Volume 5 Issue 3
Jul.  2020
Article Contents
Turn off MathJax


Utilization of Waste Straw and Husks from Rice Production: A Review

  • As a staple food for much of the world, rice production is widespread. However, it also results in the generation of large quantities of non-food biomass, primarily in the form of straw and husks. Although they have been little utilized and much rice straw is still simply burned, these lignocellulosic materials potentially have considerable values. This review considers the composition of rice straw and husks, the various processes involved in the production of valuable products, and a range of uses to which they can be put. These include agricultural amendments, energy production, environmental adsorbents, construction materials, and various speciality products.
  • 加载中
  • [1]

    Abraham, A., Mathew, A.K., Sindhu, R., Pandey, A., Binod, P., 2016. Potential of rice straw for bio-refining:an overview. Bioresour. Technol. 215, 29-36.

    Ahmaruzzaman, M., Gupta, V.K., 2011. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50, 13589-13613.

    Ajmal, M., Ali Khan Rao, R., Anwar, S., Ahmad, J., Ahmad, R., 2003. Adsorption studies on rice husk:removal and recovery of Cd(Ⅱ) from wastewater. Bioresour. Technol. 86, 147-149.

    Akhtar, N., Goyal, D., Goyal, A., 2017. Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Convers. Manag. 141, 133-144

    Alalwan, H.A., Alminshid, A., Abbas, M., Naji, Z.A., 2018. Adsorption of thallium Ion (Tl+ 3) from aqueous solutions by rice husk in a fixed-bed column:Experiment and prediction of breakthrough curves. Environmental Technology and Innovation 12, 1-13.

    Allam, M., Garas, G., 2010. Recycled chopped rice straw-cement bricks:an analytical and economical study. Waste Management and the Environment V July 12-14, 2010. Tallinn, Estonia. Southampton, UK:WIT Press.

    Al-Sultani, K.F., Al-Seroury, F.A., 2012. Characterization the removal of phenol from aqueous solution in fluidized bed column by rice husk adsorbent. Research Journal of Recent Sciences, 1, 145-151.

    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2014a. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon. Bioresour. Technol. 170, 132-137.

    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2014b. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128, 162-169.

    Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review. Bioresour. Technol. 101, 4851-4861.

    Amin, M.N., Mustafa, A.I., Khalil, M.I., Rahman, M., Nahid, I., 2012. Adsorption of phenol onto rice straw biowaste for water purification. Clean Technol. Environ. Policy 14, 837-844.

    Amiri, H., Karimi, K., Zilouei, H., 2014. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour. Technol. 152, 450-456.

    An, D.M., Guo, Y.P., Zou, B., Zhu, Y.C., Wang, Z.C., 2011. A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35, 1227-1234.

    Ang, T.N., Ngoh, G.C., Chua, A.S., 2013. Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. Bioresour. Technol. 135, 116-119.

    Arai, H., Hosen, Y., van Nguyen Pham Hong, Thi, N.T., Huu, C.N., Inubushi, K., 2015. Greenhouse gas emissions from rice straw burning and straw-mushroom cultivation in a triple rice cropping system in the Mekong Delta. Soil Sci. Plant Nutr. 61, 719-735.

    Arjmandi, R., Hassan, A., Majeed, K., Zakaria, Z., 2015. Rice husk filled polymer composites. Int. J. Polym. Sci. 2015, 1-32.

    Aski, A., Borghei, A., Zenouzi, A., Ashrafi, N., Taherzadeh, M., 2019. Effect of steam explosion on the structural modification of rice straw for enhanced biodegradation and biogas production. BioResources 14, 464-485.

    Azadi, F., Saadat, S., Karimi-Jashni, A., 2018. Experimental investigation and modeling of nickel removal from wastewater using modified rice husk in continuous reactor by response surface methodology. Iran. J. Sci. Technol. Trans. Civ. Eng. 42, 315-323.

