Volume 5 Issue 2
May  2020
Turn off MathJax
Article Contents
Krittirash Yorseng, Suchart Siengchin, Basa Ashok, Anumakonda Varada Rajulu. Nanocomposite Egg Shell Powder with in situ Generated Silver Nanoparticles Using Inherent Collagen as Reducing Agent[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 101-107. doi: 10.1016/j.jobab.2020.04.003
Citation: Krittirash Yorseng, Suchart Siengchin, Basa Ashok, Anumakonda Varada Rajulu. Nanocomposite Egg Shell Powder with in situ Generated Silver Nanoparticles Using Inherent Collagen as Reducing Agent[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 101-107. doi: 10.1016/j.jobab.2020.04.003

Nanocomposite Egg Shell Powder with in situ Generated Silver Nanoparticles Using Inherent Collagen as Reducing Agent

doi: 10.1016/j.jobab.2020.04.003
More Information
  • Corresponding author: Suchart Siengchin, E-mail addresses:suchart.s.pe@tggs-bangkok.org
  • Received Date: 2020-01-18
  • Accepted Date: 2020-02-24
  • Publish Date: 2020-05-01
  • Silver nanoparticles (AgNPs) were in situ generated in poultry hen egg shell powder (ESP) by one step thermal assisted method using the inherently present collagen as a reducing agent. The nanocomposite egg shell powder (NCESP) with in situ generated silver nanoparticles was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and antibacterial tests. The prepared NCESP had the spherical AgNPs in the size range of 50Ƀ120 nm with most of them from 81 nm to 90 nm. Further, the average size of the AgNPs generated in the NCESP was 88 nm. The X-ray analysis indicated the presence of both AgNPs and AgO nanoparticles (AgONPs) in the NCESP. The possible mechanism of generation of AgNPs and AgONPs in the NCESP was also proposed. The thermal stability of the NCESP was found to be higher than that of the ESP. The NCESP exhibited excellent antibacterial activity against both the Gram negative and positive bacteria. The NCESP made from poultry waste ESP can be utilized as a low-cost antibacterial cleaning powder for house ware and also as low-cost antibacterial filler in polymer matrices to make antibacterial hybrid nanocomposites.

     

  • loading
  • Ahmed, S., Saifullah, Ahmad, M., Swami, B.L., Ikram, S., 2016. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9, 1-7. doi: 10.1016/j.jrras.2015.06.006
    Asadi, S., Charati, F.R., Akbari, R., Razavi, S.A., 2018. Green synthesis of silver nanoparticles using Taxus baccata Leaves extract and identify its specifications. J. Mater. Environ. Sci. 9, 2798-2803.
    Ashok, B., Naresh, S., Reddy, K.O., Madhukar, K., Cai, J., Zhang, L., Rajulu, A.V., 2014. Tensile and thermal properties of poly(lactic acid)/eggshell powder composite films. Int. J. Polym. Anal. Charact. 19, 245-255. doi: 10.1080/1023666X.2014.879633
    Ashok, B., Obi Reddy, K., Yorseng, K., Rajini, N., Hariram, N., Siengchin, S., Varada Rajulu, A., 2018. Modification of natural fibers from Thespesia lampas plant by in situ generation of silver nanoparticles in single-step hydrothermal method. Int. J. Polym. Anal. Charact. 23, 509-516. doi: 10.1080/1023666X.2018.1486270
    Banerjee, P., Satapathy, M., Mukhopahayay, A., Das, P., 2014. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants:synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 1, 3. doi: 10.1186/s40643-014-0003-y
    Behravan, M., Hossein Panahi, A., Naghizadeh, A., Ziaee, M., Mahdavi, R., Mirzapour, A., 2019. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 124, 148-154. doi: 10.1016/j.ijbiomac.2018.11.101
    Belbachir, K., Noreen, R., Gouspillou, G., Petibois, C., 2009. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 395, 829-837. doi: 10.1007/s00216-009-3019-y
    Birusanti, A.B., Mallavarapu, U., Nayakanti, D., Espenti, C.S., Mala, S., 2019. Sustainable green synthesis of silver nanoparticles by using Rangoon creeper leaves extract and their spectral analysis and anti-bacterial studies. IET Nanobiotechnology 13, 71-76. doi: 10.1049/iet-nbt.2018.5117
    Camacho, N.P., West, P., Torzilli, P.A., Mendelsohn, R., 2001. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers 62, 1-8. doi: 10.1002/1097-0282(2001)62:1<1::AID-BIP10>3.0.CO;2-O
    Chen, B., Yan, L., Liu, X., Worral, J.L., 2016. Poultry keratin based decolorants for dyeing waste water treatment. J. Bioresour. Bioprod. 1, 30-35.
    Chen, Y., Cao, X.D., Chang, P.R., Huneault, M.A., 2008. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym. 73, 8-17. doi: 10.1016/j.carbpol.2007.10.015
    Feng, Y., Ashok, B., Madhukar, K., Zhang, J.M., Zhang, J., Reddy, K.O., Rajulu, A.V., 2014. Preparation and characterization of polypropylene carbonate bio-filler (eggshell powder) composite films. Int. J. Polym. Anal. Charact. 19, 637-647. doi: 10.1080/1023666X.2014.953747
    Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., Rodríguez-García, M.E., 2009. Characterization of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. J. Mater. Civ. Eng. 21, 694-698. doi: 10.1061/(ASCE)0899-1561(2009)21:11(694)
    Haroon, H.I., Elbadawi, A.A., Siddig, M.A., Abuelhassan, H.H., Sabah Elkhair, M.K., 2015. Studying the physical characters of eggshell and recycling hen's egg waste as powder for cleaning used in household wares. Nova J. Med. Biol. Sci. 4, 1-10.
    Ibrahim, H.M.M., 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8, 265-275. doi: 10.1016/j.jrras.2015.01.007
    Iram, J., 2019. FTIR analysis of egg shell of pigeon Columba livia. Int. J. Res. Appl. Sci. Eng. Technol. 7, 1595-1596. https://www.ijraset.com/fileserve.php?FID=20631
    Jawaid, M., Siengchin, S., 2019. Hybrid composites:a versatile materials for future. Applied Science and Engineering Progress 12, 223. http://d.old.wanfangdata.com.cn/Periodical/nmyj-z201808002
    Karunagaran, V., Rajendran, K., Sen, S., 2014. Antimicrobial activity of biosynthesized silver oxide nanoparticles. Journal of Pure and Applied Microbiology 4, 3263-3268. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff3cd7f24e1f7a628e703d791f4aa3bf
    Kishanji, M., Mamatha, G., Obi Reddy, K., Varada Rajulu, A., Madhukar, K., 2017. In situ generation of silver nanoparticles in cellulose matrix using Azadirachta indica leaf extract as a reducing agent. Int. J. Polym. Anal. Charact. 22, 734-740. doi: 10.1080/1023666X.2017.1369612
    Lin, X., Wang, J., Han, X., Wu, M., Kuga, S., Huang, Y., 2017. Use of lignin and hemicelluloses for facia synthesis of gold, platinum and palladium nanoparticles. J. Bioresour. Bioprod. 2, 149-152.
    Ly, N., Seo, C., Joo, S.W., 2016. Detection of copper(Ⅱ) ions using glycine on hydrazine-adsorbed gold nanoparticles via Raman spectroscopy. Sensors 16, 1785. doi: 10.3390/s16111785
    Makvandi, P., Nikfarjam, N., Sanjani, N.S., Qazvini, N.T., 2015. Effect of silver nanoparticle on the properties of poly(methyl methacrylate) nanocomposite network made by in situ photoiniferter-mediated photopolymerization. Bull. Mater. Sci. 38, 1625-1631. doi: 10.1007/s12034-015-0959-z
    Meejoo, S., Maneeprakorn, W., Winotai, P, 2006. Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochimica Acta 447, 115-120. doi: 10.1016/j.tca.2006.04.013
    Muthulakshmi, L., Rajini, N., Nellaiah, H., Kathiresan, T., Jawaid, M., Varada Rajulu, A., 2017. Experimental investigation of cellulose/silver nanocomposites using in situ generation method. J. Polym. Environ. 25, 1021-1032. doi: 10.1007/s10924-016-0871-7
    Ok, Y.S., Lee, S.S., Jeon, W.T., Oh, S.E., Usman, A.R.A., Moon, D.H., 2011. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ. Geochem. Heal. 33, 31-39. doi: 10.1007/s10653-010-9362-2
    Pan, Y., Farmahini-Farahani, M., Hearn, O.P., Xiao, H., Ocampo, H., 2016. An overview of biobased polymers for packaging materias. J. Bioresour. Bioprod. 1, 106-113.
    Pusphalatha, R., Ashok, B., Hariram, N., Rajulu, A.V., 2019. Nanocomposite polyester fabrics with in situ generated silver nanoparticles using tamarind leaf extract reducing agent. Int. J. Polym. Anal. Charact. 24, 524-532. doi: 10.1080/1023666X.2019.1614265
    Rajesh Kumar, T.V., Murthy, J.S.R., Narayana Rao, M., Bhargava, Y., 2016. Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity. 3 Biotech 6, 92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801843/
    Sadanand, V., Rajini, N., Varada Rajulu, A., Satyanarayana, B., 2018. Effect of sunlight on the preparation and properties of cellulose/silver nanoparticle composite films by in situ method using Ocimum sanctum leaf extract as a reducing agent. Int. J. Polym. Anal. Charact. 23, 313-320. doi: 10.1080/1023666X.2018.1440915
    Sadanand, V., Tian, H.F., Rajulu, A.V., Satyanarayana, B., 2017. Antibacterial cotton fabric with in situ generated silver nanoparticles by one-step hydrothermal method. Int. J. Polym. Anal. Charact. 22, 275-279. doi: 10.1080/1023666X.2017.1287828
    Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A.R., Singh, R.P., 2011. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanoparticle Res. 13, 2981-2988. doi: 10.1007/s11051-010-0193-y
    Sivaranjana, P., Nagarajan, E.R., Rajini, N., Jawaid, M., Rajulu, A.V., 2017. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent. Int. J. Biol. Macromol. 99, 223-232. doi: 10.1016/j.ijbiomac.2017.02.070
    Sriram, T., Pandidurai, V., 2014. Synthesis of silver nanoparticles from leaf extract of Psidium guajava and its antibacterial activity against pathogens. International Journal of Current Microbiology Applied Science 3, 146-152. http://www.sciencedirect.com/science/article/pii/S1995764514601711
    Wang, C.Y., Xiao, P., Zhao, J.Z., Zhao, X., Liu, Y.H., Wang, Z.C., 2006. Biomimetic synthesis of hydrophobic calcium carbonate nanoparticles via a carbonation route. Powder Technol. 170, 31-35. doi: 10.1016/j.powtec.2006.08.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (3076) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return