Volume 5 Issue 3
Aug.  2020
Turn off MathJax
Article Contents
Bernard A. Goodman. Utilization of waste straw and husks from rice production: A review[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 143-162. doi: 10.1016/j.jobab.2020.07.001
Citation: Bernard A. Goodman. Utilization of waste straw and husks from rice production: A review[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 143-162. doi: 10.1016/j.jobab.2020.07.001

Utilization of waste straw and husks from rice production: A review

doi: 10.1016/j.jobab.2020.07.001
More Information
  • Corresponding author: Bernard A. Goodman, E-mail address: bernard_a_goodman@yahoo.com
  • Received Date: 2020-03-15
  • Accepted Date: 2020-04-29
  • Publish Date: 2020-08-01
  • As a staple food for much of the world, rice production is widespread. However, it also results in the generation of large quantities of non-food biomass, primarily in the form of straw and husks. Although they have been little utilized and much rice straw is still simply burned, these lignocellulosic materials potentially have considerable values. This review considers the composition of rice straw and husks, the various processes involved in the production of valuable products, and a range of uses to which they can be put. These include agricultural amendments, energy production, environmental adsorbents, construction materials, and various speciality products.

     

  • loading
  • Abraham, A., Mathew, A.K., Sindhu, R., Pandey, A., Binod, P., 2016. Potential of rice straw for bio-refining:an overview. Bioresour. Technol. 215, 29-36. doi: 10.1016/j.biortech.2016.04.011
    Ahmaruzzaman, M., Gupta, V.K., 2011. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50, 13589-13613. doi: 10.1021/ie201477c
    Ajmal, M., Ali Khan Rao, R., Anwar, S., Ahmad, J., Ahmad, R., 2003. Adsorption studies on rice husk:removal and recovery of Cd(Ⅱ) from wastewater. Bioresour. Technol. 86, 147-149. doi: 10.1016/S0960-8524(02)00159-1
    Akhtar, N., Goyal, D., Goyal, A., 2017. Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Convers. Manag. 141, 133-144 doi: 10.1016/j.enconman.2016.06.081
    Alalwan, H.A., Alminshid, A., Abbas, M., Naji, Z.A., 2018. Adsorption of thallium Ion (Tl+ 3) from aqueous solutions by rice husk in a fixed-bed column:Experiment and prediction of breakthrough curves. Environmental Technology and Innovation 12, 1-13. doi: 10.1016/j.eti.2018.07.001
    Allam, M., Garas, G., 2010. Recycled chopped rice straw-cement bricks: an analytical and economical study. Waste Management and the Environment V July 12-14, 2010. Tallinn, Estonia. Southampton, UK: WIT Press.
    Al-Sultani, K.F., Al-Seroury, F.A., 2012. Characterization the removal of phenol from aqueous solution in fluidized bed column by rice husk adsorbent. Research Journal of Recent Sciences, 1, 145-151. http://www.researchgate.net/publication/265033383_Characterization_the_Removal_of_Phenol_from_Aqueous_Solution_in_Fluidized_Bed_Column_by_Rice_Husk_Adsorbent
    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2014a. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon. Bioresour. Technol. 170, 132-137. doi: 10.1016/j.biortech.2014.07.073
    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2014b. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128, 162-169. doi: 10.1016/j.fuel.2014.02.074
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review. Bioresour. Technol. 101, 4851-4861. doi: 10.1016/j.biortech.2009.11.093
    Amin, M.N., Mustafa, A.I., Khalil, M.I., Rahman, M., Nahid, I., 2012. Adsorption of phenol onto rice straw biowaste for water purification. Clean Technol. Environ. Policy 14, 837-844. doi: 10.1007/s10098-012-0449-6
    Amiri, H., Karimi, K., Zilouei, H., 2014. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour. Technol. 152, 450-456. doi: 10.1016/j.biortech.2013.11.038
    An, D.M., Guo, Y.P., Zou, B., Zhu, Y.C., Wang, Z.C., 2011. A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35, 1227-1234. doi: 10.1016/j.biombioe.2010.12.014
    Ang, T.N., Ngoh, G.C., Chua, A.S., 2013. Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. Bioresour. Technol. 135, 116-119. doi: 10.1016/j.biortech.2012.09.045
    Arai, H., Hosen, Y., van Nguyen Pham Hong, Thi, N.T., Huu, C.N., Inubushi, K., 2015. Greenhouse gas emissions from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the Mekong Delta. Soil Sci. Plant Nutr. 61, 719-735. doi: 10.1080/00380768.2015.1041862
    Arjmandi, R., Hassan, A., Majeed, K., Zakaria, Z., 2015. Rice husk filled polymer composites. Int. J. Polym. Sci. 2015, 1-32. https://www.hindawi.com/journals/ijps/aa/501471/cta/
    Aski, A., Borghei, A., Zenouzi, A., Ashrafi, N., Taherzadeh, M., 2019. Effect of steam explosion on the structural modification of rice straw for enhanced biodegradation and biogas production. BioResources 14, 464-485. http://www.diva-portal.org/smash/record.jsf?pid=diva2:1340803
    Azadi, F., Saadat, S., Karimi-Jashni, A., 2018. Experimental investigation and modeling of nickel removal from wastewater using modified rice husk in continuous reactor by response surface methodology. Iran. J. Sci. Technol. Trans. Civ. Eng. 42, 315-323. doi: 10.1007/s40996-017-0090-z
    Bajaj, P., Mahajan, R., 2019. Cellulase and xylanase synergism in industrial biotechnology. Appl. Microbiol. Biotechnol. 103, 8711-8724. doi: 10.1007/s00253-019-10146-0
    Balat, M., 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway:a review. Energy Convers. Manag. 52, 858-875. doi: 10.1016/j.enconman.2010.08.013
    Basta, A.H., El-Saied, H., El-Hadi, O., El-Dewiny, C., 2013. Evaluation of rice straw-based hydrogels for purification of wastewater. Polymer-Plastics Technology and Engineering 52, 1074-1080. doi: 10.1080/03602559.2013.806548
    Basta, A.H., El-Saied, H., Lofty, V., 2014. Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites. RSC Advances 4, 21794. doi: 10.1039/C4RA00858H
    Belal, E.B., 2013. Bioethanol production from rice straw residues. Braz. J. Microbiol. 44, 225-234. doi: 10.1590/S1517-83822013000100033
    Bevilaqua, D.B., Montipó, S., Pedroso, G.B., Martins, A.F., 2015. Sustainable succinic acid production from rice husks. Sustain. Chem. Pharm. 1, 9-13. doi: 10.1016/j.scp.2015.09.001
    Bevilaqua, D.B., Rambo, M.K.D., Rizzetti, T.M., Cardoso, A.L., Martins, A.F., 2013. Cleaner production:levulinic acid from rice husks. J. Clean. Prod. 47, 96-101. doi: 10.1016/j.jclepro.2013.01.035
    Bilo, F., Pandini, S., Sartore, L., Depero, L.E., Gargiulo, G., Bonassi, A., Federici, S., Bontempi, E., 2018. A sustainable bioplastic obtained from rice straw. J. Clean. Prod. 200, 357-368. doi: 10.1016/j.jclepro.2018.07.252
    Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K., Pandey, A., 2010. Bioethanol production from rice straw:an overview. Bioresour. Technol. 101, 4767-4774. doi: 10.1016/j.biortech.2009.10.079
    Bishnoi, N.R., Bajaj, M., Sharma, N., Gupta, A., 2004. Adsorption of Cr(Ⅵ) on activated rice husk carbon and activated alumina. Bioresour. Technol. 91, 305-307. doi: 10.1016/S0960-8524(03)00204-9
    Biswas, A., Saha, B.C., Lawton, J.W., Shogren, R.L., Willett, J.L., 2006. Process for obtaining cellulose acetate from agricultural by-products. Carbohydr. Polym. 64, 134-137. doi: 10.1016/j.carbpol.2005.11.002
