Citation: | Feixiang Guan, Zhaoping Song, Furong Xin, Huili Wang, Dehai Yu, Guodong Li, Wenxia Liu. Preparation of hydrophobic transparent paper via using polydi-methylsiloxane as transparent agent[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 37-43. doi: 10.1016/j.jobab.2020.03.004 |
Transparent paper with good hydrophobicity and flexibility was expected to act as an alternative substrate in fabrication of flexible electronics. However, conventional paper made of cellulose fibers was opaque and hydrophilic without undergoing special processing. Herein, cellulose fiber paper was treated by impregnating with hydrolyzed tetraethyl orthosilicate (TEOS) followed by coating with hydrophobic polydimethylsiloxane (PDMS) to prepare hydrophobic transparent paper. The results showed that silica nanoparticles produced by the TEOS hydrolysis improved the paper transparency to some extent, increased the paper thermal stability, but still remained the hydrophilicity of paper. After the paper was further coated with the PDMS and the PDMS was consolidated, the paper became clearly transparent and hydrophobic. The processed paper had a transmittance of more than 90% at 550 nm. The water contact angle of the paper reached about 110°. This work provided a new approach for the fabrication of hydrophobic transparent paper with conventional cellulose fiber paper.
Abbasi, F., Mirzadeh, H., Katbab, A.A., 2001. Modification of polysiloxane polymers for biomedical applications:a review. Polym. Int. 50, 1279-1287. doi: 10.1002/pi.783
|
Abdul Khalil, H.P.S., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R., Jawaid, M., 2014. Production and modification of nanofibrillated cellulose using various mechanical processes:a review. Carbohydr. Polym. 99, 649-665. doi: 10.1016/j.carbpol.2013.08.069
|
Agate, S., Joyce, M., Lucia, L., Pal, L., 2018. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites-A review. Carbohydr. Polym. 198, 249-260. doi: 10.1016/j.carbpol.2018.06.045
|
Ansari, F., Galland, S., Johansson, M., Plummer, C.J.G., Berglund, L.A., 2014. Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos. Part A:Appl. Sci. Manuf. 63, 35-44. doi: 10.1016/j.compositesa.2014.03.017
|
Bachmann, K., 1983. The treatment of transparent papers:a review. The B. Pap. Annu. 2, 3-13. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3833472
|
Bayer, I.S., Fragouli, D., Attanasio, A., Sorce, B., Bertoni, G., Brescia, R., di Corato, R., Pellegrino, T., Kalyva, M., Sabella, S., Pompa, P.P., Cingolani, R., Athanassiou, A., 2011. Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl. Mater. Interfaces 3, 4024-4031. doi: 10.1021/am200891f
|
Bodas, D., Khan-Malek, C, 2007. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment:an SEM investigation. Sensor Actuat. B:Chem. 123, 368-373. doi: 10.1016/j.snb.2006.08.037
|
Bouramtane, S., Bretin, L., Pinon, A., Leger, D., Liagre, B., Richard, L., Brégier, F., Sol, V., Chaleix, V., 2019. Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy. Carbohydr. Polym. 213, 168-175.
|
Cappelletto, E., Callone, E., Campostrini, R., Girardi, F., Maggini, S., della Volpe, C., Siboni, S., di Maggio, R., 2012. Hydrophobic siloxane paper coatings:the effect of increasing methyl substitution. J. Sol-Gel Sci. Technol. 62, 441-452. doi: 10.1007/s10971-012-2747-1
|
Charreau, H., Foresti, M.L., Vazquez, A., 2012. Nanocellulose patents trends:a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Patents Nanotechnol. 7, 56-80. doi: 10.2174/1872210511307010056
|
Chen H., Liu W., 2016. Cellulose-based photocatalytic paper with Ag2O nanoparticles loaded on graphite fibers. J. of Bioresour. and Bioprod. 1(4), 192-198.
