Volume 5 Issue 2
May  2020
Turn off MathJax
Article Contents
Zhenghao Xia, Jinyang Li, Jinming Zhang, Xiaocheng Zhang, Xuejing Zheng, Jun Zhang. Processing and Valorization of Cellulose, Lignin and Lignocellulose Using Ionic Liquids[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 79-95. doi: 10.1016/j.jobab.2020.04.001
Citation: Zhenghao Xia, Jinyang Li, Jinming Zhang, Xiaocheng Zhang, Xuejing Zheng, Jun Zhang. Processing and Valorization of Cellulose, Lignin and Lignocellulose Using Ionic Liquids[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 79-95. doi: 10.1016/j.jobab.2020.04.001

Processing and Valorization of Cellulose, Lignin and Lignocellulose Using Ionic Liquids

doi: 10.1016/j.jobab.2020.04.001
Funds:

Beijing Municipal Science & Technology Commission Z191100007219009

Key Programs of the Chinese Academy of Sciences ZDRW-CN-2018-2

National Natural Science Foundation of China 51773210

Youth Innovation Promotion Association of Chinese Academy of Sciences 2018040

More Information
  • Corresponding author: Jinming Zhang, E-mail addresses:zhjm@iccas.ac.cn
  • Received Date: 2020-01-20
  • Accepted Date: 2020-02-15
  • Publish Date: 2020-05-01
  • Cellulose, lignin and lignocellulose are important bioresources in the nature. Their effective and environmentally friendly utilization not only reduces dependence on fossil resources but also protects the environment. Recently, a class of novel eco-friendly solvents, ionic liquids, is employed to dissolve and process these bioresources. In this mini-review, we summarized the recent advances of processing and valorization of cellulose, lignin and lignocellulose in ionic liquids. It is expected that this up-to-date survey provides a comprehensive information of this field, and accelerates the development and utilization of the renewable plant biomass resources.

     

  • 1The first three authors contribute equally to this work.
  • loading
  • Abdulkhani, A., Hojati Marvast, E., Ashori, A., Karimi, A.N., 2013. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr. Polym. 95, 57-63. doi: 10.1016/j.carbpol.2013.02.040
    Abou-Saleh, R.H., Hernandez-Gomez, M.C., Amsbury, S., Paniagua, C., Bourdon, M., Miyashima, S., Helariutta, Y., Fuller, M., Budtova, T., Connell, S.D., Ries, M.E., Benitez-Alfonso, Y., 2018. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nat. Commun. 9, 4538. https://www.ncbi.nlm.nih.gov/pubmed/30382102
    Abushammala, H., Krossing, I., Laborie, M.P., 2015. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 134, 609-616. doi: 10.1016/j.carbpol.2015.07.079
    Akiba, T., Tsurumaki, A., Ohno, H., 2017. Induction of lignin solubility for a series of polar ionic liquids by the addition of a small amount of water. Green Chem. 19, 2260-2265. doi: 10.1039/C7GC00626H
    Asaadi, S., Hummel, M., Ahvenainen, P., Gubitosi, M., Olsson, U., Sixta, H., 2018. Structural analysis of Ioncell-F fibres from birch wood. Carbohydr. Polym. 181, 893-901. doi: 10.1016/j.carbpol.2017.11.062
    Becherini, S., Mitmoen, M., Tran, C.D., 2019. Natural sporopollenin microcapsules facilitated encapsulation of phase change material into cellulose composites for smart and biocompatible materials. ACS Appl. Mater. Interfaces 11, 44708-44721. doi: 10.1021/acsami.9b15530
    Berton, P., Shen, X.P., Rogers, R.D., Shamshina, J.L., 2019.110th anniversary:high-molecular-weight chitin and cellulose hydrogels from biomass in ionic liquids without chemical crosslinking. Ind. Eng. Chem. Res. 58, 19862-19876. doi: 10.1021/acs.iecr.9b03078
    Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T., 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550. doi: 10.1039/c2gc36364j
    Buchtová, N., Pradille, C., Bouvard, J.L., Budtova, T., 2019. Mechanical properties of cellulose aerogels and cryogels. Soft Matter 15, 7901-7908. doi: 10.1039/C9SM01028A
    Byrne, N., Chen, J.Y., Fox, B., 2014. Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates. J. Mater. Chem. A 2, 15758-15762. doi: 10.1039/C4TA04059G
    Chang, L.M., Zhang, J.M., Chen, W.W., Zhang, M., Yin, C.C., Tian, W.G., Luo, Z., Liu, W.L., He, J.S., Zhang, J., 2018. Controllable synthesis of cellulose benzoates for understanding of chiral recognition mechanism and fabrication of highly efficient chiral stationary phases. Anal. Methods 10, 2844-2853. doi: 10.1039/C8AY00162F