    Bodie, A.R., Micciche, A.C., Atungulu, G.G., Rothrock, M.J.Jr, Ricke, S.C., 2019. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front. Sustain. Food Syst. 3, 47. doi: 10.3389/fsufs.2019.00047
    Buasri, A., Chaiyut, N., Tapang, K., Jaroensin, S., Panphrom, S., 2012. Removal of Cu2+ from aqueous solution by biosorption on rice straw-An agricultural waste biomass. Int. J. Environ. Sci. Dev. 3, 10-14. http://www.researchgate.net/publication/271253002_Removal_of_Cu2_from_Aqueous_Solution_by_Biosorption_on_Rice_Straw_-_an_Agricultural_Waste_BiomassRemoval_of_Cu2_from_Aqueous_Solution_by_Biosorption_on_Rice_Straw_-_an_Agricultural_Waste_Biomass
    Cao, W., Dang, Z., Zhou, X.Q., Yi, X.Y., Wu, P.X., Zhu, N.W., Lu, G.N., 2011. Removal of sulphate from aqueous solution using modified rice straw:Preparation, characterization and adsorption performance. Carbohydr. Polym. 85, 571-577. doi: 10.1016/j.carbpol.2011.03.016
    Cao, W., Wang, Z.Q., Zeng, Q.L., Shen, C.H., 2016. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. Appl. Surf. Sci. 389, 404-410. doi: 10.1016/j.apsusc.2016.07.095
    Chakraborty, S., Chowdhury, S., Saha, P.D., 2013. Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technol. Environ. Policy 15, 255-264. doi: 10.1007/s10098-012-0503-4
    Chand, R., Watari, T., Inoue, K., Kawakita, H., Luitel, H.N., Parajuli, D., Torikai, T., Yada, M., 2009. Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner. Eng. 22, 1277-1282. doi: 10.1016/j.mineng.2009.07.007
    Chandrasekhar, S., Pramada, P.N., 2006. Rice husk ash as an adsorbent for methylene blue:effect of ashing temperature. Adsorption 12, 27-43. doi: 10.1007/s10450-006-0136-1
    Chang, K.L., Chen, C.C., Lin, J.H., Hsien, J.F., Wang, Y., Zhao, F., Shih, Y.H., Xing, Z.J., Chen, S.T., 2014. Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution. New Carbon Mater. 29, 47-54. doi: 10.1016/S1872-5805(14)60125-6
    Chang, K.L., Hsieh, J.F., Ou, B.M., Chang, M.H., Hseih, W.Y., Lin, J.H., Huang, P.J., Wong, K.F., Chen, S.T., 2012. Adsorption studies on the removal of an endocrine-disrupting compound (bisphenol A) using activated carbon from rice straw agricultural waste. Sep. Sci. Technol. 47, 1514-1521. doi: 10.1080/01496395.2011.647212
    Chen, K.F., Lyu, H., Hao, S.L., Luo, G., Zhang, S.C., Chen, J.M., 2015. Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. Bioresour. Technol. 182, 160-168. doi: 10.1016/j.biortech.2015.01.124
    Chen, K.T., Wang, J.X., Dai, Y.M., Wang, P.H., Liou, C.Y., Nien, C.W., Wu, J.S., Chen, C.C., 2013a. Rice husk ash as a catalyst precursor for biodiesel production. J. Taiwan Inst. Chem. Eng. 44, 622-629. doi: 10.1016/j.jtice.2013.01.006
    Chen, W.H., Chen, Y.C., Lin, J.G., 2013b. Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour. Technol. 135, 262-268. doi: 10.1016/j.biortech.2012.10.140
    Chen, W.H., Xu, Y.Y., Hwang, W.S., Wang, J.B., 2011a. Pretreatment of rice straw using an extrusion/extraction process at bench-scale for producing cellulosic ethanol. Bioresour. Technol. 102, 10451-10458. doi: 10.1016/j.biortech.2011.08.118
    Chen, X.H., Zhang, Y.L., Gu, Y., Liu, Z.G., Shen, Z., Chu, H.Q., Zhou, X.F., 2014. Enhancing methane production from rice straw by extrusion pretreatment. Appl. Energy 122, 34-41. doi: 10.1016/j.apenergy.2014.01.076
    Chen, X.L., Yu, J., Zhang, Z.B., Lu, C.H., 2011b. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 85, 245-250. doi: 10.1016/j.carbpol.2011.02.022
    Chen, Y., Zhu, Y.C., Wang, Z.C., Li, Y., Wang, L.L., Ding, L.L., Gao, X.Y., Ma, Y.J., Guo, Y.P., 2011c. Application studies of activated carbon derived from rice husks produced by chemical-thermal process:a review. Adv. Colloid Interface Sci. 163, 39-52. doi: 10.1016/j.cis.2011.01.006
    Cheng, M., Zeng, G.M., Huang, D.L., Lai, C., Wei, Z., Li, N.J., Xu, P., Zhang, C., Zhu, Y., He, X.X., 2015. Combined biological removal of methylene blue from aqueous solutions using rice straw and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 99, 5247-5256. doi: 10.1007/s00253-014-6344-9
    Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak, A., Cao, H.T., 2007. Sulfate resistance of blended cements containing fly ash and rice husk ash. Constr. Build. Mater. 21, 1356-1361. doi: 10.1016/j.conbuildmat.2005.10.005
    Chindaprasirt, P., Rukzon, S., Sirivivatnanon, V., 2008. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr. Build. Mater. 22, 932-938. doi: 10.1016/j.conbuildmat.2006.12.001
    Chowdhury, A.K., Sarkar, A.D., Bandyopadhyay, A., 2009. Rice husk ash as a low cost adsorbent for the removal of methylene blue and Congo red in aqueous phases. CLEAN-Soil Air Water 37, 581-591. doi: 10.1002/clen.200900051
    Chowdhury, S., Mishra, R., Saha, P., Kushwaha, P., 2011. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265, 159-168. doi: 10.1016/j.desal.2010.07.047
    Chowdhury, Z.Z., Abd Hamid, S.B., Das, R., Hasan, M.R., Zain, S.M., Khalid, K., Uddin, M.N., 2013. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 8, 6523-6555. https://bioresources.cnr.ncsu.edu/BioRes_08/BioRes_08_4_6523_Review_Chowdhury_ADHZKN_Ligno_Biomass_C_Liquid_Sorption_4292.pdf
    Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Thomas Choong, S.Y., 2005. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal:an overview. Desalination 175, 305-316. doi: 10.1016/j.desal.2004.10.014
    Conrad, R., 2007. Microbial ecology of methanogens and methanotrophs. Advances in Agronomy. 96, 1-63. doi: 10.1016/S0065-2113(07)96005-8
    Cui, H.J., Wang, M.K., Fu, M.L., Ci, E., 2011. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soils Sediments 11, 1135-1141. doi: 10.1007/s11368-011-0405-9
    Cui, S.Q., Ma, X.B., Wang, X.H., Zhang, T.A., Hu, J.J., Tsang, Y.F., Gao, M.T., 2019. Phenolic acids derived from rice straw generate peroxides which reduce the viability of Staphylococcus aureus cells in biofilm. Ind. Crop. Prod. 140, 111561. doi: 10.1016/j.indcrop.2019.111561
    Daffalla, S.B., Mukhtar, H., Shaharun, M.S., 2010. Characterization of adsorbent developed from rice husk:effect of surface functional group on phenol adsorption. J. Appl. Sci. 10, 1060-1067. doi: 10.3923/jas.2010.1060.1067
    Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., Area, M.C., 2013. Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Ind. Crop. Prod. 42, 363-368. doi: 10.1016/j.indcrop.2012.06.019
    Dai, L.C., Wu, B., Tan, F.R., He, M.X., Wang, W.G., Qin, H., Tang, X.Y., Zhu, Q.L., Pan, K., Hu, Q.C., 2014. Engineered hydrochar composites for phosphorus removal/recovery:Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresour. Technol. 161, 327-332. doi: 10.1016/j.biortech.2014.03.086
    Daifullah, A., Yakout, S., Elreefy, S., 2007. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J. Hazard. Mater. 147, 633-643. doi: 10.1016/j.jhazmat.2007.01.062
    de Albuquerque, T.L., da Silva, I.J.Jr, de Macedo, G.R., Rocha, M.V.P., 2014. Biotechnological production of xylitol from lignocellulosic wastes:a review. Process. Biochem. 49, 1779-1789. doi: 10.1016/j.procbio.2014.07.010
    Defonseka, C., 2018. Rice hulls pellets as alternate solid fuel for energy generation. Polym. From Renew. Resour. 9, 133-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a153f5c813b2df093edcd2ed547b6f87
    Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K., 2011. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crop. Prod. 34, 1160-1167. doi: 10.1016/j.indcrop.2011.04.001
