Volume 5 Issue 2
May  2020
Turn off MathJax
Article Contents
Yan Ma, Weihong Tan, Jingxin Wang, Junming Xu, Kui Wang, Jianchun Jiang. Liquefaction of Bamboo Biomass and the Production of Three Fractions Containing Aromatic Compounds[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 114-123. doi: 10.1016/j.jobab.2020.04.005
Citation: Yan Ma, Weihong Tan, Jingxin Wang, Junming Xu, Kui Wang, Jianchun Jiang. Liquefaction of Bamboo Biomass and the Production of Three Fractions Containing Aromatic Compounds[J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 114-123. doi: 10.1016/j.jobab.2020.04.005

Liquefaction of Bamboo Biomass and the Production of Three Fractions Containing Aromatic Compounds

doi: 10.1016/j.jobab.2020.04.005
More Information
  • Corresponding author: Weihong Tan, E-mail addresses:weihongtan@hotmail.com; Junming Xu, E-mail addresses:lang811023@163.com
  • Received Date: 2019-11-21
  • Accepted Date: 2020-01-10
  • Publish Date: 2020-05-01
  • Depolymerization of lignin to produce value-added aromatic monomers has attracted increasing attention since these monomers can be used as phenol replacement in production of phenolic resins. Here a one-pot depolymerization of bamboo lignin was investigated to obtain aromatic platforms with low molecular weight using acidic catalyst and ethanol. Three fractions (1#, 2#, and 3#) containing different molecular weight distributions of aromatic compounds could be efficiently extracted using water-organic solvent system via a stepwise fractionation process by gradual removal of solvent. The fractions distribution was found to be primarily dependent on the reaction temperature and time. When the temperature was increased from 160 ℃ to 200 ℃, the yield of fractions containing aromatic products increased significantly from 19.1 wt% to 27 wt%, the same change trend was found by changing the time, and the yield of aromatic products increased from 22.4% to 26.7% with an increase of time from 10 min to 30 min. The bioproducts were characterized by using gas chromatography/mass spectrometry (GC-MS), gel permeation chromatography (GPC) and two-dimensional heteronuclear single-quantum coherence (2D HSQC NMR). As evidenced by GC-MS spectra, the three fractions were mainly comprised of phenolic derivatives, and the relative contents of phenolic compounds took up about 80% of the total area of each fraction. With the similar physiochemical properties of the fractions, aromatic platforms could provide a new paradigm of bamboo lignin utilization for renewable energy and value-added biochemicals.

     

  • loading
  • Beauchet, R., Monteil-Rivera, F., Lavoie, J.M., 2012. Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour. Technol. 121, 328-334. doi: 10.1016/j.biortech.2012.06.061
    Binder, J.B., Gray, M.J., White, J.F., Zhang, Z.C., Holladay, J.E., 2009. Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33, 1122-1130. doi: 10.1016/j.biombioe.2009.03.006
    Bozell, J.J., Holladay, J.E., Johnson, D., White, J.F., 2007. Top value-added chemicals from biomass:Volume Ⅱ-Results of screening for potential candidates from biorefinery lignin. Washington:Pacific Northwest National Laboratory Richland, 15. http://www.osti.gov/servlets/purl/921839/
    Chakar, F.S., Ragauskas, A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20, 131-141. doi: 10.1016/j.indcrop.2004.04.016
    Custodis, V.B.F., Bährle, C., Vogel, F., van Bokhoven, J.A., 2015. Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. J. Anal. Appl. Pyrolysis 115, 214-223. doi: 10.1016/j.jaap.2015.07.018
    Deepa, A.K., Dhepe, P.L., 2014. Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv. 4, 12625. doi: 10.1039/c3ra47818a