    Chen, J.H., Xu, J.K., Wang, K., Qian, X.R., Sun, R.C., 2015a. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 7, 15641-15648. doi: 10.1021/acsami.5b04462
    Chen, L., Xin, J.Y., Ni, L.L., Dong, H.X., Yan, D.X., Lu, X.M., Zhang, S.J., 2016. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chem. 18, 2341-2352. doi: 10.1039/C5GC03121D
    Chen, W.W., Ding, M.C., Zhang, M., Zhang, J.M., Gao, X., He, J.S., Zhang, J., 2015c. Chiral separation abilities of homogeneously synthesized cellulose 3, 5-dimethylphenylcarbamates:Influences of degree of substitution and molecular weight. Chin. J. Polym. Sci. 33, 1633-1639. doi: 10.1007/s10118-015-1695-y
    Chen, W.W., Zhang, M., Feng, Y., Wu, J., Gao, X., Zhang, J.M., He, J.S., Zhang, J., 2015b. Homogeneous synthesis of partially substituted cellulose phenylcarbamates aiming at chiral recognition. Polym. Int. 64, 1037-1044. doi: 10.1002/pi.4884
    Chen, Z.Y., Zhang, J.M., Xiao, P., Tian, W.G., Zhang, J., 2018. Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustainable Chem. Eng. 6, 4931-4939. doi: 10.1021/acssuschemeng.7b04466
    Cheng, F.C., Wang, H., Rogers, R.D., 2014. Oxygen enhances polyoxometalate-based catalytic dissolution and delignification of woody biomass in ionic liquids. ACS Sustainable Chem. Eng. 2, 2859-2865. doi: 10.1021/sc500614m
    Chu, Y.H., He, X.Z., 2019. MoDoop:an automated computational approach for COSMO-RS prediction of biopolymer solubilities in ionic liquids. ACS Omega 4, 2337-2343. doi: 10.1021/acsomega.8b03255
    de Gregorio, G.F., Prado, R., Vriamont, C., Erdocia, X., Labidi, J., Hallett, J.P., Welton, T., 2016. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustainable Chem. Eng. 4, 6031-6036. doi: 10.1021/acssuschemeng.6b01339
    Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T, 2015. Cellulose-silica aerogels. Carbohydr Polym 122, 293-300. doi: 10.1016/j.carbpol.2015.01.022
    Du, J.H., Wen, Y., Chen, H.X., Chen, Q., Xie, H.B., 2018. Synthesis and property study of cellulose methyl carbonate in DMSO/DBU/CO2 system via in situ organocatalysis. Sci. Sin.-Chim 48, 512-517. doi: 10.1360/N032018-00012
    Duan, Y.Q., Freyburger, A., Kunz, W., Zollfrank, C., 2018. Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustainable Chem. Eng. 6, 6965-6973. doi: 10.1021/acssuschemeng.8b00805
    Duri, S., Tran, C.D., 2013. Supramolecular composite materials from cellulose, chitosan, and cyclodextrin:facile preparation and their selective inclusion complex formation with endocrine disruptors. Langmuir 29, 5037-5049. doi: 10.1021/la3050016
    Duri, S., Tran, C.D., 2014. Enantiomeric selective adsorption of amino acid by polysaccharide composite materials. Langmuir 30, 642-650. doi: 10.1021/la404003t
    Durkin, D.P., Frank, B.P., Haverhals, L.M., Howard Fairbrother, D., de Long, H.C., Trulove, P.C., 2019. Engineering lignocellulose fibers with higher thermal stability through natural fiber welding. Macromol. Mater. Eng. 304, 1900042. doi: 10.1002/mame.201900042
    Durkin, D.P., Ye, T., Larson, E.G., Haverhals, L.M., Livi, K.J.T., de Long, H.C., Trulove, P.C., Fairbrother, D.H., Shuai, D.M., 2016. Ligno-cellulose fiber- and welded fiber- supports for palladium-based catalytic hydrogenation:a natural fiber welding application for water treatment. ACS Sustainable Chem. Eng. 4, 5511-5522. doi: 10.1021/acssuschemeng.6b01250
    Ewulonu, C.M., Liu, X. R., Wu, M., Huang, Y., 2019. Lignin-containing cellulose nanomaterials:a promising new nanomaterial for numerous applications. J. Bioresour. Bioprod. 4, 3-10. https://www.sciencedirect.com/science/article/pii/S2369969820300323
    Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G., Rogers, R.D., 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 9, 63-69. doi: 10.1039/B607614A
    Granström, M., née Pääkkö, M.K., Jin, H., Kolehmainen, E., Kilpeläinen, I., Ikkala, O., 2011. Highly water repellent aerogels based on cellulose stearoyl esters. Polym. Chem. 2, 1789. doi: 10.1039/c0py00309c
    Guterman, R., Molinari, V., Josef, E., 2019. Ionic liquid lignosulfonate:dispersant and binder for preparation of biocomposite materials. Angew. Chem. Int. Ed. 58, 13044-13050. doi: 10.1002/anie.201907385
    Hadadi, A., Whittaker, J.W., Verrill, D.E., Hu, X., Larini, L., Salas-de la Cruz, D., 2018. A hierarchical model to understand the processing of polysaccharides/protein-based films in ionic liquids. Biomacromolecules 19, 3970-3982. doi: 10.1021/acs.biomac.8b00903