    Dilamian, M., Noroozi, B., 2019. A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose 26, 5831-5849. doi: 10.1007/s10570-019-02469-y
    Domínguez-Escribá, L., Porcar, M., 2010. Rice straw management:the big waste. Biofuels, Bioprod. Bioref. 4, 154-159. doi: 10.1002/bbb.196
    Du, B.Y., Chen, C.Z., Sun, Y., Liu, B.Y., Yang, Y.Y., Gao, S., Zhang, Z.S., Wang, X., Zhou, J.H., 2020. Ni-Mg-Al catalysts effectively promote depolymerization of rice husk lignin to bio-oil. Catal. Lett. 150, 1591-1604. doi: 10.1007/s10562-019-02956-8
    Eladel, H., Battah, M., Dawa, A.D., Abd-Elhay, R., Anees, D., 2019. Effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J. Appl. Phycol. 31, 3557-3563. doi: 10.1007/s10811-019-01766-0
    El-Bindary, A.A., El-Sonbati, A.Z., Al-Sarawy, A.A., Mohamed, K.S., Farid, M.A., 2014. Adsorption and thermodynamic studies of hazardous azocoumarin dye from an aqueous solution onto low cost rice straw based carbons. J. Mol. Liq. 199, 71-78. doi: 10.1016/j.molliq.2014.08.010
    El-Bindary, A.A., El-Sonbati, A.Z., Al-Sarawy, A.A., Mohamed, K.S., Farid, M.A., 2015. Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent:Kinetic, equilibrium and thermodynamic studies. Spectrochimica Acta Part A:Mol. Biomol. Spectrosc. 136, 1842-1849. doi: 10.1016/j.saa.2014.10.094
    Elkady, H.L., Garas, G., Allam, M., 2011. Recycled chopped rice straw-cement bricks:mechanical, fire resistance and economical assessment. Australian Journal of Basic and Applied Sciences 5, 27-33. http://www.researchgate.net/publication/326678312_Recycled_Chopped_Rice_Straw-Cement_Bricks_Mechanical_Fire_Resistance_Economical_Assessment
    El-Sayed, S.A., Khass, T.M., 2013. Smoldering combustion of rice husk dusts on a hot surface. Combust. Explos. Shock. Waves 49, 159-166. doi: 10.1134/S0010508213020056
    Fang, Q.L., Li, T.T., Chen, Z.M., Lin, H.B., Wang, P., Liu, F., 2019. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces 11, 10672-10679. doi: 10.1021/acsami.9b00291
    Faruque, M.O., Uddin, M.J., 2012. Removal of arsenic from groundwater using burnt rice straw. Asian Transactions on Engineering 2, 103-129. https://www.researchgate.net/publication/301594281_Removal_of_arsenic_from_groundwater_using_burnt_rice_straw
    Fathy, N.A., El-Shafey, O.I., Khalil, L.B., 2013. Effectiveness of alkali-acid treatment in enhancement the adsorption capacity for rice straw:the removal of methylene blue dye. ISRN Phys. Chem. 2013, 1-15. http://www.oalib.com/paper/3089113
    Feng, Q.G., Lin, Q.Y., Gong, F.Z., Sugita, S., Shoya, M., 2004. Adsorption of lead and mercury by rice husk ash. J. Colloid Interface Sci. 278, 1-8. doi: 10.1016/j.jcis.2004.05.030
    Fierro, V., Muñiz, G., Basta, A.H., El-Saied, H., Celzard, A., 2010. Rice straw as precursor of activated carbons:Activation with ortho-phosphoric acid. J. Hazard. Mater. 181, 27-34. doi: 10.1016/j.jhazmat.2010.04.062
    Foo, K.Y., Hameed, B.H., 2009. Utilization of rice husk ash as novel adsorbent:a judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 152, 39-47. doi: 10.1016/j.cis.2009.09.005
    Funke, A., Ziegler, F., 2010. Hydrothermal carbonization of biomass:a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod. Bioref. 4, 160-177. doi: 10.1002/bbb.198
    Gall, D.L., Kontur, W.S., Lan, W., Kim, H., Li, Y.D., Ralph, J., Donohue, T.J., Noguera, D.R., 2017. In vitro enzymatic depolymerization of lignin with release of syringyl, guaiacyl, and tricin units. Appl. Environ. Microbiol. 84, e02076-17. doi: 10.1128/AEM.02076-17
    Gan, P.P., Li, S.F.Y., 2013. Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chem. Eng. J. 229, 351-363. doi: 10.1016/j.cej.2013.06.020
    Ganvir, V., Das, K., 2011. Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash. J. Hazard. Mater. 185, 1287-1294. doi: 10.1016/j.jhazmat.2010.10.044
    Gao, H., Liu, Y.G., Zeng, G.M., Xu, W.H., Li, T., Xia, W.B., 2008. Characterization of Cr(Ⅵ) removal from aqueous solutions by a surplus agricultural waste:rice straw. J. Hazard. Mater. 150, 446-452. doi: 10.1016/j.jhazmat.2007.04.126
    Gao, P., Liu, Z.H., Xue, G., Han, B., Zhou, M.H., 2011. Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresour. Technol. 102, 3645-3648. doi: 10.1016/j.biortech.2010.11.080
    Georgieva, V.G., Tavlieva, M.P., Genieva, S.D., Vlaev, L.T., 2015. Adsorption kinetics of Cr(Ⅵ) ions from aqueous solutions onto black rice husk ash. J. Mol. Liq. 208, 219-226. doi: 10.1016/j.molliq.2015.04.047
    Ghorbani, M., Asadi, H., Abrishamkesh, S., 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 7, 258-265. doi: 10.1016/j.iswcr.2019.05.005
    Gou, G.J., Wang, Q., Xie, W., Cao, J., Jiang, M., He, J., Zhou, Z.W., 2018. Assessment of instant catapult steam explosion treatment on rice straw for isolation of high quality cellulose. BioResources 13, 2328-2341. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_2328_Gou_Instant_Catapult_Steam_Explosion_Treatment
    Gu, Y., Zhang, Y.L., Zhou, X.F., 2015. Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresour. Technol. 196, 116-122. doi: 10.1016/j.biortech.2015.07.004
    Guirimand, G., Sasaki, K., Inokuma, K., Bamba, T., Hasunuma, T., Kondo, A., 2016. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Appl. Microbiol. Biotechnol. 100, 3477-3487. doi: 10.1007/s00253-015-7179-8
    Gunun, P., Wanapat, M., Anantasook, N., 2013. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian Australas. J. Anim. Sci. 26, 1689-1697. doi: 10.5713/ajas.2013.13190
    Gupta, V.K., Mittal, A., Jain, R., Mathur, M., Sikarwar, S., 2006. Adsorption of Safranin-T from wastewater using waste materials:activated carbon and activated rice husks. J. Colloid Interface Sci. 303, 80-86. doi: 10.1016/j.jcis.2006.07.036
    Guzmán A, Á., Delvasto A, S., Francisca Quereda V, M., Sánchez V, E., 2015a. Valorization of rice straw waste:production of porcelain tiles. Cerâmica 61, 442-449. doi: 10.1590/0366-69132015613601939
    Guzmán A, Á., Delvasto A, S., Sánchez V, E., 2015b. Valorization of rice straw waste:an alternative ceramic raw material. Cerâmica 61, 126-136. doi: 10.1590/0366-69132015613571888
    Habeeb, G.A., Mahmud, H.B., 2010. Study on properties of rice husk ash and its use as cement replacement material. Mat. Res. 13, 185-190. doi: 10.1590/S1516-14392010000200011
    Hameed, B.H., El-Khaiary, M.I., 2008. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J. Hazard. Mater. 153, 701-708. doi: 10.1016/j.jhazmat.2007.09.019
    Han, R.P., Ding, D.D., Xu, Y.F., Zou, W.H., Wang, Y.F., Li, Y.F., Zou, L.N., 2008. Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresour. Technol. 99, 2938-2946. doi: 10.1016/j.biortech.2007.06.027
    Han, X., Liang, C.F., Li, T.Q., Wang, K., Huang, H.G., Yang, X.E., 2013. Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. J. Zhejiang Univ. Sci. B 14, 640-649. doi: 10.1631/jzus.B1200353
    Hanafi, E., Khadrawy, H., Ahmed, W., Zaabal, M., 2012. Some observations on rice straw with emphasis on updates of its management. World Applied Sciences Journal 16, 354-361. http://www.cabdirect.org/abstracts/20123059077.html
    Heinze, T., El Seoud, O.A., Koschella, A., 2018. Principles of cellulose derivatization. Cellulose Derivatives. Cham:Springer International Publishing, 259-292.