    Bajaj, P., Mahajan, R., 2019. Cellulase and xylanase synergism in industrial biotechnology. Appl. Microbiol. Biotechnol. 103, 8711-8724.

    Balat, M., 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway:a review. Energy Convers. Manag. 52, 858-875.

    Basta, A.H., El-Saied, H., El-Hadi, O., El-Dewiny, C., 2013. Evaluation of rice straw-based hydrogels for purification of wastewater. Polymer-Plastics Technology and Engineering 52, 1074-1080.

    Basta, A.H., El-Saied, H., Lofty, V., 2014. Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites. RSC Advances 4, 21794.

    Belal, E.B., 2013. Bioethanol production from rice straw residues. Braz. J. Microbiol. 44, 225-234.

    Bevilaqua, D.B., Montipó, S., Pedroso, G.B., Martins, A.F., 2015. Sustainable succinic acid production from rice husks. Sustain. Chem. Pharm. 1, 9-13.

    Bevilaqua, D.B., Rambo, M.K.D., Rizzetti, T.M., Cardoso, A.L., Martins, A.F., 2013. Cleaner production:levulinic acid from rice husks. J. Clean. Prod. 47, 96-101.

    Bilo, F., Pandini, S., Sartore, L., Depero, L.E., Gargiulo, G., Bonassi, A., Federici, S., Bontempi, E., 2018. A sustainable bioplastic obtained from rice straw. J. Clean. Prod. 200, 357-368.

    Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K., Pandey, A., 2010. Bioethanol production from rice straw:an overview. Bioresour. Technol. 101, 4767-4774.

    Bishnoi, N.R., Bajaj, M., Sharma, N., Gupta, A., 2004. Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour. Technol. 91, 305-307.

    Biswas, A., Saha, B.C., Lawton, J.W., Shogren, R.L., Willett, J.L., 2006. Process for obtaining cellulose acetate from agricultural by-products. Carbohydr. Polym. 64, 134-137.

    Bodie, A.R., Micciche, A.C., Atungulu, G.G., Rothrock, M.J.Jr, Ricke, S.C., 2019. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front. Sustain. Food Syst. 3, 47.

    Buasri, A., Chaiyut, N., Tapang, K., Jaroensin, S., Panphrom, S., 2012. Removal of Cu2+ from aqueous solution by biosorption on rice straw-An agricultural waste biomass. Int. J. Environ. Sci. Dev. 3, 10-14.

    Cao, W., Dang, Z., Zhou, X.Q., Yi, X.Y., Wu, P.X., Zhu, N.W., Lu, G.N., 2011. Removal of sulphate from aqueous solution using modified rice straw:Preparation, characterization and adsorption performance. Carbohydr. Polym. 85, 571-577.

    Cao, W., Wang, Z.Q., Zeng, Q.L., Shen, C.H., 2016. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. Appl. Surf. Sci. 389, 404-410.

    Chakraborty, S., Chowdhury, S., Saha, P.D., 2013. Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technol. Environ. Policy 15, 255-264.

    Chand, R., Watari, T., Inoue, K., Kawakita, H., Luitel, H.N., Parajuli, D., Torikai, T., Yada, M., 2009. Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner. Eng. 22, 1277-1282.

    Chandrasekhar, S., Pramada, P.N., 2006. Rice husk ash as an adsorbent for methylene blue:effect of ashing temperature. Adsorption 12, 27-43.

    Chang, K.L., Chen, C.C., Lin, J.H., Hsien, J.F., Wang, Y., Zhao, F., Shih, Y.H., Xing, Z.J., Chen, S.T., 2014. Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution. New Carbon Mater. 29, 47-54.

    Chang, K.L., Hsieh, J.F., Ou, B.M., Chang, M.H., Hseih, W.Y., Lin, J.H., Huang, P.J., Wong, K.F., Chen, S.T., 2012. Adsorption studies on the removal of an endocrine-disrupting compound (bisphenol A) using activated carbon from rice straw agricultural waste. Sep. Sci. Technol. 47, 1514-1521.

