Volume 5 Issue 3
Aug.  2020
Turn off MathJax
Article Contents
Hui Li, Yuan Liang, Pengcheng Li, Chaobin He. Conversion of biomass lignin to high-value polyurethane: A review[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 163-179. doi: 10.1016/j.jobab.2020.07.002
Citation: Hui Li, Yuan Liang, Pengcheng Li, Chaobin He. Conversion of biomass lignin to high-value polyurethane: A review[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 163-179. doi: 10.1016/j.jobab.2020.07.002

Conversion of biomass lignin to high-value polyurethane: A review

doi: 10.1016/j.jobab.2020.07.002
More Information
  • Corresponding author: Chaobin He, E-mail address: msehc@nus.edu.sg
  • Received Date: 2020-03-13
  • Accepted Date: 2020-04-29
  • Publish Date: 2020-08-01
  • Lignin, as a major by-product of pulp and paper industry, has attracted extensive interest for the preparation of high value-added products, due to the merits of abundant, sustainable, inexpensive, and unique functional groups. This review focuses on the strategies to develop high performance polyurethane (PU) materials from lignin on the basis of main reports, in which lignin was used not only as macromonomer to substitute petroleum-based polyols, but also as blending filler for PU industry. Pre-treatment approaches, especially lignin fractions extracted with various solvents and chemical modifications, e.g., depolymerization, hydroxyalkylation, dealkylation, and esterication, were widely explored to enable lignin more reactive and available to synthesize PU products. In addition, lignin/PU blends were also prepared to fulfill industrial demand. With adjustment of lignin structure, the PU formulation, and synthesis procedures, various lignin-based PU products with advanced properties and a higher bio-substitution ratio have been developed, demonstrating the potential industrial application of lignin for high value-added sustainable materials.

     

  • loading
  • Ahvazi, B., Wojciechowicz, O., Ton-That, T.M., Hawari, J., 2011. Preparation of lignopolyols from wheat straw soda lignin. J. Agric. Food Chem. 59, 10505-10516. doi: 10.1021/jf202452m
    Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Islam, M.R., Jeyaratnam, N., Yuvaraj, A.R., 2016. Polyurethane types, synthesis and applications-A review. RSC Adv. 6, 114453-114482. doi: 10.1039/C6RA14525F
    Arshanitsa, A., Krumina, L., Telysheva, G., Dizhbite, T., 2016. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crop. Prod. 92, 1-12. doi: 10.1016/j.indcrop.2016.07.050
    Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A., 2013. Liquid fuels, hydrogen and chemicals from lignin:a critical review. Renew. Sustain. Energy Rev. 21, 506-523. doi: 10.1016/j.rser.2012.12.022
    Azwar, E., Wan Mahari, W.A., Chuah, J.H., Vo, D.V.N., Ma, N.L., Lam, W.H., Lam, S.S., 2018. Transformation of biomass into carbon nanofiber for supercapacitor application-A review. Int. J. Hydrog. Energy 43, 20811-20821. doi: 10.1016/j.ijhydene.2018.09.111
    Bernardini, J., Cinelli, P., Anguillesi, I., Coltelli, M.B., Lazzeri, A, 2015. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 64, 147-156. doi: 10.1016/j.eurpolymj.2014.11.039
    Bonini, C., D'Auria, M., Emanuele, L., Ferri, R., Pucciariello, R., Sabia, A.R., 2005. Polyurethanes and polyesters from lignin. J. Appl. Polym. Sci. 98, 1451-1456. doi: 10.1002/app.22277
    Brodin, M., Vallejos, M., Opedal, M.T., Area, M.C., Chinga-Carrasco, G., 2017. Lignocellulosics as sustainable resources for production of bioplastics-A review. J. Clean. Prod. 162, 646-664. doi: 10.1016/j.jclepro.2017.05.209
    Cao, L.C., Yu, I.K.M., Liu, Y.Y., Ruan, X.X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S.C., 2018. Lignin valorization for the production of renewable chemicals:state-of-the-art review and future prospects. Bioresour. Technol. 269, 465-475. doi: 10.1016/j.biortech.2018.08.065
    Carriço, C.S., Fraga, T., Pasa, V.M.D, 2016. Production and characterization of polyurethane foams from a simple mixture of Castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53-61. doi: 10.1016/j.eurpolymj.2016.10.012
    Chakar, F.S., Ragauskas, A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20, 131-141. doi: 10.1016/j.indcrop.2004.04.016
    Chen, J.C., Yang, G.H., Ji, X.X., Wang, Q., 2017. Efficient utilization of lignocellulosic resources on the basis of pulp and paper processes, J. Bioresour. Bioprod. 2, 186-187.
