Volume 5 Issue 3
Jul.  2020
Article Contents
Turn off MathJax

Citation:

Conversion of Biomass Lignin to High-value Polyurethane: A Review

  • Corresponding author: Chaobin He, msehc@nus.edu.sg
  • Received Date: 2020-03-13
    Accepted Date: 2020-04-29
    Fund Project:

    No. 51903194), Hubei Provincial Natural Science Foundation of China (No. 2019CFB190), and Youths Science Foundation of Wuhan Institute of Technology (No. K201803).

    This work is supported by National Natural Science Foundation of China (No. 51803156

  • Lignin, as a major by-product of pulp and paper industry, has attracted extensive interest for the preparation of high value-added products, due to the merits of abundant, sustainable, inexpensive, and unique functional groups. This review focuses on the strategies to develop high performance polyurethane (PU) materials from lignin on the basis of main reports, in which lignin was used not only as macromonomer to substitute petroleum-based polyols, but also as blending filler for PU industry. Pre-treatment approaches, especially lignin fractions extracted with various solvents and chemical modifications, e.g., depolymerization, hydroxyalkylation, dealkylation, and esterication, were widely explored to enable lignin more reactive and available to synthesize PU products. In addition, lignin/PU blends were also prepared to fulfill industrial demand. With adjustment of lignin structure, the PU formulation, and synthesis procedures, various lignin-based PU products with advanced properties and a higher bio-substitution ratio have been developed, demonstrating the potential industrial application of lignin for high value-added sustainable materials.
  • 加载中
  • [1]

    Ahvazi, B., Wojciechowicz, O., Ton-That, T.M., Hawari, J., 2011. Preparation of lignopolyols from wheat straw soda lignin. J. Agric. Food Chem. 59, 10505-10516.
    [2]

    Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Islam, M.R., Jeyaratnam, N., Yuvaraj, A.R., 2016. Polyurethane types, synthesis and applications-A review. RSC Adv. 6, 114453-114482.
    [3]

    Arshanitsa, A., Krumina, L., Telysheva, G., Dizhbite, T., 2016. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crop. Prod. 92, 1-12.
    [4]

    Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A., 2013. Liquid fuels, hydrogen and chemicals from lignin:a critical review. Renew. Sustain. Energy Rev. 21, 506-523.
    [5]

    Azwar, E., Wan Mahari, W.A., Chuah, J.H., Vo, D.V.N., Ma, N.L., Lam, W.H., Lam, S.S., 2018. Transformation of biomass into carbon nanofiber for supercapacitor application-A review. Int. J. Hydrog. Energy 43, 20811-20821.
    [6]

    Bernardini, J., Cinelli, P., Anguillesi, I., Coltelli, M.B., Lazzeri, A, 2015. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 64, 147-156.
    [7]

    Bonini, C., D'Auria, M., Emanuele, L., Ferri, R., Pucciariello, R., Sabia, A.R., 2005. Polyurethanes and polyesters from lignin. J. Appl. Polym. Sci. 98, 1451-1456.
    [8]

    Brodin, M., Vallejos, M., Opedal, M.T., Area, M.C., Chinga-Carrasco, G., 2017. Lignocellulosics as sustainable resources for production of bioplastics-A review. J. Clean. Prod. 162, 646-664.
    [9]

    Cao, L.C., Yu, I.K.M., Liu, Y.Y., Ruan, X.X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S.C., 2018. Lignin valorization for the production of renewable chemicals:state-of-the-art review and future prospects. Bioresour. Technol. 269, 465-475.
    [10]

    Carriço, C.S., Fraga, T., Pasa, V.M.D, 2016. Production and characterization of polyurethane foams from a simple mixture of Castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53-61.
    [11]

    Chakar, F.S., Ragauskas, A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod. 20, 131-141.
    [12]

    Chen, J.C., Yang, G.H., Ji, X.X., Wang, Q., 2017. Efficient utilization of lignocellulosic resources on the basis of pulp and paper processes, J. Bioresour. Bioprod. 2, 186-187.
    [13]

    Chen, Y.C., Fu, S.Y., Zhang, H, 2020. Signally improvement of polyurethane adhesive with hydroxy-enriched lignin from bagasse. Colloids Surfaces A:Physicochem. Eng. Aspects 585, 124164.
    [14]

    Cheng, S.N., Wilks, C., Yuan, Z.S., Leitch, M., Xu, C.C., 2012. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water-ethanol co-solvent. Polym. Degrad. Stab. 97, 839-848.
    [15]