    Chen, K.F., Lyu, H., Hao, S.L., Luo, G., Zhang, S.C., Chen, J.M., 2015. Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. Bioresour. Technol. 182, 160-168.

    Chen, K.T., Wang, J.X., Dai, Y.M., Wang, P.H., Liou, C.Y., Nien, C.W., Wu, J.S., Chen, C.C., 2013a. Rice husk ash as a catalyst precursor for biodiesel production. J. Taiwan Inst. Chem. Eng. 44, 622-629.

    Chen, W.H., Chen, Y.C., Lin, J.G., 2013b. Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour. Technol. 135, 262-268.

    Chen, W.H., Xu, Y.Y., Hwang, W.S., Wang, J.B., 2011a. Pretreatment of rice straw using an extrusion/extraction process at bench-scale for producing cellulosic ethanol. Bioresour. Technol. 102, 10451-10458.

    Chen, X.H., Zhang, Y.L., Gu, Y., Liu, Z.G., Shen, Z., Chu, H.Q., Zhou, X.F., 2014. Enhancing methane production from rice straw by extrusion pretreatment. Appl. Energy 122, 34-41.

    Chen, X.L., Yu, J., Zhang, Z.B., Lu, C.H., 2011b. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 85, 245-250.

    Chen, Y., Zhu, Y.C., Wang, Z.C., Li, Y., Wang, L.L., Ding, L.L., Gao, X.Y., Ma, Y.J., Guo, Y.P., 2011c. Application studies of activated carbon derived from rice husks produced by chemical-thermal process:a review. Adv. Colloid Interface Sci. 163, 39-52.

    Cheng, M., Zeng, G.M., Huang, D.L., Lai, C., Wei, Z., Li, N.J., Xu, P., Zhang, C., Zhu, Y., He, X.X., 2015. Combined biological removal of methylene blue from aqueous solutions using rice straw and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 99, 5247-5256.

    Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak, A., Cao, H.T., 2007. Sulfate resistance of blended cements containing fly ash and rice husk ash. Constr. Build. Mater. 21, 1356-1361.

    Chindaprasirt, P., Rukzon, S., Sirivivatnanon, V., 2008. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr. Build. Mater. 22, 932-938.

    Chowdhury, A.K., Sarkar, A.D., Bandyopadhyay, A., 2009. Rice husk ash as a low cost adsorbent for the removal of methylene blue and Congo red in aqueous phases. CLEAN-Soil Air Water 37, 581-591.

    Chowdhury, S., Mishra, R., Saha, P., Kushwaha, P., 2011. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265, 159-168.

    Chowdhury, Z.Z., Abd Hamid, S.B., Das, R., Hasan, M.R., Zain, S.M., Khalid, K., Uddin, M.N., 2013. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 8, 6523-6555.

    Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Thomas Choong, S.Y., 2005. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal:an overview. Desalination 175, 305-316.

    Conrad, R., 2007. Microbial ecology of methanogens and methanotrophs. Advances in Agronomy. 96, 1-63.

    Cui, H.J., Wang, M.K., Fu, M.L., Ci, E., 2011. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soils Sediments 11, 1135-1141.

    Cui, S.Q., Ma, X.B., Wang, X.H., Zhang, T.A., Hu, J.J., Tsang, Y.F., Gao, M.T., 2019. Phenolic acids derived from rice straw generate peroxides which reduce the viability of Staphylococcus aureus cells in biofilm. Ind. Crop. Prod. 140, 111561.

    Daffalla, S.B., Mukhtar, H., Shaharun, M.S., 2010. Characterization of adsorbent developed from rice husk:effect of surface functional group on phenol adsorption. J. Appl. Sci. 10, 1060-1067.

    Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., Area, M.C., 2013. Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Ind. Crop. Prod. 42, 363-368.

    Dai, L.C., Wu, B., Tan, F.R., He, M.X., Wang, W.G., Qin, H., Tang, X.Y., Zhu, Q.L., Pan, K., Hu, Q.C., 2014. Engineered hydrochar composites for phosphorus removal/recovery:Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw. Bioresour. Technol. 161, 327-332.