    Chen, Y.C., Fu, S.Y., Zhang, H, 2020. Signally improvement of polyurethane adhesive with hydroxy-enriched lignin from bagasse. Colloids Surfaces A:Physicochem. Eng. Aspects 585, 124164. doi: 10.1016/j.colsurfa.2019.124164
    Cheng, S.N., Wilks, C., Yuan, Z.S., Leitch, M., Xu, C.C., 2012. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent. Polym. Degrad. Stab. 97, 839-848. doi: 10.1016/j.polymdegradstab.2012.03.044
    Cheradame, H., Detoisien, M., Gandini, A., Pla, F., Roux, G., 1989. Polyurethane from kraft lignin. Brit. Poly. J. 21, 269-275. doi: 10.1002/pi.4980210314
    Chio, C., Sain, M., Qin, W.S., 2019. Lignin utilization:a review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 107, 232-249. doi: 10.1016/j.rser.2019.03.008
    Chiou, B.S., Schoen, P.E., 2002. Effects of crosslinking on thermal and mechanical properties of polyurethanes. J. Appl. Polym. Sci. 83, 212-223. doi: 10.1002/app.10056
    Chung, H., Washburn, N.R., 2012. Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interfaces 4, 2840-2846. doi: 10.1021/am300425x
    Cinelli, P., Anguillesi, I., Lazzeri, A., 2013. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J. 49, 1174-1184. doi: 10.1016/j.eurpolymj.2013.04.005
    Ciobanu, C., Ungureanu, M., Ignat, L., Ungureanu, D., Popa, V.I., 2004. Properties of lignin-polyurethane films prepared by casting method. Ind. Crop. Prod. 20, 231-241. doi: 10.1016/j.indcrop.2004.04.024
    Collins, M.N., Nechifor, M., Tanasă, F., Zănoagă, M., McLoughlin, A., Stróżyk, M.A., Culebras, M., Teacă, C.A., 2019. Valorization of lignin in polymer and composite systems for advanced engineering applications-A review. Int. J. Biol. Macromol. 131, 828-849. doi: 10.1016/j.ijbiomac.2019.03.069
    Constant, S., Wienk, H.L.J., Frissen, A.E., de Peinder, P., Boelens, R., van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A., Bruijnincx, P.C.A., 2016. New insights into the structure and composition of technical lignins:a comparative characterisation study. Green Chem. 18, 2651-2665. doi: 10.1039/C5GC03043A
    Cui, C.Z., Sun, R.K., Argyropoulos, D.S., 2014. Fractional precipitation of softwood kraft lignin:isolation of narrow fractions common to a variety of lignins. ACS Sustainable Chem. Eng. 2, 959-968. doi: 10.1021/sc400545d
    da Silva, E.A.B., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E., 2009. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 87, 1276-1292. doi: 10.1016/j.cherd.2009.05.008
    de Haro, J.C., Allegretti, C., Smit, A.T., Turri, S., D'Arrigo, P., Griffini, G., 2019. Biobased polyurethane coatings with high biomass content:tailored properties by lignin selection. ACS Sustainable Chem. Eng. 7, 11700-11711. doi: 10.1021/acssuschemeng.9b01873
    Duong, L.D., Nam, G.Y., Oh, J.S., Park, I.K., Luong, N.D., Yoon, H.K., Lee, S.H., Lee, Y., Yun, J.H., Lee, C.G., Hwang, S.H., Nam, J.D., 2014. High molecular-weight thermoplastic polymerization of kraft lignin macromers with diisocyanate. BioResources 9, 2359-2371. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_09_2_2359_Duong_Thermoplastic_Polymerization_Kraft/2655
    Evtuguin, D.V., Andreolety, J.P., Gandini, A, 1998. Polyurethanes based on oxygen-organosolv lignin. Eur. Polym. J. 34, 1163-1169. doi: 10.1016/S0014-3057(97)00245-0
    Feldman, D., Lacasse, M.A., 1989. Morphology of lignin-polyurethane blends. MRS Proc. 153, 193. doi: 10.1557/PROC-153-193
    Feldman, D., Lacasse, M.A., 1994. Polymer-filler interaction in polyurethane kraft lignin polyblends. J. Appl. Polym. Sci. 51, 701-709. doi: 10.1002/app.1994.070510416
    Gadhave, R.V., Mahanwar, P.A., Gadekar, P.T., 2018. Lignin-polyurethane based biodegradable foam. Open J. Polym. Chem. 8, 1-10. doi: 10.4236/ojpchem.2018.81001
    Gandini, A., Lacerda, T.M., 2015. From monomers to polymers from renewable resources:recent advances. Prog. Polym. Sci. 48, 1-39. doi: 10.1016/j.progpolymsci.2014.11.002