    Dorrestijn, E., Laarhoven, L.J.J., Arends, I.W.C.E., Mulder, P, 2000. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 54, 153-192. doi: 10.1016/S0165-2370(99)00082-0
    Effendi, A., Gerhauser, H., Bridgwater, A.V., 2008. Production of renewable phenolic resins by thermochemical conversion of biomass:a review. Renew. Sustain. Energy Rev. 12, 2092-2116. doi: 10.1016/j.rser.2007.04.008
    Feng, J.F., Hse, C., Yang, Z.Z., Wang, K., Jiang, J.C., Xu, J.M., 2017. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresour. Technol. 244, 496-508. doi: 10.1016/j.biortech.2017.07.182
    Hepditch, M.M., Thring, R.W., 2000. Degradation of solvolysis lignin using Lewis acid catalysts. Can. J. Chem. Eng. 78, 226-231. doi: 10.1002/cjce.5450780129
    Huang, C.X., Su, Y., Shi, J.H., Yuan, C., Zhai, S.C., Yong, Q., 2019. Revealing the effects of centuries of ageing on the chemical structural features of lignin in archaeological fir woods. New J. Chem. 43, 3520-3528. doi: 10.1039/C9NJ00026G
    Huang, Y.B., Fu, Y., 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 15, 1095. doi: 10.1039/c3gc40136g
    Jiang, G.Z., Nowakowski, D.J., Bridgwater, A.V., 2010. A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta 498, 61-66. doi: 10.1016/j.tca.2009.10.003
    Jiang, Z.C., He, T., Li, J.M., Hu, C.W., 2014. Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chem. 16, 4257-4265. doi: 10.1039/C4GC00620H
    Kim, H., Ralph, J., 2010. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org. Biomol. Chem. 8, 576-591. doi: 10.1039/B916070A
    Kim, J.S., 2015. Production, separation and applications of phenolic-rich bio-oil - A review. Bioresour. Technol. 178, 90-98. doi: 10.1016/j.biortech.2014.08.121
    Kleinert, M., Barth, T., 2008. Towards a lignincellulosic biorefinery:direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuels 22, 1371-1379. doi: 10.1021/ef700631w
    Ma, Y., Tan, W.H., Wang, K., Wang, J.X., Jiang, J.C., Xu, J.M., 2017. An insight into the selective conversion of bamboo biomass to ethyl glycosides. ACS Sustainable Chem. Eng. 5, 5880-5886. doi: 10.1021/acssuschemeng.7b00618
    Ma, Z.Q., Custodis, V., van Bokhoven, J.A., 2014. Selective deoxygenation of lignin during catalytic fast pyrolysis. Catal. Sci. Technol. 4, 766. doi: 10.1039/c3cy00704a
    Mansfield, S.D., Kim, H., Lu, F.C., Ralph, J., 2012. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7, 1579-1589. doi: 10.1038/nprot.2012.064
    Op de Beeck, B., Dusselier, M., Geboers, J., Holsbeek, J., Morré, E., Oswald, S., Giebeler, L., Sels, B.F., 2015. Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ. Sci. 8, 230-240. doi: 10.1039/C4EE01523A
    Ouyang, X.P., Lin, Z.X., Deng, Y.H., Yang, D.J., Qiu, X.Q., 2010. Oxidative degradation of soda lignin assisted by microwave irradiation. Chin. J. Chem. Eng. 18, 695-702. doi: 10.1016/S1004-9541(10)60277-7
    Pandey, M.P., Kim, C.S., 2011. Lignin depolymerization and conversion:a review of thermochemical methods. Chem. Eng. Technol. 34, 29-41.[LinkOut] doi: 10.1002/ceat.201000270
    Parsell, T.H., Owen, B.C., Klein, I., Jarrell, T.M., Marcum, C.L., Haupert, L.J., Amundson, L.M., Kenttämaa, H.I., Ribeiro, F., Miller, J.T., Abu-Omar, M.M., 2013. Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem. Sci. 4, 806-813. doi: 10.1039/C2SC21657D
    Pinkert, A., Goeke, D.F., Marsh, K.N., Pang, S.S., 2011. Extracting wood lignin without dissolving or degrading cellulose:investigations on the use of food additive-derived ionic liquids. Green Chem. 13, 3124. doi: 10.1039/c1gc15671c
    Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., 2014. Lignin valorization:improving lignin processing in the biorefinery. Science 344, 1246843. doi: 10.1126/science.1246843