    Daifullah, A., Yakout, S., Elreefy, S., 2007. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J. Hazard. Mater. 147, 633-643.

    de Albuquerque, T.L., da Silva, I.J.Jr, de Macedo, G.R., Rocha, M.V.P., 2014. Biotechnological production of xylitol from lignocellulosic wastes:a review. Process. Biochem. 49, 1779-1789.

    Defonseka, C., 2018. Rice hulls pellets as alternate solid fuel for energy generation. Polym. From Renew. Resour. 9, 133-144.

    Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K., 2011. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crop. Prod. 34, 1160-1167.

    Dilamian, M., Noroozi, B., 2019. A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose 26, 5831-5849.

    Domínguez-Escribá, L., Porcar, M., 2010. Rice straw management:the big waste. Biofuels, Bioprod. Bioref. 4, 154-159.

    Du, B.Y., Chen, C.Z., Sun, Y., Liu, B.Y., Yang, Y.Y., Gao, S., Zhang, Z.S., Wang, X., Zhou, J.H., 2020. Ni-Mg-Al catalysts effectively promote depolymerization of rice husk lignin to bio-oil. Catal. Lett. 150, 1591-1604.

    Eladel, H., Battah, M., Dawa, A.D., Abd-Elhay, R., Anees, D., 2019. Effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J. Appl. Phycol. 31, 3557-3563.

    El-Bindary, A.A., El-Sonbati, A.Z., Al-Sarawy, A.A., Mohamed, K.S., Farid, M.A., 2014. Adsorption and thermodynamic studies of hazardous azocoumarin dye from an aqueous solution onto low cost rice straw based carbons. J. Mol. Liq. 199, 71-78.

    El-Bindary, A.A., El-Sonbati, A.Z., Al-Sarawy, A.A., Mohamed, K.S., Farid, M.A., 2015. Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent:Kinetic, equilibrium and thermodynamic studies. Spectrochimica Acta Part A:Mol. Biomol. Spectrosc. 136, 1842-1849.

    Elkady, H.L., Garas, G., Allam, M., 2011. Recycled chopped rice straw-cement bricks:mechanical, fire resistance and economical assessment. Australian Journal of Basic and Applied Sciences 5, 27-33.

    El-Sayed, S.A., Khass, T.M., 2013. Smoldering combustion of rice husk dusts on a hot surface. Combust. Explos. Shock. Waves 49, 159-166.

    Fang, Q.L., Li, T.T., Chen, Z.M., Lin, H.B., Wang, P., Liu, F., 2019. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces 11, 10672-10679.

    Faruque, M.O., Uddin, M.J., 2012. Removal of arsenic from groundwater using burnt rice straw. Asian Transactions on Engineering 2, 103-129.

    Fathy, N.A., El-Shafey, O.I., Khalil, L.B., 2013. Effectiveness of alkali-acid treatment in enhancement the adsorption capacity for rice straw:the removal of methylene blue dye. ISRN Phys. Chem. 2013, 1-15.

    Feng, Q.G., Lin, Q.Y., Gong, F.Z., Sugita, S., Shoya, M., 2004. Adsorption of lead and mercury by rice husk ash. J. Colloid Interface Sci. 278, 1-8.

    Fierro, V., Muñiz, G., Basta, A.H., El-Saied, H., Celzard, A., 2010. Rice straw as precursor of activated carbons:Activation with ortho-phosphoric acid. J. Hazard. Mater. 181, 27-34.

    Foo, K.Y., Hameed, B.H., 2009. Utilization of rice husk ash as novel adsorbent:a judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 152, 39-47.

    Funke, A., Ziegler, F., 2010. Hydrothermal carbonization of biomass:a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod. Bioref. 4, 160-177.