    Hoang, A.T., Le, V.V., Al-Tawaha, A.R.M.S., Nguyen, D.N., Al-Tawaha, A.R.M.S., Noor, M.M., Pham, V.V., 2018. An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup. Petroleum Sci. Technol. 36, 361-370. doi: 10.1080/10916466.2018.1425722
    Hou, R.R., Shi, J., Ma, X.B., Wei, H.R., Hu, J.J., Tsang, Y.F., Gao, M.T., 2020. Effect of phenolic acids derived from rice straw on Botrytis cinerea and infection on tomato. Waste Biomass Valorization. DOI: 10.1007/s12649-020-00938-1.
    Hsu, N.H., Wang, S.L., Liao, Y.H., Huang, S.T., Tzou, Y.M., Huang, Y.M, 2009. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. J. Hazard. Mater. 171, 1066-1070. doi: 10.1016/j.jhazmat.2009.06.112
    Hu, G., Heitmann, J.A., Rojas, O.J., 2008a. Feedstock pretreatment strategies. BioResources 3, 270-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000001005945
    Hu, S., Xiang, J., Sun, L.S., Xu, M.H., Qiu, J.R., Fu, P., 2008b. Characterization of char from rapid pyrolysis of rice husk. Fuel Process. Technol. 89, 1096-1105. doi: 10.1016/j.fuproc.2008.05.001
    Hu, S.X., Gu, J., Jiang, F., Hsieh, Y, 2016. Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. ACS Sustainable Chemistry and Engineering 4, 728-737. doi: 10.1021/acssuschemeng.5b00600
    Huang, Y.F., Chiueh, P.T., Shih, C.H., Lo, S.L., Sun, L.P., Zhong, Y., Qiu, C.S., 2015. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84, 75-82. doi: 10.1016/j.energy.2015.02.026
    Hubadillah, S.K., Othman, M.H.D., Harun, Z., Ismail, A.F., Rahman, M.A., Jaafar, J., 2017. A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal. Ceram. Int. 43, 4716-4720. doi: 10.1016/j.ceramint.2016.12.122
    Huy, H.N.H., Khue, T.N.H., 2016. Lactic acid production from rice straw using plant-originated Lactobacillus rhamnosus PN04. Journal of Chemical and Pharmaceutical Research 8, 590-594. http://www.jocpr.com/articles/lactic-acid-production-from-rice-straw-using-plantoriginated-lactobacillus-rhamnosus-pn04.pdf
    Ioannidou, O., Zabaniotou, A., 2007. Agricultural residues as precursors for activated carbon production:a review. Renew. Sustain. Energy Rev. 11, 1966-2005. doi: 10.1016/j.rser.2006.03.013
    Islam, M.N., Ani, F.N, 2000. Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Bioresour. Technol. 73, 67-75. http://www.sciencedirect.com/science/article/pii/S0960852499000851
    Ismail, H., Shamsudin, R., Azmi, M., Hamid, A., 2016. Characteristics of β-wollastonite derived from rice straw ash and limestone. Journal of the Australian Ceramic Society 52, 163-174. https://austceram.com/wp-content/uploads/2016/06/20-JACS-52-2-Ismail-163-174.pdf
    Iyer, G., Chattoo, B.B., 2003. Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiol. Lett. 227, 121-126. doi: 10.1016/S0378-1097(03)00658-X
    Jeetah, P., Golaup, N.S., Buddynauth, K., 2015. Production of cardboard from waste rice husk. Journal of Environmental Chemical Engineering 3, 52-59. doi: 10.1016/j.jece.2014.11.013
    Jiang, D., Pan, M.Z., Cai, X., Zhao, Y.T., 2018. Flame retardancy of rice straw-polyethylene composites affected by in situ polymerization of ammonium polyphosphate/silica. Compos. Part A:Appl. Sci. Manuf. 109, 1-9. doi: 10.1016/j.compositesa.2018.02.023
    Jiang, T.Y., Jiang, J., Xu, R.K., Li, Z., 2012. Adsorption of Pb(Ⅱ) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89, 249-256. doi: 10.1016/j.chemosphere.2012.04.028
    Jiang, Y., Qian, H.Y., Huang, S., Zhang, X.Y., Zhang, W.J., 2019. Acclimation of methane emissions from rice paddy fields to straw addition. Science Advances 5, eaau9038. doi: 10.1126/sciadv.aau9038
    Jin, S.Y., Chen, H.Z., 2006. Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem. Eng. J. 30, 225-230. doi: 10.1016/j.bej.2006.05.002
    Johar, N., Ahmad, I., Dufresne, A., 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crop. Prod. 37, 93-99. doi: 10.1016/j.indcrop.2011.12.016
    Kadam, K.L., Forrest, L.H., Jacobson, W.A., 2000. Rice straw as a lignocellulosic resource:collection, processing, transportation, and environmental aspects. Biomass Bioenergy 18, 369-389. doi: 10.1016/S0961-9534(00)00005-2
    Kalderis, D., Kotti, M.S., Méndez, A., et al., ., 2014. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 5, 477-483. doi: 10.5194/se-5-477-2014
    Kamthan, R., Tiwari, I., 2017. Agricultural wastes-potential substrates for mushroom cultivation. Eur. J. Exp. Biol. 7, 31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=719e1825514e106148b0bbd47fe39c71
    Karagoz, S., Bhaskar, T., Muto, A., Sakata, Y., 2005. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84, 875-884. doi: 10.1016/j.fuel.2005.01.004
    Kermani, M., Pourmoghaddas, H., Bina, B., Khazaei, Z., 2006. Removal of phenol from aqueous solutions by rice husk ash and activated carbon. Pakistan Journal of Biological Sciences 9, 1905-1910. doi: 10.3923/pjbs.2006.1905.1910
    Khaleghian, H., Molaverdi, M., Karimi, K., 2017. Silica removal from rice straw to improve its hydrolysis and ethanol production. Ind. Eng. Chem. Res. 56, 9793-9798. doi: 10.1021/acs.iecr.7b02830
    Khalid, N., Ahmad, S., Toheed, A., Ahmed, J., 2000. Potential of rice husks for antimony removal. Appl. Radiat. Isot. 52, 31-38. doi: 10.1016/S0969-8043(99)00115-3
    Khan, M.N.N., Jamil, M., Karim, M., Zain, M., Kaish, A.B.M.A., 2015. Utilization of rice husk ash for sustainable construction:a review. Research Journal of Applied Sciences, Engineering and Technology 9, 1119-1127. doi: 10.19026/rjaset.9.2606
    Kim, I., Saif Ur Rehman, M., Han, J.I., 2014. Fermentable sugar recovery and adsorption potential of enzymatically hydrolyzed rice straw. J. Clean. Prod. 66, 555-561. doi: 10.1016/j.jclepro.2013.11.072
    Kim, J.W., Kim, K.S., Lee, J.S., Park, S.M., Cho, H.Y., Park, J.C., Kim, J.S., 2011. Two-stage pretreatment of rice straw using aqueous Ammonia and dilute acid. Bioresour. Technol. 102, 8992-8999. doi: 10.1016/j.biortech.2011.06.068
    Kim, S., Dale, B.E., 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26, 361-375. doi: 10.1016/j.biombioe.2003.08.002
    Kiyoshi, K., Furukawa, M., Seyama, T., Kadokura, T., Nakazato, A., Nakayama, S., 2015. Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum. Bioresour. Technol. 186, 325-328. doi: 10.1016/j.biortech.2015.03.061
    Korotkova, T., Ksandopulo, S., Donenko, A., Bushumov, S., Danilchenko, A., 2016. Physical properties and chemical composition of the rice husk and dust. Orient. J. Chem 32, 3213-3219. doi: 10.13005/ojc/320644
    Kratky, L., Jirout, T., 2011. Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 34, 391-399. doi: 10.1002/ceat.201000357
    Kumagai, S., Noguchi, Y., Kurimoto, Y., Takeda, K., 2007. Oil adsorbent produced by the carbonization of rice husks. Waste Manag. 27, 554-561. doi: 10.1016/j.wasman.2006.04.006
    Kuratani, K., Okuno, K., Iwaki, T., Kato, M., Takeichi, N., Miyuki, T., Awazu, T., Majima, M., Sakai, T., 2011. Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. J. Power Sources 196, 10788-10790. doi: 10.1016/j.jpowsour.2011.09.001
    Lakshmi, U.R., Srivastava, V.C., Mall, I.D., Lataye, D.H., 2009. Rice husk ash as an effective adsorbent:Evaluation of adsorptive characteristics for Indigo Carmine dye. J. Environ. Manag. 90, 710-720. doi: 10.1016/j.jenvman.2008.01.002
    Lam, E., Male, K.B., Chong, J.H., Leung, A.C.W., Luong, J.H.T., 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30, 283-290. doi: 10.1016/j.tibtech.2012.02.001
    Lehmann, J., 2012. Biochar for environmental management. London:Routledge.