    Hamada, Y., Yoshida, K., Asai, R.I., Hayase, S., Nokami, T., Izumi, S., Itoh, T., 2013. A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid. Green Chem. 15, 1863. doi: 10.1039/c3gc40445e
    Haq, M.A., Habu, Y., Yamamoto, K., Takada, A., Kadokawa, J.I., 2019. Ionic liquid induces flexibility and thermoplasticity in cellulose film. Carbohydr. Polym. 223, 115058. doi: 10.1016/j.carbpol.2019.115058
    Härdelin, L., Hagström, B., 2015. Wet spun fibers from solutions of cellulose in an ionic liquid with suspended carbon nanoparticles. J. Appl. Polym. Sci. 132, 41417. doi: 10.1002/app.41417
    Hart, W.E.S., Harper, J.B., Aldous, L., 2015. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 17, 214-218. doi: 10.1039/C4GC01888E
    Haslinger, S., Wang, Y.F., Rissanen, M., Lossa, M.B., Tanttu, M., Ilen, E., Määttänen, M., Harlin, A., Hummel, M., Sixta, H., 2019. Recycling of vat and reactive dyed textile waste to new colored man-made cellulose fibers. Green Chem. 21, 5598-5610. doi: 10.1039/C9GC02776A
    Hauru, L.K.J., Hummel, M., Michud, A., Sixta, H., 2014. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21, 4471-4481. doi: 10.1007/s10570-014-0414-0
    Hauru, L.K.J., Hummel, M., Nieminen, K., Michud, A., Sixta, H., 2016. Cellulose regeneration and spinnability from ionic liquids. Soft Matter 12, 1487-1495. doi: 10.1039/C5SM02618K
    Huber, T., Müssig, J., Curnow, O., Pang, S.S., Bickerton, S., Staiger, M.P., 2012. A critical review of all-cellulose composites. J. Mater. Sci. 47, 1171-1186. doi: 10.1007/s10853-011-5774-3
    Jedvert, K., Idström, A., Köhnke, T., Alkhagen, M., 2020. Cellulosic nonwovens produced via efficient solution blowing technique. J. Appl. Polym. Sci. 137, 48339. doi: 10.1002/app.48339
    Jia, R.N., Tian, W.G., Bai, H.T., Zhang, J.M., Wang, S., Zhang, J., 2019a. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10, 795. doi: 10.1038/s41467-019-08675-3
    Jia, R.N., Tian, W.G., Bai, H.T., Zhang, J.M., Wang, S., Zhang, J., 2019b. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers. Adv. Healthcare Mater. 8, 1801591. doi: 10.1002/adhm.201801591
    Jia, S.Y., Cox, B.J., Guo, X.W., Zhang, Z.C., Ekerdt, J.G., 2010a. Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride:an optional strategy for the degradation of lignin. ChemSusChem 3, 1078-1084. doi: 10.1002/cssc.201000112
    Jia, S.Y., Cox, B.J., Guo, X.W., Zhang, Z.C., Ekerdt, J.G., 2010b. Decomposition of a phenolic lignin model compound over organic N-bases in an ionic liquid. Holzforschung 64, 577-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/hf.2010.075
    Jia, S.Y., Cox, B.J., Guo, X.W., Zhang, Z.C., Ekerdt, J.G., 2011. Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind. Eng. Chem. Res. 50, 849-855. doi: 10.1021/ie101884h
    Kalinoski, R.M., Shi, J., 2019. Hydrogels derived from lignocellulosic compounds:Evaluation of the compositional, structural, mechanical and antimicrobial properties. Ind. Crop. Prod. 128, 323-330. doi: 10.1016/j.indcrop.2018.11.002
    Keskar, S.S., Edye, L.A., Doherty, W.O.S., Bartley, J.P., 2012. The chemistry of acid catalyzed delignification of sugarcane bagasse in the ionic liquid trihexyl tetradecyl phosphonium chloride. J. Wood Chem. Technol. 32, 71-81. doi: 10.1080/02773813.2011.573120
    Khanmirzaei, M.H., Ramesh, S., Ramesh, K., 2015. Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci. Rep. 5, 18056. doi: 10.1038/srep18056
    Kilpeläinen, I., Xie, H.B., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S., 2007. Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55, 9142-9148. doi: 10.1021/jf071692e
    King, A.W.T., Kilpelainen, I., Heikkinen, S., Jarvi, P., Argyropoulos, D.S., 2009. Hydrophobic interactions determining functionalized lignocellulose solubility in dialkylimidazolium chlorides, as probed by31P NMR. Biomacromolecules 10, 458-463. doi: 10.1021/bm8010159
    Kostag, M., Gericke, M., Heinze, T., El Seoud, O.A., 2019. Twenty-five years of cellulose chemistry:innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose 26, 139-184. doi: 10.1007/s10570-018-2198-0
    Kuzmina, O., Bhardwaj, J., Vincent, S.R., Wanasekara, N.D., Kalossaka, L.M., Griffith, J., Potthast, A., Rahatekar, S., Eichhorn, S.J., Welton, T., 2017. Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation. Green Chem. 19, 5949-5957. doi: 10.1039/C7GC02671D
