., 2019. Low pressure plasma functionalized cel-lulose fiber for the remediation of petroleum hydrocarbons polluted water. J. Hazard. Mater. 373, 773-782. doi: 10.1016/j.jhazmat.2019.04.022
    Waldiya, M., Narasimman, R., Bhagat, D., Vankhade, D., Mukhopadhyay, I, 2019. Nanoparticulate CdS 2D array by chemical bath deposition:Characterization and optoelectronic study. Mater. Chem. Phys. 226, 26-33. doi: 10.1016/j.matchemphys.2019.01.017
    Wang, B., Li, J., Wang, G.Y., Liang, W.X., Zhang, Y.B., Shi, L., Guo, Z.G., Liu, W.M., 2013a. Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water sep-aration. ACS Appl. Mater. Interfaces 5, 1827-1839. doi: 10.1021/am303176a
    Wang, H.X., Zhou, H., Gestos, A., Fang, J., Niu, H.T., Ding, J., Lin, T., 2013b. Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3, 4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter 9, 277-282. doi: 10.1039/C2SM26871J
    Wang, H., Zhou, H., Gestos, A., Fang, J., Lin, T., 2013c. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces 5, 10221-10226. doi: 10.1021/am4029679
    Wang, H.X., Zhou, H., Yang, W.D., Zhao, Y., Fang, J., Lin, T., 2015. Selective, spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension. ACS Appl. Mater. Interfaces 7, 22874-22880. doi: 10.1021/acsami.5b05678
    Wang, P., Zhang, D., Qiu, R., Hou, B.R., 2011. Super-hydrophobic film prepared on zinc as corrosion barrier. Corros. Sci. 53, 2080-2086. doi: 10.1016/j.corsci.2011.02.025
    Wu, L., Zhang, J.P., Li, B.C., Fan, L., Li, L.X., Wang, A.Q., 2014. Facile preparation of super durable superhydrophobic materials. J. Colloid Interface Sci. 432, 31-42. doi: 10.1016/j.jcis.2014.06.046
    Wu, M.C., Ma, B.H., Pan, T.Z., Chen, S.S., Sun, J.Q., 2016. Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibac-terial and self-healing superhydrophobic properties. Adv. Funct. Mater. 26, 569-576. doi: 10.1002/adfm.201504197
    Wu, Y.H., Qian, Z.J., Lei, Y.J., Li, W., Wu, X., Luo, X.G., Li, Y., Li, B., Liu, S.L., 2018. Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ. Cellulose 25, 1617-1623. doi: 10.1007/s10570-018-1676-8
    Xiao, F.X., Pagliaro, M., Xu, Y.J., Liu, B., 2016. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality:a new perspective for rational construction of multilayer assemblies. Chem. Soc. Rev. 45, 3088-3121. doi: 10.1039/C5CS00781J
    Xu, Z.Y., Zhou, H., Tan, S.C., Jiang, X.D., Wu, W.B., Shi, J.T., Chen, P., 2018. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation. Beilstein J. Nanotechnol. 9, 508-519. doi: 10.3762/bjnano.9.49
    Yu, M., Wang, Z.Q., Liu, H.Z., Xie, S.Y., Wu, J.X., Jiang, H.Q., Zhang, J.Y., Li, L.F., Li, J.Y., 2013. Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized. ACS Appl. Mater. Interfaces 5, 3697-3703. doi: 10.1021/am400304s
    Zeng, Z.P., Xiao, F.X., Phan, H., Chen, S.F., Yu, Z.Z., Wang, R., Nguyen, T.Q., Yang Tan, T.T., 2018. Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. J. Mater. Chem. A 6, 1700-1713. doi: 10.1039/C7TA09119B
    Zhang, F., Chen, S.G., Dong, L.H., Lei, Y.H., Liu, T., Yin, Y.S., 2011. Preparation of superhydrophobic films on titanium as effective corrosion barriers. Appl. Surf. Sci. 257, 2587-2591. doi: 10.1016/j.apsusc.2010.10.027
    Zhang, J.Y., Xiao, F.X., 2017. Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped one-dimensional semiconductors toward photoredox catalysis. J. Mater. Chem. A 5, 23681-23693. doi: 10.1039/C7TA08415C
    Zhao, Y., Tang, Y.W., Wang, X.G., Lin, T., 2010. Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl. Surf. Sci. 256, 6736-6742. doi: 10.1016/j.apsusc.2010.04.082
    Zhou, H., Wang, H.X., Niu, H.T., Fang, J., Zhao, Y., Lin, T., 2015. Superstrong, chemically stable, superamphiphobic fabrics from particle-free polymer coatings. Adv. Mater. Interfaces 2, 1400559. doi: 10.1002/admi.201400559
    Zhou, H., Wang, H.X., Niu, H.T., Gestos, A., Lin, T., 2013. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Funct. Mater. 23, 1664-1670. doi: 10.1002/adfm.201202030
    Zou, L.H., Lan, C.T., Li, X.P., Zhang, S.L., Qiu, Y.P., Ma, Y., 2015. Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding. Fibers Polym. 16, 2158-2164. doi: 10.1007/s12221-015-5436-1
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (5845) PDF downloads(149) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint