Volume 5 Issue 2
Apr.  2020
Article Contents
Turn off MathJax

Citation:

Liquefaction of Bamboo Biomass and the Production of Three Fractions Containing Aromatic Compounds

  • Corresponding author: Weihong Tan, e-mail addresses:weihongtan@hotmail.com ;  Junming Xu, e-mail addresses:lang811023@163.com
  • Received Date: 2019-11-21
    Accepted Date: 2020-01-10
    Fund Project:

    We gratefully acknowledge the financial supports of this study by State Key Program of National Natural Science of China (No. 31530010, No. 31600590). Yan Ma (No. 201603270034) would also like to appreciate the fellowship from China Scholarship Council (CSC) to support her study at West Virginia University.

  • Depolymerization of lignin to produce value-added aromatic monomers has attracted increasing attention since these monomers can be used as phenol replacement in production of phenolic resins. Here a one-pot depolymerization of bamboo lignin was investigated to obtain aromatic platforms with low molecular weight using acidic catalyst and ethanol. Three fractions (1#, 2#, and 3#) containing different molecular weight distributions of aromatic compounds could be efficiently extracted using water-organic solvent system via a stepwise fractionation process by gradual removal of solvent. The fractions distribution was found to be primarily dependent on the reaction temperature and time. When the temperature was increased from 160 ℃ to 200 ℃, the yield of fractions containing aromatic products increased significantly from 19.1 wt% to 27 wt%, the same change trend was found by changing the time, and the yield of aromatic products increased from 22.4% to 26.7% with an increase of time from 10 min to 30 min. The bioproducts were characterized by using gas chromatography/mass spectrometry (GC-MS), gel permeation chromatography (GPC) and two-dimensional heteronuclear single-quantum coherence (2D HSQC NMR). As evidenced by GC-MS spectra, the three fractions were mainly comprised of phenolic derivatives, and the relative contents of phenolic compounds took up about 80% of the total area of each fraction. With the similar physiochemical properties of the fractions, aromatic platforms could provide a new paradigm of bamboo lignin utilization for renewable energy and value-added biochemicals.
  • 加载中
  • [1]

    Beauchet, R., Monteil-Rivera, F., Lavoie, J.M., 2012. Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour. Technol. 121, 328-334.
    [2]

    Binder, J.B., Gray, M.J., White, J.F., Zhang, Z.C., Holladay, J.E., 2009. Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33, 1122-1130.
    [3]

    Bozell, J.J., Holladay, J.E., Johnson, D., White, J.F., 2007. Top value-added chemicals from biomass:Volume II-Results of screening for potential candidates from biorefinery lignin. Washington:Pacific Northwest National Laboratory Richland, 15.
    [4]

    Chakar, F.S., Ragauskas, A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20, 131-141.
    [5]

    Custodis, V.B.F., Bährle, C., Vogel, F., van Bokhoven, J.A., 2015. Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. J. Anal. Appl. Pyrolysis 115, 214-223.
    [6]

    Deepa, A.K., Dhepe, P.L., 2014. Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv. 4, 12625.
    [7]

    Dorrestijn, E., Laarhoven, L.J.J., Arends, I.W.C.E., Mulder, P, 2000. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153-192.
    [8]

    Effendi, A., Gerhauser, H., Bridgwater, A.V., 2008. Production of renewable phenolic resins by thermochemical conversion of biomass:a review. Renew. Sustain. Energy Rev. 12, 2092-2116.
    [9]

    Feng, J.F., Hse, C., Yang, Z.Z., Wang, K., Jiang, J.C., Xu, J.M., 2017. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresour. Technol. 244, 496-508.
    [10]

    Hepditch, M.M., Thring, R.W., 2000. Degradation of solvolysis lignin using Lewis acid catalysts. Can. J. Chem. Eng. 78, 226-231.
    [11]

    Huang, C.X., Su, Y., Shi, J.H., Yuan, C., Zhai, S.C., Yong, Q., 2019. Revealing the effects of centuries of ageing on the chemical structural features of lignin in archaeological fir woods. New J. Chem. 43, 3520-3528.
    [12]