    Gall, D.L., Kontur, W.S., Lan, W., Kim, H., Li, Y.D., Ralph, J., Donohue, T.J., Noguera, D.R., 2017. In vitro enzymatic depolymerization of lignin with release of syringyl, guaiacyl, and tricin units. Appl. Environ. Microbiol. 84, e02076-17.

    Gan, P.P., Li, S.F.Y., 2013. Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chem. Eng. J. 229, 351-363.

    Ganvir, V., Das, K., 2011. Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash. J. Hazard. Mater. 185, 1287-1294.

    Gao, H., Liu, Y.G., Zeng, G.M., Xu, W.H., Li, T., Xia, W.B., 2008. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste:rice straw. J. Hazard. Mater. 150, 446-452.

    Gao, P., Liu, Z.H., Xue, G., Han, B., Zhou, M.H., 2011. Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresour. Technol. 102, 3645-3648.

    Georgieva, V.G., Tavlieva, M.P., Genieva, S.D., Vlaev, L.T., 2015. Adsorption kinetics of Cr(VI) ions from aqueous solutions onto black rice husk ash. J. Mol. Liq. 208, 219-226.

    Ghorbani, M., Asadi, H., Abrishamkesh, S., 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 7, 258-265.

    Gou, G.J., Wang, Q., Xie, W., Cao, J., Jiang, M., He, J., Zhou, Z.W., 2018. Assessment of instant catapult steam explosion treatment on rice straw for isolation of high quality cellulose. BioResources 13, 2328-2341.

    Gu, Y., Zhang, Y.L., Zhou, X.F., 2015. Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresour. Technol. 196, 116-122.

    Guirimand, G., Sasaki, K., Inokuma, K., Bamba, T., Hasunuma, T., Kondo, A., 2016. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Appl. Microbiol. Biotechnol. 100, 3477-3487.

    Gunun, P., Wanapat, M., Anantasook, N., 2013. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian Australas. J. Anim. Sci. 26, 1689-1697.

    Gupta, V.K., Mittal, A., Jain, R., Mathur, M., Sikarwar, S., 2006. Adsorption of Safranin-T from wastewater using waste materials:activated carbon and activated rice husks. J. Colloid Interface Sci. 303, 80-86.

    Guzmán A, Á., Delvasto A, S., Francisca Quereda V, M., Sánchez V, E., 2015a. Valorization of rice straw waste:production of porcelain tiles. Cerâmica 61, 442-449.

    Guzmán A, Á., Delvasto A, S., Sánchez V, E., 2015b. Valorization of rice straw waste:an alternative ceramic raw material. Cerâmica 61, 126-136.

    Habeeb, G.A., Mahmud, H.B., 2010. Study on properties of rice husk ash and its use as cement replacement material. Mat. Res. 13, 185-190.

    Hameed, B.H., El-Khaiary, M.I., 2008. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J. Hazard. Mater. 153, 701-708.

    Han, R.P., Ding, D.D., Xu, Y.F., Zou, W.H., Wang, Y.F., Li, Y.F., Zou, L.N., 2008. Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresour. Technol. 99, 2938-2946.

    Han, X., Liang, C.F., Li, T.Q., Wang, K., Huang, H.G., Yang, X.E., 2013. Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. J. Zhejiang Univ. Sci. B 14, 640-649.

    Hanafi, E., Khadrawy, H., Ahmed, W., Zaabal, M., 2012. Some observations on rice straw with emphasis on updates of its management. World Applied Sciences Journal 16, 354-361.

    Heinze, T., El Seoud, O.A., Koschella, A., 2018. Principles of cellulose derivatization. Cellulose Derivatives. Cham:Springer International Publishing, 259-292.

    Hoang, A.T., Le, V.V., Al-Tawaha, A.R.M.S., Nguyen, D.N., Al-Tawaha, A.R.M.S., Noor, M.M., Pham, V.V., 2018. An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup. Petroleum Sci. Technol. 36, 361-370.