    Gandini, A., Lacerda, T.M., Carvalho, A.J.F., Trovatti, E., 2016. Progress of polymers from renewable resources:furans, vegetable oils, and polysaccharides. Chem. Rev. 116, 1637-1669. doi: 10.1021/acs.chemrev.5b00264
    Garcia Gonzalez, M.N., Levi, M., Turri, S., Griffini, G., 2017. Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J. Appl. Polym. Sci. 134, 45318. doi: 10.1002/app.45318
    Glasser, W.G., Barnett, C.A., Rials, T.G., Saraf, V.P., 1984. Engineering plastics from lignin Ⅱ. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polym. Sci. 29, 1815-1830. doi: 10.1080/02773819308020508
    Glasser, W.G., Leitheiser, R.H, 1984. Engineering plastics from lignin. Polym. Bull. 12, 1-5. doi: 10.1007/BF00258264
    Glasser, W.G., Saraf, V.P., Newman, W.H., 1982. Hydroxy propylated lignin-isocyanate combinations as bonding agents for wood and cellulosic fibers. J. Adhesion 14, 233-255. doi: 10.1080/00218468208073206
    Gómez-Fernández, S., Ugarte, L., Calvo-Correas, T., Peña-Rodríguez, C., Corcuera, M.A., Eceiza, A., 2017. Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind. Crop. Prod. 100, 51-64. doi: 10.1016/j.indcrop.2017.02.005
    Griffini, G., Passoni, V., Suriano, R., Levi, M., Turri, S., 2015. Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustainable Chem. Eng. 3, 1145-1154. doi: 10.1021/acssuschemeng.5b00073
    Hatakeyama, H., 2002. Polyurethanes containing lignin. Chemical Modification, Properties, and Usage of Lignin. Boston, MA:Springer US, 41-56.
    Hu, S.J., Luo, X.L., Li, Y.B., 2014. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7, 66-72. doi: 10.1002/cssc.201300760
    Huang, J., Zhang, L.N., 2002. Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer 43, 2287-2294. doi: 10.1016/S0032-3861(02)00028-9
    Huo, S.P., Nie, M.C., Kong, Z.W., Wu, G.M., Chen, J., 2012. Crosslinking kinetics of the formation of lignin-aminated polyol-based polyurethane foam. J. Appl. Polym. Sci. 125, 152-157. doi: 10.1002/app.35401
    Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N., 2013. Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams. Fibers Polym. 14, 1301-1310. doi: 10.1007/s12221-013-1301-2
    Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N., Roh, H.G., 2013. Preparation and characterization of thermoplastic polyurethanes using partially acetylated kraft lignin. Fibers Polym. 14, 1082-1093. doi: 10.1007/s12221-013-1082-7
    Ji, D., Fang, Z., He, W., Zhang, K., Luo, Z.Y., Wang, T.W., Guo, K., 2015. Synthesis of soy-polyols using a continuous microflow system and preparation of soy-based polyurethane rigid foams. ACS Sustainable Chem. Eng. 3, 1197-1204. doi: 10.1021/acssuschemeng.5b00170
    Jia, Z., Lu, C.X., Zhou, P.C., Wang, L., 2015. Preparation and characterization of high boiling solvent lignin-based polyurethane film with lignin as the only hydroxyl group provider. RSC Adv. 5, 53949-53955. doi: 10.1039/C5RA09477A
    Jiang, X., Savithri, D., Du, X.Y., Pawar, S., Jameel, H., Chang, H.M., Zhou, X.F., 2017. Fractionation and characterization of kraft lignin by sequential precipitation with various organic solvents. ACS Sustainable Chem. Eng. 5, 835-842. doi: 10.1021/acssuschemeng.6b02174
    Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J., 2016. Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175-1200. doi: 10.1039/C5GC02616D
    Kelley, S.S., Glasser, W.G., Ward, T.C., 1988. Engineering plastics from lignin. XV. Polyurethane films from chain-extended hydroxypropyl lignin. J. Appl. Polym. Sci. 36, 759-772. http://www.onacademic.com/detail/journal_1000033759572610_c86e.html
    Kelley, S.S., Glasser, W.G., Ward, T.C., 1989a. Effect of soft-segment content on the properties of lignin-based polyurethanes. ACS Symposium Series. Washington, DC:American Chemical Society, 402-413.