    Lei, L.F., Lindbråthen, A., Hillestad, M., Sandru, M., Favvas, E.P., He, X.Z., 2019. Screening cellulose spinning parameters for fabrication of novel carbon hollow fiber membranes for gas separation. Ind. Eng. Chem. Res. 58, 13330-13339. doi: 10.1021/acs.iecr.9b02480
    Lei, L.F., Lindbråthen, A., Sandru, M., Gutierrez, M., Zhang, X.P., Hillestad, M., He, X.Z., 2018. Spinning cellulose hollow fibers using 1-ethyl-3-methylimidazolium acetate-dimethylsulfoxide Co-solvent. Polymers 10, 972. doi: 10.3390/polym10090972
    Li, J.Y., Zhang, X.C., Zhang, J.M., Mi, Q.Y., Jia, F.W., Wu, J., Yu, J., Zhang, J., 2019. Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties. Carbohydr. Polym. 223, 115057. doi: 10.1016/j.carbpol.2019.115057
    Li, R.J., Gutierrez, J., Chung, Y.L., Frank, C.W., Billington, S.L., Sattely, E.S., 2018. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chem. 20, 1459-1466. doi: 10.1039/C7GC03026F
    Liu, H.C., Li, C.J., Wang, B.J., Sui, X.F., Wang, L., Yan, X.L., Xu, H., Zhang, L.P., Zhong, Y., Mao, Z.P., 2018. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties. Cellulose 25, 559-571. doi: 10.1007/s10570-017-1546-9
    Liu, H.C., Rong, L.D., Wang, B.J., Mao, Z.P., Xie, R.Y., Xu, H., Zhang, L.P., Zhong, Y., Sui, X.F., 2017a. Facile synthesis of cellulose derivatives based on cellulose acetoacetate. Carbohydr. Polym. 170, 117-123. doi: 10.1016/j.carbpol.2017.04.043
    Liu, H.C., Rong, L.D., Wang, B.J., Xie, R.Y., Sui, X.F., Xu, H., Zhang, L.P., Zhong, Y., Mao, Z.P, 2017b. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr. Polym. 176, 299-306. doi: 10.1016/j.carbpol.2017.08.085
    Liu, H.C., Sui, X.F., Xu, H., Zhang, L.P., Zhong, Y., Mao, Z.P., 2016. Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol. Mater. Eng. 301, 725-732. doi: 10.1002/mame.201600042
    Liu, Y.R., Wang, Y.L., Nie, Y., Wang, C.L., Ji, X.Y., Zhou, L., Pan, F.J., Zhang, S.J., 2019. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids. ACS Sustainable Chem. Eng. 7, 20013-20021. doi: 10.1021/acssuschemeng.9b05489
    Liu, Z., Wang, H.S., Liu, C., Jiang, Y.J., Yu, G., Mu, X.D., Wang, X.Y., 2012. Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem. Commun. 48, 7350. doi: 10.1039/c2cc17795a
    Lorenzo, M., Zhu, B.Y., Srinivasan, G., 2016. Intrinsically flexible electronic materials for smart device applications. Green Chem. 18, 3513-3517. doi: 10.1039/C6GC00826G
    Lu, Y., Sun, Q.F., Yang, D.J., She, X.L., Yao, X.D., Zhu, G.S., Liu, Y.X., Zhao, H.J., Li, J., 2012. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution. J. Mater. Chem. 22, 13548. doi: 10.1039/c2jm31310c
    Luo, N., Varaprasad, K., Reddy, G.V.S., Rajulu, A.V., Zhang, J., 2012. Preparation and characterization of cellulose/curcumin composite films. RSC Adv. 2, 8483. doi: 10.1039/c2ra21465b
    Luo, Z.Q., Wang, A.Q., Wang, C.Z., Qin, W.C., Zhao, N.N., Song, H.Z., Gao, J.G., 2014. Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions. J. Mater. Chem. A 2, 7327. doi: 10.1039/c4ta00225c
    Ma, B.M., Qin, A.W., Li, X., He, C.J., 2013. Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system. Ind. Eng. Chem. Res. 52, 9417-9421. doi: 10.1021/ie401097d
    Ma, Y., Hummel, M., Kontro, I., Sixta, H., 2018a. High performance man-made cellulosic fibres from recycled newsprint. Green Chem. 20, 160-169. doi: 10.1039/C7GC02896B
    Ma, Y., Hummel, M., Määttänen, M., Särkilahti, A., Harlin, A., Sixta, H., 2016. Upcycling of waste paper and cardboard to textiles. Green Chem. 18, 858-866. doi: 10.1039/C5GC01679G
    Ma, Y.B., Asaadi, S., Johansson, L.S., Ahvenainen, P., Reza, M., Alekhina, M., Rautkari, L., Michud, A., Hauru, L., Hummel, M., Sixta, H., 2015. High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. ChemSusChem 8, 4030-4039. doi: 10.1002/cssc.201501094
    Ma, Y.B., Stubb, J., Kontro, I., Nieminen, K., Hummel, M., Sixta, H., 2018b. Filament spinning of unbleached birch kraft pulps:Effect of pulping intensity on the processability and the fiber properties. Carbohydr. Polym. 179, 145-151. doi: 10.1016/j.carbpol.2017.09.079
    Mahmood, H., Moniruzzaman, M., Yusup, S., Akil, H.M., 2016a. Pretreatment of oil palm biomass with ionic liquids:a new approach for fabrication of green composite board. J. Clean. Prod. 126, 677-685. doi: 10.1016/j.jclepro.2016.02.138