    Li, B., Chen, K.J., Gao, X., Zhao, C., Shao, Q.J., Sun, Q., Li, H., 2015a. Influence of steam explosion on rice straw fiber content. J. Biobased Mater. Bioenergy 9, 596-608. doi: 10.1166/jbmb.2015.1564
    Li, D.W., Ma, T.F., Zhang, R.L., Tian, Y., Qiao, Y.Y., 2015b. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 139, 68-70. doi: 10.1016/j.fuel.2014.08.027
    Li, F.H., Hu, H.J., Yao, R.S., Wang, H., Li, M.M., 2012. Structure and saccharification of rice straw pretreated with microwave-assisted dilute lye. Ind. Eng. Chem. Res. 51, 6270-6274. doi: 10.1021/ie202547w
    Li, H.H., Liu, Y.T., Chen, Y.H., Wang, S.L., Wang, M.K., Xie, T.H., Wang, G., 2016. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Sci. Rep. 6, 31616. doi: 10.1038/srep31616
    Li, M., Zheng, Y., Chen, Y.X., Zhu, X.F., 2014. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol. 154, 345-348. doi: 10.1016/j.biortech.2013.12.070
    Li, Q., He, Y.C., Xian, M., Jun, G., Xu, X., Yang, J.M., Li, L.Z., 2009. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100, 3570-3575. doi: 10.1016/j.biortech.2009.02.040
    Li, Z.M., Unzué-Belmonte, D., Cornelis, J.T., Linden, C.V., Struyf, E., Ronsse, F., Delvaux, B., 2019. Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant Soil 438, 187-203. doi: 10.1007/s11104-019-04013-0
    Liaw, W.C., Chen, C.S., Chang, W.S., Chen, K.P., 2008. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J. Biosci. Bioeng. 105, 97-105. doi: 10.1263/jbb.105.97
    Lin, C.X., Ma, Q.L., Su, Q.Q., Bian, H.Y., Zhu, J., 2018. Facile synthesis of highly hydrophobic cellulose nanoparticles through post-esterification microfluidization. Fibers 6, 22. doi: 10.3390/fib6020022
    Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D., Song, X.W., 2013. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresour. Technol. 136, 437-443. doi: 10.1016/j.biortech.2013.03.048
    Liu, C., Lu, M., Cui, J., Li, B., Fang, C.M., 2014a. Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis. Glob. Chang. Biol. 20, 1366-1381. doi: 10.1111/gcb.12517
    Liu, J.J., Jia, C.J., He, C.X., 2012. Flexural properties of rice straw and starch composites. AASRI Procedia 3, 89-94. doi: 10.1016/j.aasri.2012.11.016
    Liu, X.G., Ma, X.J., Yao, R.S., Pan, C.Y., He, H.B., 2016. Sophorolipids production from rice straw via SO3 micro-thermal explosion by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. AMB Express 6, 60.
    Liu, X.Y., Li, L.Q., Bian, R.J., Chen, D., Qu, J.J., Wanjiru Kibue, G., Pan, G.X., Zhang, X.H., Zheng, J.W., Zheng, J.F., 2014b. Effect of biochar amendment on soil-silicon availability and rice uptake. Z. Pflanzenernähr. Bodenk. 177, 91-96. doi: 10.1002/jpln.201200582
    Lou, R., Lyu, G.J., Wu, S.B., Zhang, B., Lucia, L.A, 2017. Mechanistic investigation of rice straw lignin subunit bond cleavages and subsequent formation of monophenols. ACS Sustainable Chemistry and Engineering 6, 430-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7f1149bf0bcc16cecd5d40232950f68
    Lü, J., Zhou, P.J., 2011. Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. Bioresour. Technol. 102, 6966-6971. doi: 10.1016/j.biortech.2011.04.044
    Lu, P., Hsieh, Y.L., 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87, 564-573. doi: 10.1016/j.carbpol.2011.08.022
    Lu, Y., Wei, X.Y., Wen, Z., Chen, H.B., Lu, Y.C., Zong, Z.M., Cao, J.P., Qi, S.C., Wang, S.Z., Yu, L.C., Zhao, W., Fan, X., Zhao, Y.P., 2014. Photocatalytic depolymerization of rice husk over TiO2 with H2O2. Fuel Process. Technol. 117, 8-16. doi: 10.1016/j.fuproc.2013.04.001
    Ma, X.B., Chen, X.X., Wang, X.H., Choi, S., Zhang, T.A., Hu, J.J., Tsang, Y.F., Gao, M.T., 2019. Extraction of flavonoids from the saccharification of rice straw is an integrated process for straw utilization. Appl. Biochem. Biotechnol. 189, 249-261. doi: 10.1007/s12010-019-03002-4
    Maiti, S., Dey, S., Purakayastha, S., Ghosh, B., 2006. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Bioresour. Technol. 97, 2065-2070. doi: 10.1016/j.biortech.2005.10.005
    Mandal, A., Singh, N., Purakayastha, T.J., 2017. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 577, 376-385. doi: 10.1016/j.scitotenv.2016.10.204
    Manique, M.C., Faccini, C.S., Onorevoli, B., Benvenutti, E.V., Caramão, E.B., 2012. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel 92, 56-61. doi: 10.1016/j.fuel.2011.07.024
    Masoumi, A., Hemmati, K., Ghaemy, M., 2016. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(Ⅱ) and crystal violet from water. Chemosphere 146, 253-262. doi: 10.1016/j.chemosphere.2015.12.017
    McKeen, L.W., 2017. Renewable resource and biodegradable polymers. Film Properties of Plastics and Elastomers. Amsterdam:Elsevier, 449-479.
    Menya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y., 2018. Production and performance of activated carbon from rice husks for removal of natural organic matter from water:a review. Chem. Eng. Res. Des. 129, 271-296. doi: 10.1016/j.cherd.2017.11.008
    Minu, K., Jiby, K.K., Kishore, V.V.N., 2012. Isolation and purification of lignin and silica from the black liquor generated during the production of bioethanol from rice straw. Biomass Bioenergy 39, 210-217. doi: 10.1016/j.biombioe.2012.01.007
    Mirmohamadsadeghi, S., Karimi, K., 2020. Recovery of silica from rice straw and husk. Current Developments in Biotechnology and Bioengineering. Amsterdam:Elsevier, 411-433.
    Montipó, S., Pedroso, G.B., Bevilaqua, D.B., Prestes, O.D., Corona-González, R.I., Martins, A.F., 2016. Building block lactic acid from rice husks and Agave bagasse. Waste Biomass Valorization 7, 1495-1507. doi: 10.1007/s12649-016-9554-9
    Moraes, C.A., Fernandes, I.J., Calheiro, D., Kieling, A.G., Brehm, F.A., Rigon, M.R., Berwanger Filho, J.A., Schneider, I.A., Osorio, E., 2014. Review of the rice production cycle:By-products and the main applications focusing on rice husk combustion and ash recycling. Waste Manag. Res. 32, 1034-1048. doi: 10.1177/0734242X14557379
    Morya, V.K., Ahn, C., Jeon, S., Kim, E.K., 2013. Medicinal and cosmetic potentials of sophorolipids. Mini-Rev. Med. Chem. 13, 1761-1768. doi: 10.2174/13895575113139990002
    Mosier, N., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673-686. doi: 10.1016/j.biortech.2004.06.025
    Mostafa, K.M., Samarkandy, A.R., El-Sanabary, A.A., 2012. Harnessing of chemically modified rice straw plant waste as unique adsorbent for reducing organic and inorganic pollutants. Int. J. Org. Chem. 2, 143-151. doi: 10.4236/ijoc.2012.22022
    Nair, D.G., Fraaij, A., Klaassen, A.A.K., Kentgens, A.P.M., 2008. A structural investigation relating to the pozzolanic activity of rice husk ashes. Cem. Concr. Res. 38, 861-869. doi: 10.1016/j.cemconres.2007.10.004
    Naiya, T.K., Bhattacharya, A.K., Mandal, S., Das, S.K., 2009. The sorption of lead(Ⅱ) ions on rice husk ash. J. Hazard. Mater. 163, 1254-1264. doi: 10.1016/j.jhazmat.2008.07.119
    Nakbanpote, W., Thiravetyan, P., Kalambaheti, C., 2000. Preconcentration of gold by rice husk ash. Miner. Eng. 13, 391-400. doi: 10.1016/S0892-6875(00)00021-2
    Nasr, M., Mahmoud, A.E.D., Fawzy, M., Radwan, A., 2017. Artificial intelligence modeling of cadmium(Ⅱ) biosorption using rice straw. Appl. Water Sci. 7, 823-831.