|
de Menezes Atayde, C., Doi, I., 2010. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Phys. Status Solidi C 7, 189-192. doi: 10.1002/pssc.200982419
|
Ewulonu C. M., Liu X., Wu M., Huang Y., 2019. Lignin-containing cellulose nanomaterials:a promising new nanomaterial for numerous ap-plications. J. Bioresour. Bioprod. 4(1), 3-10. https://www.sciencedirect.com/science/article/pii/S2369969820300323
|
Fang, Z.Q., Zhu, H.L., Preston, C., Hu, L.B., 2014. Development, application and commercialization of transparent paper. Transl. Mater. Res. 1, 015004. doi: 10.1088/2053-1613/1/1/015004
|
Gullo, M., La China, S., Falcone, P.M., Giudici, P., 2018. Biotechnological production of cellulose by acetic acid bacteria:current state and perspectives. Appl. Microbiol. Biotechnol. 102, 6885-6898. doi: 10.1007/s00253-018-9164-5
|
Han, Q.Q., Gao, X., Zhang, H., Chen, K.L., Peng, L.C., Jia, Q.M., 2019. Preparation and comparative assessment of regenerated cellulose films from corn (Zea mays) stalk pulp fines in DMAc/LiCl solution. Carbohydr. Polym. 218, 315-323. doi: 10.1016/j.carbpol.2019.04.083
|
Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71-85. doi: 10.1039/C0NR00583E
|
Jin, M.H., Feng, X.J., Xi, J.M., Zhai, J., Cho, K., Feng, L., Jiang, L., 2005. Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromol. Rapid Commun. 26, 1805-1809. doi: 10.1002/marc.200500458
|
Klemm, D., Heublein, B., Fink, H.P., Bohn, A., 2005. Cellulose:fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358-3393. doi: 10.1002/anie.200460587
|
Lavoratti, A., Scienza, L.C., Zattera, A.J., 2016. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr. Polym. 136, 955-963. doi: 10.1016/j.carbpol.2015.10.008
|
Li, S., Qi, D.M., Huang, J.G., 2018. Natural cellulose based self-assembly towards designed functionalities. Curr. Opin. Colloid Interface Sci. 35, 1-8. doi: 10.1016/j.cocis.2017.12.008
|
Li, Z.Z., Liu, W.X., Guan, F.X., Li, G.D., Song, Z.P., Yu, D.H., Wang, H.L., Liu, H., 2019. Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohydr. Polym. 214, 26-33. doi: 10.1016/j.carbpol.2019.03.019
|
Liu, W.X., Ni, Y.H., Xiao, H.N., 2004. Montmorillonite intercalated with polyaminoamide-epichlorohydrin:preparation, characterization, and sorption behavior. J. Colloid Interface Sci. 275, 584-589. doi: 10.1016/j.jcis.2004.02.008
|
Nechyporchuk, O., Belgacem, M.N., Bras, J., 2016. Production of cellulose nanofibrils:a review of recent advances. Ind. Crop. Prod. 93, 2-25. doi: 10.1016/j.indcrop.2016.02.016
|
Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., 2009. Optically transparent nanofiber paper. Adv. Mater. 21, 1595-1598. doi: 10.1002/adma.200803174
|
Osong, S.H., Norgren, S., Engstrand, P., 2016. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking:a review. Cellulose 23, 93-123. doi: 10.1007/s10570-015-0798-5
|
Poletto, M., Ornaghi, H., Zattera, A., 2014. Native cellulose:structure, characterization and thermal properties. Materials 7, 6105-6119. doi: 10.3390/ma7096105
|
Qin, Z.Z., Liu, W.X., Chen, H.B., Chen, J., Wang, H.L., Song, Z.P., 2019. Preparing photocatalytic paper with improved catalytic activity by in situ loading poly-dopamine on cellulose fibre. Bull. Mater. Sci. 42, 54. doi: 10.1007/s12034-019-1736-1
|
Reddy, K.O., Maheswari, C.U., Dhlamini, M.S., Mothudi, B.M., Kommula, V.P., Zhang, J.M., Zhang, J., Rajulu, A.V., 2018. Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydr. Polym. 188, 85-91. doi: 10.1016/j.carbpol.2018.01.110
|
Seabra, A.B., Bernardes, J.S., Fávaro, W.J., Paula, A.J., Durán, N, 2018. Cellulose nanocrystals as carriers in medicine and their toxicities:a review. Carbohydr. Polym. 181, 514-527. doi: 10.1016/j.carbpol.2017.12.014
|
Wang X., Li H., Cao Y., Tang Q., 2011. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour. Technol. 102, 7959-7965. doi: 10.1016/j.biortech.2011.05.064
|
Wang, J.X., Liu, W.X., Li, H.D., Wang, H.L., Wang, Z., Zhou, W.J., Liu, H., 2013. Preparation of cellulose fiber-TiO2 nanobelt-silver nanopar-ticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. Chem. Eng. J. 228, 272-280. doi: 10.1016/j.cej.2013.04.098
|
Wang, S.X., Mahlberg, R., Nikkola, J., Mannila, J., Jämsä, S., Ritschkoff, A.C., Peltonen, J., 2012. Surface characteristics and wetting properties of Sol-gel coated base paper. Surf. Interface Anal. 44, 539-547. doi: 10.1002/sia.3841
|
Wang, X.D., Yao, C.H., Wang, F., Li, Z.D., 2017a. Cellulose-based nanomaterials for energy applications. Small 13, 1702240. doi: 10.1002/smll.201702240
|
Wang, Z.H., Yao, Z.J., Zhou, J.T., Zhang, Y., 2017b. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr. Polym. 157, 945-952. doi: 10.1016/j.carbpol.2016.10.044
|
Xie, J., Hu, J., Lin, X.D., Fang, L., Wu, F., Liao, X.L., Luo, H.J., Shi, L.T., 2018. Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles. Appl. Surf. Sci. 457, 870-880. doi: 10.1016/j.apsusc.2018.06.250
|
Zhang, Y., Zhang, L.N., Cui, K., Ge, S.G., Cheng, X., Yan, M., Yu, J.H., Liu, H., 2018. Paper-based electronics: flexible electronics based on micro/nanostructured paper (adv. Mater. 51/2018). Adv. Mater. 30, 1870394.
|
Zheng, X., Huang, F., Chen, L.H., Huang, L.L., Cao, S.L., Ma, X.J., 2019. Preparation of transparent film via cellulose regeneration:Correlations between ionic liquid and film properties. Carbohydr. Polym. 203, 214-218. doi: 10.1016/j.carbpol.2018.09.060
|
Zhu, H.L., Fang, Z.Q., Preston, C., Li, Y.Y., Hu, L.B., 2014. Transparent paper:fabrications, properties, and device applications. Energy Environ. Sci. 7, 269-287 doi: 10.1039/C3EE43024C
|