    Kelley, S.S., Ward, T.C., Rials, T.G., Glasser, W.G., 1989b. Engineering plastics from lignin. XVⅡ. Effect of molecular weight on polyurethane film properties. J. Appl. Polym. Sci. 37, 2961-2971. doi: 10.1002/app.1989.070371014
    Kurańska, M., Pinto, J.A., Salach, K., Barreiro, M.F., Prociak, A., 2020. Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols:a comparative study. Ind. Crop. Prod. 143, 111882. doi: 10.1016/j.indcrop.2019.111882
    Laurichesse, S., Avérous, L., 2014. Chemical modification of lignins:towards biobased polymers. Prog. Polym. Sci. 39, 1266-1290. doi: 10.1016/j.progpolymsci.2013.11.004
    Laurichesse, S., Huillet, C., Avérous, L., 2014. Original polyols based on organosolv lignin and fatty acids:new bio-based building blocks for segmented polyurethane synthesis. Green Chem. 16, 3958-3970. doi: 10.1039/C4GC00596A
    Li, B., Zhou, M.Y., Huo, W.Z., Cai, D., Qin, P.Y., Cao, H., Tan, T.W, 2020a. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crop. Prod. 143, 111887. doi: 10.1016/j.indcrop.2019.111887
    Li, H., Sun, J.T., Wang, C., Liu, S.L., Yuan, D., Zhou, X., Tan, J., Stubbs, L., He, C.B., 2017. High Modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustainable Chem. Eng. 5, 7942-7949. doi: 10.1021/acssuschemeng.7b01481
    Li, H., Yuan, D., Tang, C.H., Wang, S.X., Sun, J.T., Li, Z.B., Tang, T., Wang, F.K., Gong, H., He, C.B., 2016. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151-157. doi: 10.1016/j.carbon.2015.12.075
    Li, H., Zhao, Y.H., Liu, S.Q., Li, P.C., Yuan, D., He, C.B., 2020b. Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors. Microporous Mesoporous Mater. 297, 109960. doi: 10.1016/j.micromeso.2019.109960
    Li, Y., Ragauskas, A.J., 2012a. Ethanol organosolv lignin-based rigid polyurethane foam reinforced with cellulose nanowhiskers. RSC Adv. 2, 3347. doi: 10.1039/c2ra00646d
    Li, Y., Ragauskas, A.J., 2012b. Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol. 32, 210-224. doi: 10.1080/02773813.2011.652795
    Liu, C.J., Wang, H.M., Karim, A.M., Sun, J.M., Wang, Y., 2014a. Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev. 43, 7594-7623. doi: 10.1039/C3CS60414D
    Liu, J., Liu, H.F., Deng, L., Liao, B., Guo, Q.X., 2013. Improving aging resistance and mechanical properties of waterborne polyurethanes modified by lignin amines. J. Appl. Polym. Sci. 130, 1736-1742. doi: 10.1002/app.39267
    Liu, W.F., Fang, C., Wang, S.Y., Huang, J.H., Qiu, X.Q., 2019. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks. Macromolecules 52, 6474-6484. doi: 10.1021/acs.macromol.9b01413
    Liu, W.J., Jiang, H., Yu, H.Q., 2015a. Thermochemical conversion of lignin to functional materials:a review and future directions. Green Chem. 17, 4888-4907. doi: 10.1039/C5GC01054C
    Liu, W.S., Zhou, R., Goh, H.L.S., Huang, S., Lu, X.H., 2014b. From waste to functional additive:toughening epoxy resin with lignin. ACS Appl. Mater. Interfaces 6, 5810-5817. doi: 10.1021/am500642n
    Liu, W.S., Zhou, R., Zhou, D., Ding, G.Q., Soah, J.M., Yue, C.Y., Lu, X.H., 2015b. Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83, 188-197. doi: 10.1016/j.carbon.2014.11.036