    Hou, R.R., Shi, J., Ma, X.B., Wei, H.R., Hu, J.J., Tsang, Y.F., Gao, M.T., 2020. Effect of phenolic acids derived from rice straw on Botrytis cinerea and infection on tomato. Waste Biomass Valorization. DOI:10.1007/s12649-020-00938-1.

    Hsu, N.H., Wang, S.L., Liao, Y.H., Huang, S.T., Tzou, Y.M., Huang, Y.M, 2009. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. J. Hazard. Mater. 171, 1066-1070.

    Hu, G., Heitmann, J.A., Rojas, O.J., 2008a. Feedstock pretreatment strategies. BioResources 3, 270-294.

    Hu, S., Xiang, J., Sun, L.S., Xu, M.H., Qiu, J.R., Fu, P., 2008b. Characterization of char from rapid pyrolysis of rice husk. Fuel Process. Technol. 89, 1096-1105.

    Hu, S.X., Gu, J., Jiang, F., Hsieh, Y, 2016. Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. ACS Sustainable Chemistry and Engineering 4, 728-737.

    Huang, Y.F., Chiueh, P.T., Shih, C.H., Lo, S.L., Sun, L.P., Zhong, Y., Qiu, C.S., 2015. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84, 75-82.

    Hubadillah, S.K., Othman, M.H.D., Harun, Z., Ismail, A.F., Rahman, M.A., Jaafar, J., 2017. A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal. Ceram. Int. 43, 4716-4720.

    Huy, H.N.H., Khue, T.N.H., 2016. Lactic acid production from rice straw using plant-originated Lactobacillus rhamnosus PN04. Journal of Chemical and Pharmaceutical Research 8, 590-594.

    Ioannidou, O., Zabaniotou, A., 2007. Agricultural residues as precursors for activated carbon production:a review. Renew. Sustain. Energy Rev. 11, 1966-2005.

    Islam, M.N., Ani, F.N, 2000. Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Bioresour. Technol. 73, 67-75.

    Ismail, H., Shamsudin, R., Azmi, M., Hamid, A., 2016. Characteristics of β-wollastonite derived from rice straw ash and limestone. Journal of the Australian Ceramic Society 52, 163-174.

    Iyer, G., Chattoo, B.B., 2003. Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiol. Lett. 227, 121-126.

    Jeetah, P., Golaup, N.S., Buddynauth, K., 2015. Production of cardboard from waste rice husk. Journal of Environmental Chemical Engineering 3, 52-59.

    Jiang, D., Pan, M.Z., Cai, X., Zhao, Y.T., 2018. Flame retardancy of rice straw-polyethylene composites affected by in situ polymerization of ammonium polyphosphate/silica. Compos. Part A:Appl. Sci. Manuf. 109, 1-9.

    Jiang, T.Y., Jiang, J., Xu, R.K., Li, Z., 2012. Adsorption of Pb(Ⅱ) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89, 249-256.

    Jiang, Y., Qian, H.Y., Huang, S., Zhang, X.Y., Zhang, W.J., 2019. Acclimation of methane emissions from rice paddy fields to straw addition. Science Advances 5, eaau9038.

    Jin, S.Y., Chen, H.Z., 2006. Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem. Eng. J. 30, 225-230.

    Johar, N., Ahmad, I., Dufresne, A., 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crop. Prod. 37, 93-99.

    Kadam, K.L., Forrest, L.H., Jacobson, W.A., 2000. Rice straw as a lignocellulosic resource:collection, processing, transportation, and environmental aspects. Biomass Bioenergy 18, 369-389.

    Kalderis, D., Kotti, M.S., Méndez, A., et al.,., 2014. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 5, 477-483.

    Kamthan, R., Tiwari, I., 2017. Agricultural wastes-potential substrates for mushroom cultivation. Eur. J. Exp. Biol. 7, 31.

    Karagoz, S., Bhaskar, T., Muto, A., Sakata, Y., 2005. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84, 875-884.

    Kermani, M., Pourmoghaddas, H., Bina, B., Khazaei, Z., 2006. Removal of phenol from aqueous solutions by rice husk ash and activated carbon. Pakistan Journal of Biological Sciences 9, 1905-1910.