    Mahmood, H., Moniruzzaman, M., Yusup, S., Akil, H.M., 2016b. Particulate composites based on ionic liquid-treated oil palm fiber and thermoplastic starch adhesive. Clean Technol. Environ. Policy 18, 2217-2226. doi: 10.1007/s10098-016-1132-0
    Mahmood, H., Moniruzzaman, M., Yusup, S., Muhammad, N., Iqbal, T., Akil, H.M., 2017. Ionic liquids pretreatment for fabrication of agro-residue/thermoplastic starch based composites:a comparative study with other pretreatment technologies. J. Clean. Prod. 161, 257-266. doi: 10.1016/j.jclepro.2017.05.110
    Mahmoudian, S., Wahit, M.U., Ismail, A.F., Balakrishnan, H., Imran, M., 2015. Bionanocomposite fibers based on cellulose and montmorillonite using ionic liquid 1-ethyl-3-methylimidazolium acetate. J. Mater. Sci. 50, 1228-1236. doi: 10.1007/s10853-014-8679-0
    Man, Z., Muhammad, N., Sarwono, A., Bustam, M.A., Vignesh Kumar, M., Rafiq, S., 2011. Preparation of cellulose nanocrystals using an ionic liquid. J. Polym. Environ. 19, 726-731. doi: 10.1007/s10924-011-0323-3
    Mashkour, M., Tajvidi, M., Kimura, F., Yousefi, H., Kimura, T., 2014. Strong highly anisotropic magnetocellulose nanocomposite films made by chemical peeling and in situ welding at the interface using an ionic liquid. ACS Appl. Mater. Interfaces 6, 8165-8172. doi: 10.1021/am500709t
    Mehta, M.J., Kumar, A., 2019. Ionic liquid stabilized gelatin-lignin films:a potential UV-shielding material with excellent mechanical and antimicrobial properties. Chem. Eur. J. 25, 1269-1274. doi: 10.1002/chem.201803763
    Mi, Q.Y., Ma, S.R., Yu, J., He, J.S., Zhang, J., 2016. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustainable Chem. Eng. 4, 656-660. doi: 10.1021/acssuschemeng.5b01079
    Michud, A., Hummel, M., Sixta, H., 2015. Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer 75, 1-9. doi: 10.1016/j.polymer.2015.08.017
    Mussana, H., Yang, X., Tessima, M., Han, F.Y., Iqbal, N., Liu, L.F., 2018. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Ind. Crop. Prod. 113, 225-233. doi: 10.1016/j.indcrop.2018.01.025
    Nagatani, M., Tsurumaki, A., Takamatsu, K., Saito, H., Nakamura, N., Ohno, H, 2019. Preparation of epoxy resins derived from lignin solubilized in tetrabutylphosphonium hydroxide aqueous solutions. Int. J. Biol. Macromol. 132, 585-591. doi: 10.1016/j.ijbiomac.2019.03.152
    Nawaz, H., Tian, W.G., Zhang, J.M., Jia, R.N., Chen, Z.Y., Zhang, J., 2018. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes. ACS Appl. Mater. Interfaces 10, 2114-2121. doi: 10.1021/acsami.7b17342
    Nawaz, H., Tian, W.G., Zhang, J.M., Jia, R.N., Yang, T.T., Yu, J., Zhang, J., 2019. Visual and precise detection of pH values under extreme acidic and strong basic environments by cellulose-based superior sensor. Anal. Chem. 91, 3085-3092. doi: 10.1021/acs.analchem.8b05554
    Nawaz, H., Zhang, J.M., Tian, W.G., Jin, K.F., Jia, R.N., Yang, T.T., Zhang, J., 2020. Cellulose-based fluorescent sensor for visual and versatile detection of amines and anions. J. Hazard. Mater. 387, 121719. doi: 10.1016/j.jhazmat.2019.121719
    Nguyen, N.A., Kim, K., Bowland, C.C., Keum, J.K., Kearney, L.T., André, N., Labbé, N., Naskar, A.K., 2019. A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chem. 21, 4354-4367. doi: 10.1039/C9GC00774A
    Onwukamike, K.N., Tassaing, T., Grelier, S., Grau, E., Cramail, H., Meier, M.A.R., 2018. Detailed understanding of the DBU/CO2 switchable solvent system for cellulose solubilization and derivatization. ACS Sustainable Chem. Eng. 6, 1496-1503. doi: 10.1021/acssuschemeng.7b04053
    Pei, M., Peng, X.W., Shen, Y.Q., Yang, Y.L., Guo, Y.L., Zheng, Q., Xie, H.B., Sun, H., 2020. Synthesis of water-soluble, fully biobased cellulose levulinate esters through the reaction of cellulose and alpha-Angelica lactone in a DBU/CO2/DMSO solvent system. Green Chem. 22, 707-717. doi: 10.1039/C9GC03149A
    Peng, S., Meng, H.C., Ouyang, Y., Chang, J., 2014a. Nanoporous magnetic cellulose-chitosan composite microspheres:preparation, characterization, and application for Cu(Ⅱ) adsorption. Ind. Eng. Chem. Res. 53, 2106-2113. doi: 10.1021/ie402855t
    Peng, S., Meng, H.C., Zhou, L., Chang, J., 2014b. Synthesis of novel magnetic cellulose-chitosan composite microspheres and their application in laccase immobilization. J. Nanosci. Nanotechnol. 14, 7010-7014. doi: 10.1166/jnn.2014.8933