    Nawar, N., Ebrahim, M., Sami, E., 2013. Removal of heavy metals Fe3+, Mn2+, Zn2+, Pb2+ and Cd2+ from wastewater by using rice straw as low cost adsorbent. Acad. J. Interdiscip. Stud. 2, 85-95. doi: 10.5901/ajis.2013.v2n6p85
    Nayak, B.B., Mohanty, B.C., Singh, S., 2005. Synthesis of silicon carbide from rice husk in a dc arc plasma reactor. Journal of the American Ceramic Society 79, 1197-1200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1151-2916.1996.tb08572.x
    Nono, E., Abdel-Sabour, M., 2015. Removal of Cu (Ⅱ) and Pb (Ⅱ) from aqueous solution using treated rice straw. International Journal of Advanced Research 3, 1260-1271.
    Noor Syuhadah, S., Rohasliney. H., 2012. Rice husk as biosorbent:a review. Health and the Environment Journal 3, 89-95. http://www.hej.kk.usm.my/pdf/HEJVol.3No.1/Article10.pdf
    Oladosu, Y., Rafii, M.Y., Abdullah, N., Magaji, U., Hussin, G., Ramli, A., Miah, G., 2016. Fermentation quality and additives:a case of rice straw silage. Biomed. Res. Int. 2016, 7985167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939334/
    Pan, M.Z., Zhao, G.M., Ding, C.X., Wu, B., Lian, Z.N., Lian, H.L., 2017. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydr. Polym. 176, 307-314. doi: 10.1016/j.carbpol.2017.08.088
    Pansripong, S.R., Arjharn, W., Liplap, P.S., Hinsui, T, 2019. Effect of ultrasonic pretreatment on biogas production from rice straw. Oriental Journal of Chemistry 35, 1265-1273.[LinkOut] doi: 10.13005/ojc/350403
    Papita, S., 2010. Study on the removal of methylene blue dye using chemically treated rice husk. Asian Journal of Water. Environment and Pollution 7, 31-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aca8c91e8bd2f7dfa00b4a1e576cf47a
    Park, J.Y., Shiroma, R., Al-Haq, M.I., Zhang, Y., Ike, M., Arai-Sanoh, Y., Ida, A., Kondo, M., Tokuyasu, K., 2010. A novel lime pretreatment for subsequent bioethanol production from rice straw:calcium capturing by carbonation (CaCCO) process. Bioresour. Technol. 101, 6805-6811. doi: 10.1016/j.biortech.2010.03.098
    Pineda, A., Lee, A., 2016. Heterogeneously catalyzed lignin depolymerization. Applied Petrochemical Research 6, 243-256. doi: 10.1007/s13203-016-0157-y
    Poornejad, N., Karimi, K., Behzad, T., 2013. Improvement of saccharification and ethanol production from rice straw by NMMO and[BMIM] [OAc] pretreatments. Ind. Crop. Prod. 41, 408-413. doi: 10.1016/j.indcrop.2012.04.059
    Priya, S., Tiwari, R., Rana, S., Saritha, M., Singh, S., Arora, A., Nain, L.T., 2016. Saccharification of biopretreated paddy straw with indigenous holocellulase and fermentation with Saccharomyces cerevisiae LN1 under optimized conditions. Energy, Ecology and Environment 1, 419-429. doi: 10.1007/s40974-016-0021-z
    Qi, B.K., Yao, R.S., 2007. L-lactic acid production from Lactobacillus casei by solid state fermentation using rice straw. BioResources 2, 419-429. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000970668
    Qian, L.B., Chen, B.L., 2013. Dual role of biochars as adsorbents for aluminum:the effects of oxygen-containing organic components and the scattering of silicate particles. Environ. Sci. Technol. 47, 8759-8768. doi: 10.1021/es401756h
    Quispe, I., Navia, R., Kahhat, R., 2017. Energy potential from rice husk through direct combustion and fast pyrolysis:a review. Waste Manag. 59, 200-210. doi: 10.1016/j.wasman.2016.10.001
    Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E., 2014. Lignin valorization:improving lignin processing in the biorefinery. Science 344, 1246843. https://science.sciencemag.org/content/344/6185/1246843.full
    Rahman, I., Saad, B., Shaidan, S., Syarizal, E., 2005. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process. Bioresour. Technol. 96, 1578-1583. doi: 10.1016/j.biortech.2004.12.015
    Rahnama, N., Mamat, S., Md Shah, U.K., Ling, F.H., Abdul Rahman, N.A., Ariff, A.B., 2013. Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources 8, 2881-2896. https://bioresources.cnr.ncsu.edu/BioRes_08/BioRes_08_2_2881_Rahnama_MSLAA_Alk_Pretreat_Straw_Cellulase_Xylanase_3781.pdf
    Ralph, J., Lundquist, K., Brunow, G., Lu, F.C., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W., 2004. Lignins:natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 3, 29-60. doi: 10.1023/B:PHYT.0000047809.65444.a4
    Rambo, M.K.D., Cardoso, A.L., Bevilaqua, D.B., Rizzetti, T.M., Ramos, L.A., Korndorfer, G.H., Martins, A.F., 2011. Silica from rice husk ash as an additive for rice plant. J. Agronomy 10, 99-104. doi: 10.3923/ja.2011.99.104
    Ramezanianpour, A.A., Mahdikhani M., Ahmadibeni, G., 2009. The effect of rice husk ash on mechanical properties and durability of sustainable concretes. International Journal of Civil Engineering 7, 83-91. http://ijce.iust.ac.ir/article-1-213-en.pdf
    Ranjan, A., Mayank, R., Moholkar, V.S., 2013. Development of semi-defined rice straw-based medium for butanol production and its kinetic study. 3 Biotech. 3, 353-364.
    Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C., Foley, J.A., 2012. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293. doi: 10.1038/ncomms2296
    Reddy, N., Yang, Y.Q., 2006. Properties of high-quality long natural cellulose fibers from rice straw. J. Agric. Food Chem. 54, 8077-8081. doi: 10.1021/jf0617723
    Rehman, M.S.U., Umer, M.A., Rashid, N., Kim, I., Han, J.I., 2013. Sono-assisted sulfuric acid process for economical recovery of fermentable sugars and mesoporous pure silica from rice straw. Ind. Crop. Prod. 49, 705-711. doi: 10.1016/j.indcrop.2013.06.034
    Risdianto, H., for Pulp and Paper Ministry of Industry Bandung Indonesia, C., Sofianti, E., Suhardi, S.H., Setiadi, T., 2012. Optimisation of laccase production using white rot fungi and agriculture wastes in solid state fermentation. ITB J. Eng. Sci. 44, 93-105. doi: 10.5614/itbj.eng.sci.2012.44.2.1
    Rocha, C.G., Zaia, D.A.M., da Silva Alfaya, R.V., da Silva Alfaya, A.A., 2009. Use of rice straw as biosorbent for removal of Cu(Ⅱ), Zn(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) ions in industrial effluents. J. Hazard. Mater. 166, 383-388. doi: 10.1016/j.jhazmat.2008.11.074
    Rosa, S.M.L., Rehman, N., de Miranda, M.I.G., Nachtigall, S.M.B., Bica, C.I.D., 2012. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131-1138. doi: 10.1016/j.carbpol.2011.08.084
    Rubeena, Ulavi S., Kumar B.M., 2014. Algae control using rice straw. IJCIET 5, 43-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9fde8ea35f313005b04417d1db80f36
    Rukzon, S., Chindaprasirt, P., Mahachai, R., 2009. Effect of grinding on chemical and physical properties of rice husk ash. Int. J. Miner. Metall. Mater. 16, 242-247. doi: 10.1016/S1674-4799(09)60041-8
    Rungrodnimitchai, S., 2010. Modification of rice straw for heavy metal Ion adsorbents by microwave heating. Macromol. Symp. 295, 100-106. doi: 10.1002/masy.200900146
    Rungrodnimitchai, S., 2014. Rapid preparation of biosorbents with high Ion exchange capacity from rice straw and bagasse for removal of heavy metals. Sci. World J. 2014, 1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003740200
    Safa, Y., Bhatti, H.N., 2011. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination 272, 313-322. doi: 10.1016/j.desal.2011.01.040
    Sangon, S., Hunt, A.J., Attard, T.M., Mengchang, P., Ngernyen, Y., Supanchaiyamat, N., 2018. Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J. Clean. Prod. 172, 1128-1139. doi: 10.1016/j.jclepro.2017.10.210
    Sarabana, S.S.H., Ramadan, A.I., Eldin A.M., 2018. Consolidated bioprocess for ethanol production from rice straw and corn cobs by using fungi. Middle East Journal of Applied Sciences 8, 635-646.