    Khaleghian, H., Molaverdi, M., Karimi, K., 2017. Silica removal from rice straw to improve its hydrolysis and ethanol production. Ind. Eng. Chem. Res. 56, 9793-9798.

    Khalid, N., Ahmad, S., Toheed, A., Ahmed, J., 2000. Potential of rice husks for antimony removal. Appl. Radiat. Isot. 52, 31-38.

    Khan, M.N.N., Jamil, M., Karim, M., Zain, M., Kaish, A.B.M.A., 2015. Utilization of rice husk ash for sustainable construction:a review. Research Journal of Applied Sciences, Engineering and Technology 9, 1119-1127.

    Kim, I., Saif Ur Rehman, M., Han, J.I., 2014. Fermentable sugar recovery and adsorption potential of enzymatically hydrolyzed rice straw. J. Clean. Prod. 66, 555-561.

    Kim, J.W., Kim, K.S., Lee, J.S., Park, S.M., Cho, H.Y., Park, J.C., Kim, J.S., 2011. Two-stage pretreatment of rice straw using aqueous Ammonia and dilute acid. Bioresour. Technol. 102, 8992-8999.

    Kim, S., Dale, B.E., 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26, 361-375.

    Kiyoshi, K., Furukawa, M., Seyama, T., Kadokura, T., Nakazato, A., Nakayama, S., 2015. Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum. Bioresour. Technol. 186, 325-328.

    Korotkova, T., Ksandopulo, S., Donenko, A., Bushumov, S., Danilchenko, A., 2016. Physical properties and chemical composition of the rice husk and dust. Orient. J. Chem 32, 3213-3219.

    Kratky, L., Jirout, T., 2011. Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 34, 391-399.

    Kumagai, S., Noguchi, Y., Kurimoto, Y., Takeda, K., 2007. Oil adsorbent produced by the carbonization of rice husks. Waste Manag. 27, 554-561.

    Kuratani, K., Okuno, K., Iwaki, T., Kato, M., Takeichi, N., Miyuki, T., Awazu, T., Majima, M., Sakai, T., 2011. Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. J. Power Sources 196, 10788-10790.

    Lakshmi, U.R., Srivastava, V.C., Mall, I.D., Lataye, D.H., 2009. Rice husk ash as an effective adsorbent:Evaluation of adsorptive characteristics for Indigo Carmine dye. J. Environ. Manag. 90, 710-720.

    Lam, E., Male, K.B., Chong, J.H., Leung, A.C.W., Luong, J.H.T., 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30, 283-290.

    Lehmann, J., 2012. Biochar for environmental management. London:Routledge.

    Li, B., Chen, K.J., Gao, X., Zhao, C., Shao, Q.J., Sun, Q., Li, H., 2015a. Influence of steam explosion on rice straw fiber content. J. Biobased Mater. Bioenergy 9, 596-608.

    Li, D.W., Ma, T.F., Zhang, R.L., Tian, Y., Qiao, Y.Y., 2015b. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 139, 68-70.

    Li, F.H., Hu, H.J., Yao, R.S., Wang, H., Li, M.M., 2012. Structure and saccharification of rice straw pretreated with microwave-assisted dilute lye. Ind. Eng. Chem. Res. 51, 6270-6274.

    Li, H.H., Liu, Y.T., Chen, Y.H., Wang, S.L., Wang, M.K., Xie, T.H., Wang, G., 2016. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Sci. Rep. 6, 31616.

    Li, M., Zheng, Y., Chen, Y.X., Zhu, X.F., 2014. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol. 154, 345-348.

    Li, Q., He, Y.C., Xian, M., Jun, G., Xu, X., Yang, J.M., Li, L.Z., 2009. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100, 3570-3575.

    Li, Z.M., Unzué-Belmonte, D., Cornelis, J.T., Linden, C.V., Struyf, E., Ronsse, F., Delvaux, B., 2019. Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant Soil 438, 187-203.