    Lovell, E.L., Hibbert, H., 1941. Studies on lignin and related compounds. LⅡ. New method for the fractionation of lignin and other polymers. J. Am. Chem. Soc. 63, 2070-2073. doi: 10.1021/ja01853a012
    Mahmood, N., Yuan, Z.S., Schmidt, J., (Charles) Xu, C., 2013. Production of polyols via direct hydrolysis of kraft lignin:Effect of process parameters. Bioresour. Technol. 139, 13-20. doi: 10.1016/j.biortech.2013.03.199
    Mahmood, N., Yuan, Z.S., Schmidt, J., Tymchyshyn, M., Xu, C.C., 2016a. Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem. 18, 2385-2398. doi: 10.1039/C5GC02876K
    Mahmood, N., Yuan, Z.S., Schmidt, J., Xu, C., 2015. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur. Polym. J. 68, 1-9. https://www.researchgate.net/publication/254371569_Kraft_Lignin-Based_Rigid_Polyurethane_Foam
    Mahmood, N., Yuan, Z.S., Schmidt, J., Xu, C.C., 2016b. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams:a review. Renew. Sustain. Energy Rev. 60, 317-329. doi: 10.1016/j.rser.2016.01.037
    Mohammadpour, R., Mir Mohamad Sadeghi, G., 2020. Effect of liquefied lignin content on synthesis of bio-based polyurethane foam for oil adsorption application. J. Polym. Environ. 28, 892-905. doi: 10.1007/s10924-019-01650-5
    Nadji, H., Bruzzèse, C., Belgacem, M.N., Benaboura, A., Gandini, A., 2005. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290, 1009-1016. doi: 10.1002/mame.200500200
    Naseem, A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M., Noreen, A., 2016. Lignin-derivatives based polymers, blends and composites:a review. Int. J. Biol. Macromol. 93, 296-313. doi: 10.1016/j.ijbiomac.2016.08.030
    Pan, X.J., Saddler, J.N., 2013. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 6, 12. doi: 10.1186/1754-6834-6-12
    Pandey, M.P., Kim, C.S., 2011. Lignin depolymerization and conversion:a review of thermochemical methods. Chem. Eng. Technol. 34, 29-41. doi: 10.1002/ceat.201000270
    Park, S.Y., Kim, J.Y., Youn, H.J., Choi, J.W., 2018. Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int. J. Biol. Macromol. 106, 793-802. doi: 10.1016/j.ijbiomac.2017.08.069
    Passoni, V., Scarica, C., Levi, M., Turri, S., Griffini, G., 2016. Fractionation of industrial softwood kraft lignin:solvent selection as a tool for tailored material properties. ACS Sustainable Chem. Eng. 4, 2232-2242. doi: 10.1021/acssuschemeng.5b01722
    Ponnusamy, V.K., Nguyen, D.D., Dharmaraja, J., Shobana, S., Banu, J.R., Saratale, R.G., Chang, S.W., Kumar, G., 2019. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 271, 462-472. doi: 10.1016/j.biortech.2018.09.070
    Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin:a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320-324. doi: 10.1039/C4GC01333F
    Reimann, A., Mörck, R., Yoshida, H., Hatakeyama, H., Kringstad, K.P., 1990. Kraft lignin in polyurethanes. Ⅲ. Effects of the molecular weight of PEG on the properties of polyurethanes from a kraft lignin-PEG-MDI system. J. Appl. Polym. Sci. 41, 39-50.