    Pinkert, A., Goeke, D.F., Marsh, K.N., Pang, S.S., 2011. Extracting wood lignin without dissolving or degrading cellulose:investigations on the use of food additive-derived ionic liquids. Green Chem. 13, 3124. doi: 10.1039/c1gc15671c
    Plappert, S.F., Nedelec, J.M., Rennhofer, H., Lichtenegger, H.C., Bernstorff, S., Liebner, F.W., 2018. Self-assembly of cellulose in super-cooled ionic liquid under the impact of decelerated antisolvent infusion:an approach toward anisotropic gels and aerogels. Biomacromolecules 19, 4411-4422. doi: 10.1021/acs.biomac.8b01278
    Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., Labidi, J., 2016a. Lignin oxidation and depolymerisation in ionic liquids. Green Chem. 18, 834-841. doi: 10.1039/C5GC01950H
    Prado, R., Erdocia, X., de Gregorio, G.F., Labidi, J., Welton, T., 2016b. Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustainable Chem. Eng. 4, 5277-5288. doi: 10.1021/acssuschemeng.6b00642
    Pu, Y.Q., Jiang, N., Ragauskas, A.J., 2007. Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol. 27, 23-33. doi: 10.1080/02773810701282330
    Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin:a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320-324. doi: 10.1039/C4GC01333F
    Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., 2014. Lignin valorization:improving lignin processing in the biorefinery. Science 344, 1246843. doi: 10.1126/science.1246843
    Rashid, T., Kait, C.F., Regupathi, I., Murugesan, T., 2016. Dissolution of kraft lignin using Protic Ionic Liquids and characterization. Ind. Crop. Prod. 84, 284-293. doi: 10.1016/j.indcrop.2016.02.017
    Roata, I.C., Croitoru, C., Pascu, A., Stanciu, M.E., 2018. Characterization of physically crosslinked ionic liquid-lignocellulose hydrogels. Bio-Resources, 13, 6110-6121. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_3_6110_Roata_Physically_Crosslinked_Ionic_Hydrogels/6215
    Salanti, A., Zoia, L., Orlandi, M., 2016. Chemical modifications of lignin for the preparation of macromers containing cyclic carbonates. Green Chem. 18, 4063-4072. doi: 10.1039/C6GC01028H
    Sanderson, K., 2011. Lignocellulose:a chewy problem. Nature 474, S12-S14. http://d.old.wanfangdata.com.cn/Periodical/nygcxb200609050
    Scott, J.L., Unali, G., Perosa, A., 2011. A "by-productless" cellulose foaming agent for use in imidazolium ionic liquids. Chem. Commun. 47, 2970. doi: 10.1039/c0cc05057a
    Sen, S., Martin, J.D., Argyropoulos, D.S., 2013. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chem. Eng. 1, 858-870. doi: 10.1021/sc400085a
    Shen, X.P., Berton, P., Shamshina, J.L., Rogers, R.D., 2016. Preparation and comparison of bulk and membrane hydrogels based on Kraft- and ionic-liquid-isolated lignins. Green Chem. 18, 5607-5620. doi: 10.1039/C6GC01339B
    Shen, X.P., Xie, Y.J., Wang, Q.W., Yi, X., Shamshina, J.L., Rogers, R.D., 2019. Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose 26, 4005-4019. doi: 10.1007/s10570-019-02328-w
    Singh, N., Rahatekar, S.S., Koziol, K.K.K., Ng, T.S., Patil, A.J., Mann, S., Hollander, A.P., Kafienah, W., 2013. Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Biomacromolecules 14, 1287-1298. doi: 10.1021/bm301762p
    Song, J., Lu, F., Cheng, B.W., Hu, X.Y., Ma, C., 2014. Melt blowing of ionic liquid-based cellulose solutions. Fibers Polym. 15, 291-296. doi: 10.1007/s12221-014-0291-z
    Sun, N., Li, W.Y., Stoner, B., Jiang, X.Y., Lu, X.M., Rogers, R.D., 2011. Composite fibers spun directly from solutions of raw lignocellulosic biomass Dissolved in ionic liquids. Green Chem. 13, 1158. doi: 10.1039/c1gc15033b
    Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H., Rogers, R.D., 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11, 646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa89847d229922bf7c39057b3a5450e9
    Sun, Y.C., Liu, X.N., Wang, T.T., Xue, B.L., Sun, R.C., 2019. Green process for extraction of lignin by the microwave-assisted ionic liquid approach:toward biomass biorefinery and lignin characterization. ACS Sustainable Chem. Eng. 7, 13062-13072. doi: 10.1021/acssuschemeng.9b02166
    Sundberg, J., Toriz, G., Gatenholm, P., 2015. Effect of xylan content on mechanical properties in regenerated cellulose/xylan blend films from ionic liquid. Cellulose 22, 1943-1953. doi: 10.1007/s10570-015-0606-2