    Liaw, W.C., Chen, C.S., Chang, W.S., Chen, K.P., 2008. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J. Biosci. Bioeng. 105, 97-105.

    Lin, C.X., Ma, Q.L., Su, Q.Q., Bian, H.Y., Zhu, J., 2018. Facile synthesis of highly hydrophobic cellulose nanoparticles through post-esterification microfluidization. Fibers 6, 22.

    Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D., Song, X.W., 2013. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresour. Technol. 136, 437-443.

    Liu, C., Lu, M., Cui, J., Li, B., Fang, C.M., 2014a. Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis. Glob. Chang. Biol. 20, 1366-1381.

    Liu, J.J., Jia, C.J., He, C.X., 2012. Flexural properties of rice straw and starch composites. AASRI Procedia 3, 89-94.

    Liu, X.G., Ma, X.J., Yao, R.S., Pan, C.Y., He, H.B., 2016. Sophorolipids production from rice straw via SO3 micro-thermal explosion by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. AMB Express 6, 60.

    Liu, X.Y., Li, L.Q., Bian, R.J., Chen, D., Qu, J.J., Wanjiru Kibue, G., Pan, G.X., Zhang, X.H., Zheng, J.W., Zheng, J.F., 2014b. Effect of biochar amendment on soil-silicon availability and rice uptake. Z. Pflanzenernähr. Bodenk. 177, 91-96.

    Lou, R., Lyu, G.J., Wu, S.B., Zhang, B., Lucia, L.A, 2017. Mechanistic investigation of rice straw lignin subunit bond cleavages and subsequent formation of monophenols. ACS Sustainable Chemistry and Engineering 6, 430-437.

    Lü, J., Zhou, P.J., 2011. Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. Bioresour. Technol. 102, 6966-6971.

    Lu, P., Hsieh, Y.L., 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87, 564-573.

    Lu, Y., Wei, X.Y., Wen, Z., Chen, H.B., Lu, Y.C., Zong, Z.M., Cao, J.P., Qi, S.C., Wang, S.Z., Yu, L.C., Zhao, W., Fan, X., Zhao, Y.P., 2014. Photocatalytic depolymerization of rice husk over TiO2 with H2O2. Fuel Process. Technol. 117, 8-16.

    Ma, X.B., Chen, X.X., Wang, X.H., Choi, S., Zhang, T.A., Hu, J.J., Tsang, Y.F., Gao, M.T., 2019. Extraction of flavonoids from the saccharification of rice straw is an integrated process for straw utilization. Appl. Biochem. Biotechnol. 189, 249-261.

    Maiti, S., Dey, S., Purakayastha, S., Ghosh, B., 2006. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Bioresour. Technol. 97, 2065-2070.

    Mandal, A., Singh, N., Purakayastha, T.J., 2017. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 577, 376-385.

    Manique, M.C., Faccini, C.S., Onorevoli, B., Benvenutti, E.V., Caramão, E.B., 2012. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel 92, 56-61.

    Masoumi, A., Hemmati, K., Ghaemy, M., 2016. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(Ⅱ) and crystal violet from water. Chemosphere 146, 253-262.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article Metrics

Article views(74) PDF downloads(16) Cited by()

Proportional views

Utilization of Waste Straw and Husks from Rice Production: A Review

    Corresponding author: Bernard A. Goodman, bernard_a_goodman@yahoo.com
  • a School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
  • b School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China

Abstract: As a staple food for much of the world, rice production is widespread. However, it also results in the generation of large quantities of non-food biomass, primarily in the form of straw and husks. Although they have been little utilized and much rice straw is still simply burned, these lignocellulosic materials potentially have considerable values. This review considers the composition of rice straw and husks, the various processes involved in the production of valuable products, and a range of uses to which they can be put. These include agricultural amendments, energy production, environmental adsorbents, construction materials, and various speciality products.

Reference (158)



    DownLoad:  Full-Size Img  PowerPoint