    Ralph, J., Lundquist, K., Brunow, G., Lu, F.C., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W., 2004. Lignins:Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3, 29-60. doi: 10.1023/B:PHYT.0000047809.65444.a4
    Sahu, R., Dhepe, P.L., 2012. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem 5, 751-761. doi: 10.1002/cssc.201100448
    Sales, F.G., Maranhão, L.C.A., Filho, N.M.L., Abreu, C.A.M., 2007. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem. Eng. Sci. 62, 5386-5391. doi: 10.1016/j.ces.2007.02.018
    Singh, R., Prakash, A., Dhiman, S.K., Balagurumurthy, B., Arora, A.K., Puri, S.K., Bhaskar, T., 2014. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers. Bioresour. Technol. 165, 319-322. doi: 10.1016/j.biortech.2014.02.076
    Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P., 2010. Feedstocks for lignocellulosic biofuels. Science 329, 790-792. doi: 10.1126/science.1189268
    Stanzione, J.F.Ⅲ, Sadler, J.M., La Scala, J.J., Wool, R.P., 2012. Lignin model compounds as bio-based reactive diluents for liquid molding resins. ChemSusChem 5, 1291-1297. doi: 10.1002/cssc.201100687
    Stärk, K., Taccardi, N., Bösmann, A., Wasserscheid, P., 2010. Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3, 719-723. doi: 10.1002/cssc.200900242
    Tathod, A.P., Dhepe, P.L., 2015. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts. Bioresour. Technol. 178, 36-44. doi: 10.1016/j.biortech.2014.10.036
    Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R., 2014. Progress in green polymer composites from lignin for multifunctional applications:a review. ACS Sustainable Chem. Eng. 2, 1072-1092. doi: 10.1021/sc500087z
    Thomas, V.A., Donohoe, B.S., Li, M., Pu, Y.Q., Ragauskas, A.J., Kumar, R., Nguyen, T.Y., Cai, C.M., Wyman, C.E., 2017. Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnol. Biofuels 10, 252. doi: 10.1186/s13068-017-0937-3
    Tymchyshyn, M., Xu, C.C., 2010. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresour. Technol. 101, 2483-2490. doi: 10.1016/j.biortech.2009.11.091
    Wang, H.M., Wang, B., Sun, D., Shi, Q., Zheng, L., Wang, S.F., Liu, S.J., Xia, R.R., Sun, R.C., 2019. Unraveling the fate of lignin from Eucalyptus and poplar during integrated delignification and bleaching. ChemSusChem 12, 1059-1068. doi: 10.1002/cssc.201802592
    Xu, J.M., Xie, X.F., Wang, J.X., Jiang, J.C., 2016. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem. 18, 3124-3138. doi: 10.1039/C5GC03070F
    Xu, Y., Hu, L.B., Huang, H.T., Tong, D.M., Hu, C.W, 2012. Simultaneous separation and selective conversion of hemicellulose in Pubescen in water-cyclohexane solvent. Carbohydr. Polym. 88, 1342-1347. doi: 10.1016/j.carbpol.2012.02.012
    Ye, Y.Y., Fan, J., Chang, J., 2012. Effect of reaction conditions on hydrothermal degradation of cornstalk lignin. J. Anal. Appl. Pyrolysis 94, 190-195. doi: 10.1016/j.jaap.2011.12.005
    Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C., 2011. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by Quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604-10614. doi: 10.1021/jf2031549
    Zhang, B., Huang, H.J., Ramaswamy, S., 2008. Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol. 147, 119-131. doi: 10.1007/s12010-007-8070-6
    Zhang, J.G., Asakura, H., van Rijn, J., Yang, J., Duchesne, P., Zhang, B., Chen, X., Zhang, P., Saeys, M., Yan, N., 2014. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem. 16, 2432-2437. doi: 10.1039/C3GC42589D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (663) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return