    Tan, S.S.Y., MacFarlane, D.R., Upfal, J., Edye, L.A., Doherty, W.O.S., Patti, A.F., Pringle, J.M., Scott, J.L., 2009. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 11, 339. doi: 10.1039/b815310h
    Thiemann, S., Sachnov, S.J., Pettersson, F., Bollström, R., Österbacka, R., Wasserscheid, P., Zaumseil, J., 2014. Cellulose-based ionogels for paper electronics. Adv. Funct. Mater. 24, 625-634. doi: 10.1002/adfm.201302026
    Tian, W.G., Zhang, J.M., Yu, J., Wu, J., Nawaz, H., Zhang, J., He, J.S., Wang, F.S., 2016. Cellulose-based solid fluorescent materials. Adv. Opt. Mater. 4, 2044-2050. doi: 10.1002/adom.201600500
    Tian, W.G., Zhang, J.M., Yu, J., Wu, J., Zhang, J., He, J.S., Wang, F.S., 2018. Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv. Funct. Mater. 28, 1703548. doi: 10.1002/adfm.201703548
    Tran, C.D., Prosenc, F., Franko, M., Benzi, G., 2016. One-pot synthesis of biocompatible silver nanoparticle composites from cellulose and keratin:characterization and antimicrobial activity. ACS Appl. Mater. Interfaces 8, 34791-34801. doi: 10.1021/acsami.6b14347
    Tsioptsias, C., Stefopoulos, A., Kokkinomalis, I., Papadopoulou, L., Panayiotou, C, 2008. Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chemistry 10, 965-971. doi: 10.1039/b803869d
    Utomo, N.W., Saifuddin, I., Nazari, B., Jain, P., Colby, R.H., 2020. Chain dynamics and glass transition of dry native cellulose solutions in ionic liquids. Soft Matter 16, 200-207. doi: 10.1039/C9SM01587F
    Villar-Chavero, M.M., Domínguez, J.C., Alonso, M.V., Oliet, M., Rodriguez, F., 2019. Tuning the rheological properties of cellulosic ionogels reinforced with chitosan:The role of the deacetylation degree. Carbohydr. Polym. 207, 775-781. doi: 10.1016/j.carbpol.2018.12.041
    Vincent, S., Prado, R., Kuzmina, O., Potter, K., Bhardwaj, J., Wanasekara, N.D., Harniman, R.L., Koutsomitopoulou, A., Eichhorn, S.J., Welton, T., Rahatekar, S.S., 2018. Regenerated cellulose and willow lignin blends as potential renewable precursors for carbon fibers. ACS Sustainable Chem. Eng. 6, 5903-5910. doi: 10.1021/acssuschemeng.7b03200
    Vo, H.T., Kim, Y.J., Jeon, E.H., Kim, C.S., Kim, H.S., Lee, H., 2012. Ionic-liquid-derived, water-soluble ionic cellulose. Chem. Eur. J. 18, 9019-9023. doi: 10.1002/chem.201200982
    Wan, J.Q., Zhang, J.M., Yu, J., Zhang, J., 2017. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer Lithium-Ion batteries. ACS Appl. Mater. Interfaces 9, 24591-24599. doi: 10.1021/acsami.7b06271
    Wanasekara, N.D., Michud, A., Zhu, C.C., Rahatekar, S., Sixta, H., Eichhorn, S.J., 2016. Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer 99, 222-230. doi: 10.1016/j.polymer.2016.07.007
    Wang, J., Boy, R., Nguyen, N.A., Keum, J.K., Cullen, D.A., Chen, J.H., Soliman, M., Littrell, K.C., Harper, D., Tetard, L., Rials, T.G., Naskar, A.K., Labbé, N., 2017. Controlled assembly of lignocellulosic biomass components and properties of reformed materials. ACS Sustainable Chem. Eng. 5, 8044-8052. doi: 10.1021/acssuschemeng.7b01639
    Wang, S., Shuai, L., Saha, B., Vlachos, D.G., Epps, T.H.Ⅲ, 2018. From tree to tape:direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. ACS Cent. Sci. 4, 701-708. doi: 10.1021/acscentsci.8b00140
    Wang, Z.H., Tammela, P., Strømme, M., Nyholm, L., 2017. Cellulose-based supercapacitors:material and performance considerations. Adv. Energy Mater. 7, 1700130. doi: 10.1002/aenm.201700130
    Wu, J., Bai, J., Xue, Z.G., Liao, Y.G., Zhou, X.P., Xie, X.L., 2015. Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid. Cellulose 22, 89-99. doi: 10.1007/s10570-014-0502-1
    Xiao, P., Zhang, J.M., Feng, Y., Wu, J., He, J.S., Zhang, J., 2014. Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus:cellulose diphenyl phosphate and its mixed esters. Cellulose 21, 2369-2378. doi: 10.1007/s10570-014-0256-9
    Xu, A.R., Guo, X., Zhang, Y.B., Li, Z.Y., Wang, J.J., 2017. Efficient and sustainable solvents for lignin dissolution:aqueous choline carboxylate solutions. Green Chem. 19, 4067-4073. doi: 10.1039/C7GC01886J
    Yang, Y.L., Song, L.C., Peng, C., Liu, E.H., Xie, H.B., 2015. Activating cellulose via its reversible reaction with CO2 in the presence of 1, 8-diazabicyclo[5.4.0]undec-7-ene for the efficient synthesis of cellulose acetate. Green Chem. 17, 2758-2763. https://pubs.rsc.org/en/content/articlelanding/2015/gc/c5gc00115c#!