    Huang, Y.B., Fu, Y., 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 15, 1095.
    [13]

    Jiang, G.Z., Nowakowski, D.J., Bridgwater, A.V., 2010. A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta 498, 61-66.
    [14]

    Jiang, Z.C., He, T., Li, J.M., Hu, C.W., 2014. Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chem. 16, 4257-4265.
    [15]

    Kim, H., Ralph, J., 2010. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org. Biomol. Chem. 8, 576-591.
    [16]

    Kim, J.S., 2015. Production, separation and applications of phenolic-rich bio-oil - A review. Bioresour. Technol. 178, 90-98.
    [17]

    Kleinert, M., Barth, T., 2008. Towards a lignincellulosic biorefinery:direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels 22, 1371-1379.
    [18]

    Ma, Y., Tan, W.H., Wang, K., Wang, J.X., Jiang, J.C., Xu, J.M., 2017. An insight into the selective conversion of bamboo biomass to ethyl glycosides. ACS Sustainable Chem. Eng. 5, 5880-5886.
    [19]

    Ma, Z.Q., Custodis, V., van Bokhoven, J.A., 2014. Selective deoxygenation of lignin during catalytic fast pyrolysis. Catal. Sci. Technol. 4, 766.
    [20]

    Mansfield, S.D., Kim, H., Lu, F.C., Ralph, J., 2012. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7, 1579-1589.
    [21]

    Op de Beeck, B., Dusselier, M., Geboers, J., Holsbeek, J., Morré, E., Oswald, S., Giebeler, L., Sels, B.F., 2015. Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ. Sci. 8, 230-240.
    [22]

    Ouyang, X.P., Lin, Z.X., Deng, Y.H., Yang, D.J., Qiu, X.Q., 2010. Oxidative degradation of soda lignin assisted by microwave irradiation. Chin. J. Chem. Eng. 18, 695-702.
    [23]

    Pandey, M.P., Kim, C.S., 2011. Lignin depolymerization and conversion:a review of thermochemical methods. Chem. Eng. Technol. 34, 29-41.[LinkOut]
    [24]

    Parsell, T.H., Owen, B.C., Klein, I., Jarrell, T.M., Marcum, C.L., Haupert, L.J., Amundson, L.M., Kenttämaa, H.I., Ribeiro, F., Miller, J.T., Abu-Omar, M.M., 2013. Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem. Sci. 4, 806-813.
    [25]

    Pinkert, A., Goeke, D.F., Marsh, K.N., Pang, S.S., 2011. Extracting wood lignin without dissolving or degrading cellulose:investigations on the use of food additive-derived ionic liquids. Green Chem. 13, 3124.
    [26]

    Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., 2014. Lignin valorization:improving lignin processing in the biorefinery. Science 344, 1246843.
    [27]

    Ralph, J., Lundquist, K., Brunow, G., Lu, F.C., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W., 2004. Lignins:Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3, 29-60.
    [28]

    Sahu, R., Dhepe, P.L., 2012. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem 5, 751-761.
    [29]

    Sales, F.G., Maranhão, L.C.A., Filho, N.M.L., Abreu, C.A.M., 2007. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem. Eng. Sci. 62, 5386-5391.
    [30]

    Singh, R., Prakash, A., Dhiman, S.K., Balagurumurthy, B., Arora, A.K., Puri, S.K., Bhaskar, T., 2014. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers. Bioresour. Technol. 165, 319-322.
    [31]

    Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P., 2010. Feedstocks for lignocellulosic biofuels. Science 329, 790-792.
    [32]

    Stanzione, J.F.III, Sadler, J.M., La Scala, J.J., Wool, R.P., 2012. Lignin model compounds as bio-based reactive diluents for liquid molding resins. ChemSusChem 5, 1291-1297.
    [33]

    Stärk, K., Taccardi, N., Bösmann, A., Wasserscheid, P., 2010. Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3, 719-723.
    [34]

    Tathod, A.P., Dhepe, P.L., 2015. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts. Bioresour. Technol. 178, 36-44.
    [35]

    Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R., 2014. Progress in green polymer composites from lignin for multifunctional applications:a review. ACS Sustainable Chem. Eng. 2, 1072-1092.
    [36]