    Sadeghifar, H., Wells, T., Le, R.K., Sadeghifar, F., Yuan, J.S., Jonas Ragauskas, A., 2017. Fractionation of organosolv lignin using acetone:water and properties of the obtained fractions. ACS Sustainable Chem. Eng. 5, 580-587. doi: 10.1021/acssuschemeng.6b01955
    Saito, T., Brown, R.H., Hunt, M.A., Pickel, D.L., Pickel, J.M., Messman, J.M., Baker, F.S., Keller, M., Naskar, A.K., 2012. Turning renewable resources into value-added polymer:development of lignin-based thermoplastic. Green Chem. 14, 3295. doi: 10.1039/c2gc35933b
    Saito, T., Perkins, J.H., Jackson, D.C., Trammel, N.E., Hunt, M.A., Naskar, A.K., 2013. Development of lignin-based polyurethane thermoplastics. RSC Adv. 3, 21832. doi: 10.1039/c3ra44794d
    Saito, T., Perkins, J.H., Vautard, F., Meyer, H.M., Messman, J.M., Tolnai, B., Naskar, A.K., 2014. Methanol fractionation of softwood kraft lignin:impact on the lignin properties. ChemSusChem 7, 221-228. doi: 10.1002/cssc.201300509
    Saraf, V.P., Glasser, W.G., 1984. Engineering plastics from lignin. Ⅲ. Structure property relationships in solution cast polyurethane films. J. Appl. Polym. Sci. 29, 1831-1841. doi: 10.1002/app.1984.070290534
    Saraf, V.P., Glasser, W.G., Wilkes, G.L., McGrath, J.E., 1985. Engineering plastics from lignin. Ⅵ. Structure-property relationships of PEG-containing polyurethane networks. J. Appl. Polym. Sci. 30, 2207-2224. doi: 10.1002/app.1985.070300533
    Sen, S., Patil, S., Argyropoulos, D.S., 2015. Thermal properties of lignin in copolymers, blends, and composites:a review. Green Chem. 17, 4862-4887. doi: 10.1039/C5GC01066G
    Seyed Shahabadi, S.I., Kong, J.H., Lu, X.H., 2017. Aqueous-only, green route to self-healable, UV-resistant, and electrically conductive polyurethane/graphene/lignin nanocomposite coatings. ACS Sustainable Chem. Eng. 5, 3148-3157. doi: 10.1021/acssuschemeng.6b02941
    Sun, J.T., Li, H., Wang, C., Yuan, D., Stubbs, L.P., He, C.B., 2016a. The effect of residual SolventN, N'-dimethylformamide on the curing reaction and mechanical properties of epoxy and lignin epoxy composites. Macromol. Chem. Phys. 217, 1065-1073. doi: 10.1002/macp.201500453
    Sun, J.T., Wang, C., Stubbs, L.P., He, C.B., 2017. Carboxylated lignin as an effective cohardener for enhancing strength and toughness of epoxy. Macromol. Mater. Eng. 302, 1700341. doi: 10.1002/mame.201700341
    Sun, J.T., Wang, C., Yeo, J.C.C., Yuan, D., Li, H., Stubbs, L.P., He, C.B., 2016b. Lignin epoxy composites:preparation, morphology, and mechanical properties. Macromol. Mater. Eng. 301, 328-336. doi: 10.1002/mame.201500310
    Sun, Y., Yang, L.P., Lu, X.H., He, C.B., 2015. Biodegradable and renewable poly(lactide)-lignin composites:synthesis, interface and toughening mechanism. J. Mater. Chem. A 3, 3699-3709. doi: 10.1039/C4TA05991C
    Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R., 2014. Progress in green polymer composites from lignin for multifunctional applications:a review. ACS Sustainable Chem. Eng. 2, 1072-1092. doi: 10.1021/sc500087z