    Yang, Y.L., Xie, H.B., Liu, E.H., 2014. Acylation of cellulose in reversible ionic liquids. Green Chem. 16, 3018-3023. doi: 10.1039/C4GC00199K
    Yin, C.C., Chen, W.W., Zhang, J.M., Zhang, M., Zhang, J., 2019b. A facile and efficient method to fabricate high-resolution immobilized cellulose-based chiral stationary phases via thiol-ene click chemistry. Sep. Purif. Technol. 210, 175-181. doi: 10.1016/j.seppur.2018.08.002
    Yin, C.C., Zhang, J.M., Chang, L.M., Zhang, M., Yang, T.T., Zhang, X.C., Zhang, J, 2019a. Regioselectively substituted cellulose mixed esters synthesized by two-steps route to understand chiral recognition mechanism and fabricate high-performance chiral stationary phases. Anal. Chimica Acta 1073, 90-98. doi: 10.1016/j.aca.2019.04.071
    Yuan, B., Zhang, J.M., Mi, Q.Y., Yu, J., Song, R., Zhang, J., 2017. Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ Sol-gel process. ACS Sustainable Chem. Eng. 5, 11117-11123. doi: 10.1021/acssuschemeng.7b03211
    Yuan, B., Zhang, J.M., Yu, J., Song, R., Mi, Q.Y., He, J.S., Zhang, J., 2016. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Sci. China Chem. 59, 1335-1341. doi: 10.1007/s11426-016-0188-0
    Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552-3599. doi: 10.1021/cr900354u
    Zhang, J.M., Chen, W.W., Feng, Y., Wu, J., Yu, J., He, J.S., Zhang, J., 2015. Homogeneous esterification of cellulose in room temperature ionic liquids. Polym. Int. 64, 963-970. doi: 10.1002/pi.4883
    Zhang, J.M., Luo, N., Wan, J.Q., Xia, G.M., Yu, J., He, J.S., Zhang, J., 2017b. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustainable Chem. Eng. 5, 5127-5133. doi: 10.1021/acssuschemeng.7b00488
    Zhang, J.M., Luo, N., Zhang, X.Y., Xu, L.L., Wu, J., Yu, J., He, J.S., Zhang, J., 2016. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustainable Chem. Eng. 4, 4417-4423. doi: 10.1021/acssuschemeng.6b01034
    Zhang, J.M., Wu, J., Yu, J., Zhang, X.Y., He, J.S., Zhang, J., 2017a. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials:state of the art and future trends. Mater. Chem. Front. 1, 1273-1290. doi: 10.1039/C6QM00348F
    Zhang, J.P., Kitayama, H., Gotoh, Y., Potthast, A., Rosenau, T., 2019a. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydr. Polym. 226, 115258. doi: 10.1016/j.carbpol.2019.115258
    Zhang, J.P., Yamagishi, N., Gotoh, Y., Potthast, A., Rosenau, T., 2020. High performance cellulose fibers regenerated from 1-butyl-3- methylimidazolium chloride solution:Effects of viscosity and molecular weight. J. Appl. Polym. Sci. 137, 48681. doi: 10.1002/app.48681
    Zhang, J.P., Yamagishi, N., Tominaga, K., Gotoh, Y., 2017c. High-strength regenerated cellulose fibers spun from 1-butyl-3-methylimidazolium chloride solutions. J. Appl. Polym. Sci. 134, 45551. doi: 10.1002/app.45551
    Zhang, L., Zhao, D.W., Feng, M., He, B., Chen, X.Y., Wei, L.G., Zhai, S.R., An, Q.D., Sun, J., 2019b. Hydrogen bond promoted lignin solubilization and electrospinning in low cost protic ionic liquids. ACS Sustainable Chem. Eng. 7, 18593-18602. doi: 10.1021/acssuschemeng.9b04907
    Zhang, X., Liu, W.F., Yang, D.J., Qiu, X.Q., 2019c. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29, 1806912. doi: 10.1002/adfm.201806912
    Zhang, Z.R., Song, J.L., Han, B.X., 2017d. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 117, 6834-6880. doi: 10.1021/acs.chemrev.6b00457
    Zhao, D.W., Chen, C.J., Zhang, Q., Chen, W.S., Liu, S.X., Wang, Q.W., Liu, Y.X., Li, J., Yu, H.P., 2017. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv. Energy Mater. 7, 1700739. doi: 10.1002/aenm.201700739
    Zhao, D.W., Zhu, Y., Cheng, W.K., Xu, G.W., Wang, Q.W., Liu, S.X., Li, J., Chen, C.J., Yu, H.P., Hu, L.B., 2020. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390-403. doi: 10.1016/j.matt.2019.10.020
    Zhao, L., Shi, S., Liu, M., Zhu, G.Z., Wang, M., Du, W.Q., Gao, J., Xu, J., 2018. Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. Green Chem. 20, 1270-1279. doi: 10.1039/C8GC00268A
    Zheng, Y.Y., Miao, J.J., Maeda, N., Frey, D., Linhardt, R.J., Simmons, T.J., 2014. Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J. Mater. Chem. A 2, 15029-15034. doi: 10.1039/C4TA03221G
    Zhou, L., Wang, Q., Wen, J.C., Chen, X., Shao, Z.Z., 2013. Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54, 5035-5042. doi: 10.1016/j.polymer.2013.07.002
    Zhu, C.C., Koutsomitopoulou, A.F., Eichhorn, S.J., van Duijneveldt, J.S., Richardson, R.M., Nigmatullin, R., Potter, K.D., 2018a. High stiffness cellulose fibers from low molecular weight microcrystalline cellulose solutions using DMSO as Co-solvent with ionic liquid. Macromol. Mater. Eng. 303, 1800029. doi: 10.1002/mame.201800029
    Zhu, C.C., Richardson, R.M., Potter, K.D., Koutsomitopoulou, A.F., van Duijneveldt, J.S., Vincent, S.R., Wanasekara, N.D., Eichhorn, S.J., Rahatekar, S.S., 2016. High Modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution. ACS Sustainable Chem. Eng. 4, 4545-4553. doi: 10.1021/acssuschemeng.6b00555
    Zhu, H.L., Fang, Z.Q., Wang, Z., Dai, J.Q., Yao, Y.G., Shen, F., Preston, C., Wu, W.X., Peng, Jang, N., Yu, Q.K., Yu, Z.F., Hu, L.B., 2016. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369-1377. doi: 10.1021/acsnano.5b06781
    Zhu, X.Y., Peng, C., Chen, H.X., Chen, Q., Zhao, Z.K., Zheng, Q., Xie, H.B., 2018b. Opportunities of ionic liquids for lignin utilization from biorefinery. ChemistrySelect 3, 7945-7962. doi: 10.1002/slct.201801393
    Zhu, Y.T., Li, Z.J., Chen, J.Z., 2019. Applications of lignin-derived catalysts for green synthesis. Green Energy Environ. 4, 210-244. doi: 10.1016/j.gee.2019.01.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (3407) PDF downloads(176) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return