    Thomas, V.A., Donohoe, B.S., Li, M., Pu, Y.Q., Ragauskas, A.J., Kumar, R., Nguyen, T.Y., Cai, C.M., Wyman, C.E., 2017. Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnol. Biofuels 10, 252.
    [37]

    Tymchyshyn, M., Xu, C.C., 2010. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresour. Technol. 101, 2483-2490.
    [38]

    Wang, H.M., Wang, B., Sun, D., Shi, Q., Zheng, L., Wang, S.F., Liu, S.J., Xia, R.R., Sun, R.C., 2019. Unraveling the fate of lignin from Eucalyptus and poplar during integrated delignification and bleaching. ChemSusChem 12, 1059-1068.
    [39]

    Xu, J.M., Xie, X.F., Wang, J.X., Jiang, J.C., 2016. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem. 18, 3124-3138.
    [40]

    Xu, Y., Hu, L.B., Huang, H.T., Tong, D.M., Hu, C.W, 2012. Simultaneous separation and selective conversion of hemicellulose in Pubescen in water-cyclohexane solvent. Carbohydr. Polym. 88, 1342-1347.
    [41]

    Ye, Y.Y., Fan, J., Chang, J., 2012. Effect of reaction conditions on hydrothermal degradation of cornstalk lignin. J. Anal. Appl. Pyrolysis 94, 190-195.
    [42]

    Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C., 2011. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by Quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604-10614.
    [43]

    Zhang, B., Huang, H.J., Ramaswamy, S., 2008. Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol. 147, 119-131.
    [44]

    Zhang, J.G., Asakura, H., van Rijn, J., Yang, J., Duchesne, P., Zhang, B., Chen, X., Zhang, P., Saeys, M., Yan, N., 2014. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem. 16, 2432-2437.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(50) PDF downloads(5) Cited by()

Related
Proportional views

Liquefaction of Bamboo Biomass and the Production of Three Fractions Containing Aromatic Compounds

    Corresponding author: Weihong Tan, e-mail addresses:weihongtan@hotmail.com
    Corresponding author: Junming Xu, e-mail addresses:lang811023@163.com
  • a Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry; Key and Open Lab. of Forest Chemical Engineering, SFA; National Engineering Laboratory for Chemical Utilization of Biomass; Key Laboratory of Biomass Energy and Materials of Jiangsu Province, Nanjing 210042, China;
  • b Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV 26506, USA;
  • c Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
Fund Project:  We gratefully acknowledge the financial supports of this study by State Key Program of National Natural Science of China (No. 31530010, No. 31600590). Yan Ma (No. 201603270034) would also like to appreciate the fellowship from China Scholarship Council (CSC) to support her study at West Virginia University.

Abstract: Depolymerization of lignin to produce value-added aromatic monomers has attracted increasing attention since these monomers can be used as phenol replacement in production of phenolic resins. Here a one-pot depolymerization of bamboo lignin was investigated to obtain aromatic platforms with low molecular weight using acidic catalyst and ethanol. Three fractions (1#, 2#, and 3#) containing different molecular weight distributions of aromatic compounds could be efficiently extracted using water-organic solvent system via a stepwise fractionation process by gradual removal of solvent. The fractions distribution was found to be primarily dependent on the reaction temperature and time. When the temperature was increased from 160 ℃ to 200 ℃, the yield of fractions containing aromatic products increased significantly from 19.1 wt% to 27 wt%, the same change trend was found by changing the time, and the yield of aromatic products increased from 22.4% to 26.7% with an increase of time from 10 min to 30 min. The bioproducts were characterized by using gas chromatography/mass spectrometry (GC-MS), gel permeation chromatography (GPC) and two-dimensional heteronuclear single-quantum coherence (2D HSQC NMR). As evidenced by GC-MS spectra, the three fractions were mainly comprised of phenolic derivatives, and the relative contents of phenolic compounds took up about 80% of the total area of each fraction. With the similar physiochemical properties of the fractions, aromatic platforms could provide a new paradigm of bamboo lignin utilization for renewable energy and value-added biochemicals.

Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return