    Thring, R.W., Vanderlaan, M.N., Griffin, S.L., 1996. Fractionation of alcell® lignin by sequential solvent extraction. J. Wood Chem. Technol. 16, 139-154. doi: 10.1080/02773819608545815
    Thring, R.W., Vanderlaan, M.N., Griffin, S.L., 1997. Polyurethanes from alcell® lignin. Biomass Bioenergy 13, 125-132. doi: 10.1016/S0961-9534(97)00030-5
    Upton, B.M., Kasko, A.M., 2016. Strategies for the conversion of lignin to high-value polymeric materials:review and perspective. Chem. Rev. 116, 2275-2306. doi: 10.1021/acs.chemrev.5b00345
    Vanderlaan, M.N., Thring, R.W., 1998. Polyurethanes from Alcell® lignin fractions obtained by sequential solvent extraction. Biomass Bioenergy 14, 525-531. doi: 10.1016/S0961-9534(97)10058-7
    Wang, C., Kelley, S.S., Venditti, R.A., 2016. Lignin-based thermoplastic materials. ChemSusChem 9, 770-783. doi: 10.1002/cssc.201501531
    Wang, H., Lin, W.S., Qiu, X.Q., Fu, F.B., Zhong, R.S., Liu, W.F., Yang, D.J., 2018a. In situ synthesis of flowerlike lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane. ACS Sustainable Chem. Eng. 6, 3696-3705. doi: 10.1021/acssuschemeng.7b04038
    Wang, H., Qiu, X.Q., Liu, W.F., Fu, F.B., Yang, D.J., 2017. A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating. Ind. Eng. Chem. Res. 56, 11133-11141. doi: 10.1021/acs.iecr.7b02425
    Wang, S.X., Yang, L.P., Stubbs, L.P., Li, X., He, C.B., 2013a. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for Lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12275-12282. doi: 10.1021/am4043867
    Wang, S.Y., Liu, W.F., Yang, D.J., Qiu, X.Q., 2019a. Highly resilient lignin-containing polyurethane foam. Ind. Eng. Chem. Res. 58, 496-504. doi: 10.1021/acs.iecr.8b05072
    Wang, Y.Y., Li, M., Wyman, C.E., Cai, C.M., Ragauskas, A.J., 2018b. Fast fractionation of technical lignins by organic cosolvents. ACS Sustainable Chem. Eng. 6, 6064-6072. doi: 10.1021/acssuschemeng.7b04546
    Wang, Y.Y., Wyman, C.E., Cai, C.M., Ragauskas, A.J., 2019b. Lignin-based polyurethanes from unmodified kraft lignin fractionated by sequential precipitation. ACS Appl. Polym. Mater. 1, 1672-1679. doi: 10.1021/acsapm.9b00228
    Wang, Z.M., Yang, X.H., Zhou, Y.H., Liu, C.G., 2013b. Mechanical and thermal properties of polyurethane films from peroxy-acid wheat straw lignin. BioResources 8, 3833-3843. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_08_3_3833_Wang_Mechanical_Thermal_Polyurethane_Film
    Wu, LeoC.F., Glasser, W.G., 1984. Engineering plastics from lignin. Ⅰ. Synthesis of hydroxypropyl lignin. J. Appl. Polym. Sci. 29, 1111-1123. doi: 10.1002/app.1984.070290408
    Xiong, W.L., Qiu, X.Q., Yang, D.J., Zhong, R.S., Qian, Y., Li, Y.Y., Wang, H., 2017. A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate. Chem. Eng. J. 326, 803-810. doi: 10.1016/j.cej.2017.05.041
    Xu, C.B., Ferdosian, F., 2017. Lignin-based polyurethane (PU) resins and foams. Green Chemistry and Sustainable Technology. Berlin, Heidelberg:Springer Berlin Heidelberg, 133-156.