    Saritha, M., Arora, A., Singh, S., Nain, L., 2013. Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresour. Technol. 135, 12-17. doi: 10.1016/j.biortech.2012.11.040
    Sarkar, D., Bandyopadhyay, A., 2010. Adsorptive mass transport of dye on rice husk ash. Journal of Water Resource and Protection 2, 424-431. doi: 10.4236/jwarp.2010.25049
    Sarker, N., Fakhruddin, A.N.M., 2017. Removal of phenol from aqueous solution using rice straw as adsorbent. Appl. Water Sci. 7, 1459-1465. doi: 10.1007/s13201-015-0324-9
    Sasaki, K., Tsuge, Y., Sasaki, D., Hasunuma, T., Sakamoto, T., Sakihama, Y., Ogino, C., Kondo, A., 2014. Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 169, 380-386. doi: 10.1016/j.biortech.2014.06.101
    Shamsollahi, Z., Partovinia, A., 2019. Recent advances on pollutants removal by rice husk as a bio-based adsorbent:a critical review. J. Environ. Manag. 246, 314-323. doi: 10.1016/j.jenvman.2019.05.145
    Shamsudin, R., Ismail, H., Abdul Hamid, M.A., 2016. The suitability of rice straw ash as a precursor for synthesizing β-wollastonite. Mater. Sci. Forum 846, 216-222. doi: 10.4028/www.scientific.net/MSF.846.216
    Shebl, A., Imam, A.I., Hazem, M.M., 2020. Insecticide potentiality of rice case (chaff) particle. Heliyon 6, e03277. DOI: 10.1016/j.heliyon.2020.e03277.
    Shen, Y.F., Fu, Y.H., 2018. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Mater. Today Energy 9, 397-405. doi: 10.1016/j.mtener.2018.07.005
    Sheng, T., Zhao, L., Liu, W.Z., Gao, L.F., Wang, A.J., 2017. Fenton pre-treatment of rice straw with citric acid as an iron chelate reagent for enhancing saccharification. RSC Adv. 7, 32076-32086. doi: 10.1039/C7RA04329E
    Simonov, A.D., Mishenko, T.I., Yazykov, N.A., Parmon, V.N., 2003. Combustion and processing of rice husk in the vibrofluidized bed of catalyst or inert material. Chemistry for Sustainable Development 11, 277-283.
    Singh Aulakh, D., Singh, J., Kumar, S., 2018. The effect of utilizing rice husk ash on some properties of concrete-A review. Curr. World Environ 13, 224-231. doi: 10.12944/CWE.13.2.07
    Singh, A., Tuteja, S., Singh, N., Bishnoi, N.R., 2011. Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production. Bioresour. Technol. 102, 1773-1782. doi: 10.1016/j.biortech.2010.08.113
    Singh, B., 2018. Rice husk ash. Waste and supplementary cementitious materials in concrete. Amsterdam:Elsevier, 417-460.
    Song, S.T., Hau, Y.F., Saman, N., Johari, K., Cheu, S.C., Kong, H., Mat, H, 2016. Process analysis of mercury adsorption onto chemically modified rice straw in a fixed-bed adsorber. J. Environ. Chem. Eng. 4, 1685-1697. doi: 10.1016/j.jece.2016.02.033
    Song, S.T., Saman, N., Johari, K., Mat, H., 2013. Removal of Hg(Ⅱ) from aqueous solution by adsorption using raw and chemically modified rice straw as novel adsorbents. Ind. Eng. Chem. Res. 52, 13092-13101. doi: 10.1021/ie400605a
    Sui, F.F., Wang, J.B., Zuo, J., Joseph, S., Munroe, P., Drosos, M., Li, L.Q., Pan, G.X., 2020. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China. Sci. Total. Environ. 709, 136101. doi: 10.1016/j.scitotenv.2019.136101
    Sun, X.F., Sun, J.X., 2002. Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J. Agric. Food Chem. 50, 6428-6433. doi: 10.1021/jf020392o
    Sun, X.X., Liu, C., Omer, A.M., Lu, W.H., Zhang, S.X., Jiang, X., Wu, H.J., Yu, D., Xiao-Kun, O., 2019. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int. J. Biol. Macromol. 128, 468-479. doi: 10.1016/j.ijbiomac.2019.01.140
    Sun, Z.H., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., 2018. Bright side of lignin depolymerization:toward new platform chemicals. Chem. Rev. 118, 614-678. doi: 10.1021/acs.chemrev.7b00588
    Swain, M.R., Krishnan, C., 2015. Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature Ammonia pretreatment and sequential fermentation using Candida tropicalis. Ind. Crop. Prod. 77, 1039-1046. doi: 10.1016/j.indcrop.2015.10.013
    Syarif, H.U., Suriamihardja, D.A., Selintung, M., Wahab, W.A., 2015. Analysis SEM the chemical and physics composition of used rice husks as an absorber plate. International Journal of Engineering and Science Applications 2, 25-30. http://pasca.unhas.ac.id/ojs/index.php/ijesca/article/view/143
    Takano, M., Hoshino, K., 2018. Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresour. Bioprocess. 5, 16. doi: 10.1186/s40643-018-0203-y
    Teixeira Tarley, C.R., Costa Ferreira, S.L., Zezzi Arruda, M.A., 2004. Use of modified rice husks as a natural solid adsorbent of trace metals:characterisation and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchem. J. 77, 163-175. doi: 10.1016/j.microc.2004.02.019
    Theng, D., Arbat, G., Delgado-Aguilar, M., Ngo, B., Labonne, L., Evon, P., Mutjé, P., 2017. Comparison between two different pretreatment technologies of rice straw fibers prior to fiberboard manufacturing:Twin-screw extrusion and digestion plus defibration. Ind. Crop. Prod. 107, 184-197. doi: 10.1016/j.indcrop.2017.05.049
    Theng, D., Arbat, G., Delgado-Aguilar, M., Ngo, B., Labonne, L., Mutjé, P., Evon, P., 2019. Production of fiberboard from rice straw thermomechanical extrudates by thermopressing:influence of fiber morphology, water and lignin content. Eur. J. Wood Prod. 77, 15-32. doi: 10.1007/s00107-018-1358-0
    Tiwari, R., Rana, S., Singh, S., Arora, A., Kaushik, R., Agrawal, V.V., Saxena, A.K., Nain, L., 2013. Biological delignification of paddy straw and Parthenium sp. using a novel micromycete Myrothecium roridum LG7 for enhanced saccharification. Bioresour. Technol. 135, 7-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5e30a09203ed3454d6b2300a3b5e3a5
    Trinh, B.M., Mekonnen, T., 2018. Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement. Polymer 155, 64-74. doi: 10.1016/j.polymer.2018.08.076
    Ummah, H., Suriamihardja, D.A., Selintung, M., Wahab, A., 2015. Analysis of chemical composition of rice husk used as absorber plates sea water into clean water. ARPN Journal of Engineering and Applied Sciences 10, 6046-6050.
    Usman Khan, M., Kiaer Ahring, B., 2020. Anaerobic digestion of biorefinery lignin:effect of different wet explosion pretreatment conditions. Bioresour. Technol. 298, 122537. doi: 10.1016/j.biortech.2019.122537
    van Soest, P.J., 2006. Rice straw, the role of silica and treatments to improve quality. Animal Feed. Sci. Technol. 130, 137-171. doi: 10.1016/j.anifeedsci.2006.01.023
    Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W., 2010. Lignin biosynthesis and structure. Plant Physiol. 153, 895-905. doi: 10.1104/pp.110.155119
    Venkateswar Rao, L., Goli, J.K., Gentela, J., Koti, S., 2016. Bioconversion of lignocellulosic biomass to xylitol:an overview. Bioresour. Technol. 213, 299-310. doi: 10.1016/j.biortech.2016.04.092
    Wang, D., Buckmaster, D.R., Jiang, Y., et al., ., 2011a. Experimental study on baling rice straw silage. International Journal of Agricultural and Biological Engineering 4, DOI: 10.3965/j.issn.1934-6344.2011.01.000-000.