    Cheradame, H., Detoisien, M., Gandini, A., Pla, F., Roux, G., 1989. Polyurethane from kraft lignin. Brit. Poly. J. 21, 269-275.
    [16]

    Chio, C., Sain, M., Qin, W.S., 2019. Lignin utilization:a review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 107, 232-249.
    [17]

    Chiou, B.S., Schoen, P.E., 2002. Effects of crosslinking on thermal and mechanical properties of polyurethanes. J. Appl. Polym. Sci. 83, 212-223.
    [18]

    Chung, H., Washburn, N.R., 2012. Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interfaces 4, 2840-2846.
    [19]

    Cinelli, P., Anguillesi, I., Lazzeri, A., 2013. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J. 49, 1174-1184.
    [20]

    Ciobanu, C., Ungureanu, M., Ignat, L., Ungureanu, D., Popa, V.I., 2004. Properties of lignin-polyurethane films prepared by casting method. Ind. Crop. Prod. 20, 231-241.
    [21]

    Collins, M.N., Nechifor, M., Tanasă, F., Zănoagă, M., McLoughlin, A., Stróżyk, M.A., Culebras, M., Teacă, C.A., 2019. Valorization of lignin in polymer and composite systems for advanced engineering applications-A review. Int. J. Biol. Macromol. 131, 828-849.
    [22]

    Constant, S., Wienk, H.L.J., Frissen, A.E., de Peinder, P., Boelens, R., van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A., Bruijnincx, P.C.A., 2016. New insights into the structure and composition of technical lignins:a comparative characterisation study. Green Chem. 18, 2651-2665.
    [23]

    Cui, C.Z., Sun, R.K., Argyropoulos, D.S., 2014. Fractional precipitation of softwood kraft lignin:isolation of narrow fractions common to a variety of lignins. ACS Sustainable Chem. Eng. 2, 959-968.
    [24]

    da Silva, E.A.B., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E., 2009. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 87, 1276-1292.
    [25]

    de Haro, J.C., Allegretti, C., Smit, A.T., Turri, S., D'Arrigo, P., Griffini, G., 2019. Biobased polyurethane coatings with high biomass content:tailored properties by lignin selection. ACS Sustainable Chem. Eng. 7, 11700-11711.
    [26]

    Duong, L.D., Nam, G.Y., Oh, J.S., Park, I.K., Luong, N.D., Yoon, H.K., Lee, S.H., Lee, Y., Yun, J.H., Lee, C.G., Hwang, S.H., Nam, J.D., 2014. High molecular-weight thermoplastic polymerization of kraft lignin macromers with diisocyanate. BioResources 9, 2359-2371.
    [27]

    Evtuguin, D.V., Andreolety, J.P., Gandini, A, 1998. Polyurethanes based on oxygen-organosolv lignin. Eur. Polym. J. 34, 1163-1169.
    [28]

    Feldman, D., Lacasse, M.A., 1989. Morphology of lignin-polyurethane blends. MRS Proc. 153, 193.
    [29]

    Feldman, D., Lacasse, M.A., 1994. Polymer-filler interaction in polyurethane kraft lignin polyblends. J. Appl. Polym. Sci. 51, 701-709.
    [30]

    Gadhave, R.V., Mahanwar, P.A., Gadekar, P.T., 2018. Lignin-polyurethane based biodegradable foam. Open J. Polym. Chem. 8, 1-10.
    [31]

    Gandini, A., Lacerda, T.M., 2015. From monomers to polymers from renewable resources:recent advances. Prog. Polym. Sci. 48, 1-39.
    [32]

    Gandini, A., Lacerda, T.M., Carvalho, A.J.F., Trovatti, E., 2016. Progress of polymers from renewable resources:furans, vegetable oils, and polysaccharides. Chem. Rev. 116, 1637-1669.
    [33]

    Garcia Gonzalez, M.N., Levi, M., Turri, S., Griffini, G., 2017. Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J. Appl. Polym. Sci. 134, 45318.
    [34]

    Glasser, W.G., Barnett, C.A., Rials, T.G., Saraf, V.P., 1984. Engineering plastics from lignin Ⅱ. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polym. Sci. 29, 1815-1830.
    [35]

    Glasser, W.G., Leitheiser, R.H, 1984. Engineering plastics from lignin. Polym. Bull. 12, 1-5.
    [36]