    Xu, C.P., Arancon, R.A.D., Labidi, J., Luque, R., 2014. Lignin depolymerisation strategies:towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485-7500. doi: 10.1039/C4CS00235K
    Xue, B.L., Huang, P.L., Sun, Y.C., Li, X.P., Sun, R.C., 2017. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv. 7, 6123-6130. doi: 10.1039/C6RA26318F
    Xue, B.L., Wen, J.L., Sun, R.C., 2014. Lignin-based rigid polyurethane foam reinforced with pulp fiber:synthesis and characterization. ACS Sustainable Chem. Eng. 2, 1474-1480. doi: 10.1021/sc5001226
    Yang, D.J., Wang, S.Y., Zhong, R.S., Liu, W.F., Qiu, X.Q., 2019. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Front. Chem. Sci. Eng. 13, 59-69. doi: 10.1007/s11705-018-1712-0
    Yang, L., Wang, X.F., Cui, Y., Tian, Y.M., Chen, H.Z., Wang, Z.C., 2014a. Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams. Polym. Adv. Technol. 25, 1089-1098. doi: 10.1002/pat.3356
    Yang, Y., Deng, Y.H., Tong, Z., Wang, C.Y., 2014b. Renewable lignin-based xerogels with self-cleaning properties and superhydrophobicity. ACS Sustainable Chem. Eng. 2, 1729-1733. doi: 10.1021/sc500250b
    Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1987a. Fractionation of kraft lignin by successive extraction with organic solvents. Ⅱ. thermal properties of kraft lignin fractions. Holzforschung 41, 171-176. doi: 10.1515/hfsg.1987.41.3.171
    Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1987b. Kraft lignin in polyurethanes Ⅰ. Mechanical properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 34, 1187-1198. doi: 10.1002/app.1987.070340326
    Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1990. Kraft lignin in polyurethanes. Ⅱ. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 40, 1819-1832. doi: 10.1002/app.1990.070401102
    Yu, P., He, H., Jiang, C., Jia, Y.C., Wang, D.Q., Yao, X.J., Jia, D.M., Luo, Y.F., 2016. Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin. J. Appl. Polym. Sci. 133, 42922. doi: 10.1002/app.42922
    Zhang, C.Q., Wu, H.C., Kessler, M.R., 2015a. High bio-content polyurethane composites with urethane modified lignin as filler. Polymer 69, 52-57. doi: 10.1016/j.polymer.2015.05.046
    Zhang, L.N., Huang, J., 2001a. Effects of hard-segment compositions on properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 81, 3251-3259. doi: 10.1002/app.1780
    Zhang, L.N., Huang, J., 2001b. Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 80, 1213-1219. doi: 10.1002/app.1206
    Zhang, N., Li, Z., Xiao, Y.N., Pan, Z., Jia, P.Y., Feng, G.D., Bao, C.Y., Zhou, Y.H., Hua, L.L., 2020. Lignin-based phenolic resin modified with whisker silicon and its ap-plication. J. Bioresour. Bioprod. 5, 69-77. http://www.sciencedirect.com/science/article/pii/S236996982030058X
    Zhang, Q.Q., Zhang, G.Y., Xu, J., Gao, C.H., Wu, Y.M., 2015b. Recent advances on ligin-derived polyurethane polymers. Rev. Adv. Mater. Sci. 40, 146-154. http://www.researchgate.net/publication/281653548_Recent_advances_on_ligin-derived_polyurethane_polymers
    Zhang, X.F., Kim, Y., Elsayed, I., Taylor, M., Eberhardt, T.L., Hassan, E.B., Shmulsky, R, 2019a. Rigid polyurethane foams containing lignin oxyalkylated with ethylene carbonate and polyethylene glycol. Ind. Crop. Prod. 141, 111797. doi: 10.1016/j.indcrop.2019.111797
    Zhang, Y., Liao, J.J., Fang, X.C., Bai, F.D., Qiao, K., Wang, L.M., 2017. Renewable high-performance polyurethane bioplastics derived from lignin-poly(ε-caprolactone). ACS Sustainable Chem. Eng. 5, 4276-4284. doi: 10.1021/acssuschemeng.7b00288
    Zhang, Y., Wang, J.Y., Fang, X.C., Liao, J.J., Zhou, X., Zhou, S.M., Bai, F.D., Peng, S.Z., 2019b. High solid content production of environmentally benign ultra-thin lignin-based polyurethane films:Plasticization and degradation. Polymer 178, 121572. doi: 10.1016/j.polymer.2019.121572
    Zhang, Y.M., Yan, R., Ngo, T.D., Zhao, Q., Duan, J.C., Du, X.W., Wang, Y.L., Liu, B.J., Sun, Z.Y., Hu, W., Xie, H.M, 2019c. Ozone oxidized lignin-based polyurethane with improved properties. Eur. Polym. J. 117, 114-122. doi: 10.1016/j.eurpolymj.2019.05.006
    Zhou, W.P., Chen, F.G., Zhang, H., Wang, J., 2017. Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. J. Wood Chem. Technol. 37, 323-333. doi: 10.1080/02773813.2017.1299185
    Zou, C., Ma, H.Z., Guo, Y.P., Guo, D.L., Xu, G.X., 2018. Catalytic depolymerization/degradation of alkali lignin by dual-component catalysts in supercritical ethanol. J. Bioresour. Bioprod. 3, 18-24. doi: 10.21967/jbb.v3i1.161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (2321) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return