    Wang, J.Y., Cui, H., Cui, C.W., Xing, D.F., 2016a. Biosorption of copper(Ⅱ) from aqueous solutions by Aspergillus niger-treated rice straw. Ecol. Eng. 95, 793-799. doi: 10.1016/j.ecoleng.2016.07.019
    Wang, L.L., Wang, X.F., Zou, B., Ma, X.Y., Qu, Y.N., Rong, C.G., Li, Y., Su, Y., Wang, Z.C., 2011b. Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis. Bioresour. Technol. 102, 8220-8224. doi: 10.1016/j.biortech.2011.05.079
    Wang, S.L., Tzou, Y.M., Lu, Y.H., Sheng, G.Y, 2007. Removal of 3-chlorophenol from water using rice-straw-based carbon. J. Hazard. Mater. 147, 313-318. doi: 10.1016/j.jhazmat.2007.01.031
    Wang, Z., He, Z.X., Beauchemin, K.A., Tang, S.X., Zhou, C.S., Han, X.F., Wang, M., Kang, J.H., Odongo, N.E., Tan, Z.L., 2016b. Evaluation of different yeast species for improving In vitro fermentation of cereal straws. Asian Australas. J. Anim. Sci 29, 230-240. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698703/
    Wi, S., Choi, I., Kim, K., Kim, H., Bae, H.J., 2013. Bioethanol production from rice straw by popping pretreatment. Biotechnol. Biofuels 6, 166. doi: 10.1186/1754-6834-6-166
    Wi, S.G., Chung, B.Y., Lee, Y.G., Yang, D.J., Bae, H.J., 2011. Enhanced enzymatic hydrolysis of rapeseed straw by popping pretreatment for bioethanol production. Bioresour. Technol. 102, 5788-5793. doi: 10.1016/j.biortech.2011.02.031
    Wong, K., Lee, C., Low, K., Haron, M., 2003. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50, 23-28. doi: 10.1016/S0045-6535(02)00598-2
    Wu, H.C., Ku, Y., Tsai, H.H., Kuo, Y.L., Tseng, Y.H., 2015. Rice husk as solid fuel for chemical looping combustion in an annular dual-tube moving bed reactor. Chem. Eng. J. 280, 82-89. doi: 10.1016/j.cej.2015.05.116
    Wu, X.D., Zhang, J.S., Xu, E.N., Liu, Y.H., Cheng, Y.L., Addy, M., Zhou, W.G., Griffith, R., Chen, P., Ruan, R., 2016a. Microbial hydrolysis and fermentation of rice straw for ethanol production. Fuel 180, 679-686. doi: 10.1016/j.fuel.2016.04.087
    Wu, Y.H., Fan, Y.A., Zhang, M.L., Ming, Z., Yang, S.X., Arkin, A., Fang, P., 2016b. Functionalized agricultural biomass as a low-cost adsorbent:Utilization of rice straw incorporated with amine groups for the adsorption of Cr(Ⅵ) and Ni(Ⅱ) from single and binary systems. Biochem. Eng. J. 105, 27-35. doi: 10.1016/j.bej.2015.08.017
    Yahaya, D.B., Ibrahim, T.G., 2012. Development of rice husk briquettes for use as fuel. Research Journal in Engineering and Applied Sciences 1, 130-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003785099
    Yakout, S.M., Metwally, S.S., El-Zakla, T., 2013. Uranium sorption onto activated carbon prepared from rice straw:competition with humic acids. Appl. Surf. Sci. 280, 745-750. doi: 10.1016/j.apsusc.2013.05.055
    Yan, J.A., Hu, J.X., Yang, R.J., Zhang, Z., Zhao, W., 2018. Innovative nanofibrillated cellulose from rice straw as dietary fiber for enhanced health benefits prepared by a green and scale production method. ACS Sustainable Chem. Eng. 6, 3481-3492. doi: 10.1021/acssuschemeng.7b03765
    Yang, W.J., Guo, F.L., Wan, Z.J., 2013. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi J. Biol. Sci. 20, 333-338. doi: 10.1016/j.sjbs.2013.02.006
    Yao, R.S., Qi, B.K., Deng, S.S., Liu, N., Peng, S.C., Cui, Q.F., 2007. Use of surfactants in enzymatic hydrolysis of rice straw and lactic acid production from rice straw by simultaneous saccharification and fermentation. BioResources 2, 389-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000970665
    Younas, R., Huang, L., Zhang, K.F., Cao, L.C., Zhang, L.W., Khan, M., Xu, H.L., Zhang, S.C., 2019. Selective production of ethyl lactate from rice straw in the presence of lewis and brønsted acids. Waste and Biomass Valorization, 1-14.
    Younas, R., Zhang, S.C., Zhang, L.W., Luo, G., Chen, K.F., Cao, L.C., Liu, Y.C., Hao, S.L., 2016. Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates. Catal. Today 274, 40-48. doi: 10.1016/j.cattod.2016.03.052
    Zareei, S.A., Ameri, F., Dorostkar, F., Ahmadi, M., 2017. Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica:Evaluating durability and mechanical properties. Case Stud. Constr. Mater. 7, 73-81. https://www.sciencedirect.com/science/article/pii/S2214509516300924
    Zhang, B.P., Liu, Y., Ma, Z.C., Guo, M.C., Shen, B.W., 2018a. Adsorption of AuCl4- from acidic chloride solution by chemically modified lignin based on rice straw. Macromol. Res. 26, 121-127. doi: 10.1007/s13233-018-6016-1
    Zhang, B.P., Ma, Z.C., Yang, F., Liu, Y., Guo, M.C., 2017. Adsorption properties of Ion recognition rice straw lignin on PdCl42-:equilibrium, kinetics and mechanism. Colloids Surfaces A:Physicochem. Eng. Aspects 514, 260-268. doi: 10.1016/j.colsurfa.2016.11.069
    Zhang, B.P., Shen, B.W., Guo, M.C., Liu, Y., 2018b. Adsorption of PtCl62- from hydrochloric acid solution by chemically modified lignin based on rice straw. Aust. J. Chem. 71, 931. doi: 10.1071/CH18282
    Zhang, D., Luo, Y.Q., Chu, S.H., Zhi, Y.E., Wang, B., Zhou, P., 2016a. Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency. Prep. Biochem. Biotechnol. 46, 575-585. doi: 10.1080/10826068.2015.1084932
    Zhang, S.L., Wang, Z.K., Chen, H.Y., Kai, C.C., Jiang, M., Wang, Q., Zhou, Z.W., 2018c. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(Ⅵ) removal. Appl. Surf. Sci. 440, 1277-1285. doi: 10.1016/j.apsusc.2018.01.191
    Zhang, S.L., Wang, Z.K., Zhang, Y.L., Pan, H.Y., Tao, L.C., 2016b. Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environ. Sci. 31, 3-11. doi: 10.1016/j.proenv.2016.02.001
    Zhang, W.X., Yang, H., Dong, L., Yan, H., Li, H.J., Jiang, Z.W., Kan, X.W., Li, A.M., Cheng, R.S., 2012. Efficient removal of both cationic and anionic dyes from aqueous solutions using a novel amphoteric straw-based adsorbent. Carbohydr Polym 90, 887-893. doi: 10.1016/j.carbpol.2012.06.015
    Zhang, Y., Zheng, R., Zhao, J.Y., Ma, F., Zhang, Y.C., Meng, Q.J., 2014. Characterization of H3PO4-treated rice husk adsorbent and adsorption of copper(Ⅱ) from aqueous solution. Biomed. Res. Int. 2014, 496878.
    Zhao, C., Shao, Q.J., Chundawat, S.P.S., 2020. Recent advances on Ammonia-based pretreatments of lignocellulosic biomass. Bioresour. Technol. 298, 122446. doi: 10.1016/j.biortech.2019.122446
    Zhou, J., Yan, B.H., Wang, Y., Yong, X.Y., Yang, Z.H., Jia, H.H., Jiang, M., Wei, P., 2016. Effect of steam explosion pretreatment on the anaerobic digestion of rice straw. RSC Adv. 6, 88417-88425. doi: 10.1039/C6RA15330E
    Zou, Y.P., Yang, T.K., 2019. Rice husk, rice husk ash and their applications. Rice Bran and Rice Bran Oil. Amsterdam:Elsevier, 207-246.
    Zulkali, M.M., Ahmad, A.L., Norulakmal, N.H., 2006. Oryza sativa L. husk as heavy metal adsorbent:optimization with lead as model solution. Bioresour. Technol. 97, 21-25. http://med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_JJ024002939.aspx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (3526) PDF downloads(297) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return