    Glasser, W.G., Saraf, V.P., Newman, W.H., 1982. Hydroxy propylated lignin-isocyanate combinations as bonding agents for wood and cellulosic fibers. J. Adhesion 14, 233-255.
    [37]

    Gómez-Fernández, S., Ugarte, L., Calvo-Correas, T., Peña-Rodríguez, C., Corcuera, M.A., Eceiza, A., 2017. Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind. Crop. Prod. 100, 51-64.
    [38]

    Griffini, G., Passoni, V., Suriano, R., Levi, M., Turri, S., 2015. Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustainable Chem. Eng. 3, 1145-1154.
    [39]

    Hatakeyama, H., 2002. Polyurethanes containing lignin. Chemical Modification, Properties, and Usage of Lignin. Boston, MA:Springer US, 41-56.
    [40]

    Hu, S.J., Luo, X.L., Li, Y.B., 2014. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7, 66-72.
    [41]

    Huang, J., Zhang, L.N., 2002. Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer 43, 2287-2294.
    [42]

    Huo, S.P., Nie, M.C., Kong, Z.W., Wu, G.M., Chen, J., 2012. Crosslinking kinetics of the formation of lignin-aminated polyol-based polyurethane foam. J. Appl. Polym. Sci. 125, 152-157.
    [43]

    Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N., 2013. Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams. Fibers Polym. 14, 1301-1310.
    [44]

    Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N., Roh, H.G., 2013. Preparation and characterization of thermoplastic polyurethanes using partially acetylated kraft lignin. Fibers Polym. 14, 1082-1093.
    [45]

    Ji, D., Fang, Z., He, W., Zhang, K., Luo, Z.Y., Wang, T.W., Guo, K., 2015. Synthesis of soy-polyols using a continuous microflow system and preparation of soy-based polyurethane rigid foams. ACS Sustainable Chem. Eng. 3, 1197-1204.
    [46]

    Jia, Z., Lu, C.X., Zhou, P.C., Wang, L., 2015. Preparation and characterization of high boiling solvent lignin-based polyurethane film with lignin as the only hydroxyl group provider. RSC Adv. 5, 53949-53955.
    [47]

    Jiang, X., Savithri, D., Du, X.Y., Pawar, S., Jameel, H., Chang, H.M., Zhou, X.F., 2017. Fractionation and characterization of kraft lignin by sequential precipitation with various organic solvents. ACS Sustainable Chem. Eng. 5, 835-842.
    [48]

    Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J., 2016. Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175-1200.
    [49]

    Kelley, S.S., Glasser, W.G., Ward, T.C., 1988. Engineering plastics from lignin. XV. Polyurethane films from chain-extended hydroxypropyl lignin. J. Appl. Polym. Sci. 36, 759-772.
    [50]

    Kelley, S.S., Glasser, W.G., Ward, T.C., 1989a. Effect of soft-segment content on the properties of lignin-based polyurethanes. ACS Symposium Series. Washington, DC:American Chemical Society, 402-413.
    [51]

    Kelley, S.S., Ward, T.C., Rials, T.G., Glasser, W.G., 1989b. Engineering plastics from lignin. XVⅡ. Effect of molecular weight on polyurethane film properties. J. Appl. Polym. Sci. 37, 2961-2971.
    [52]

    Kurańska, M., Pinto, J.A., Salach, K., Barreiro, M.F., Prociak, A., 2020. Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols:a comparative study. Ind. Crop. Prod. 143, 111882.
    [53]

    Laurichesse, S., Avérous, L., 2014. Chemical modification of lignins:towards biobased polymers. Prog. Polym. Sci. 39, 1266-1290.
    [54]

    Laurichesse, S., Huillet, C., Avérous, L., 2014. Original polyols based on organosolv lignin and fatty acids:new bio-based building blocks for segmented polyurethane synthesis. Green Chem. 16, 3958-3970.
    [55]

    Li, B., Zhou, M.Y., Huo, W.Z., Cai, D., Qin, P.Y., Cao, H., Tan, T.W, 2020a. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crop. Prod. 143, 111887.
    [56]

    Li, H., Sun, J.T., Wang, C., Liu, S.L., Yuan, D., Zhou, X., Tan, J., Stubbs, L., He, C.B., 2017. High Modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustainable Chem. Eng. 5, 7942-7949.
    [57]

    Li, H., Yuan, D., Tang, C.H., Wang, S.X., Sun, J.T., Li, Z.B., Tang, T., Wang, F.K., Gong, H., He, C.B., 2016. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151-157.
    [58]

    Li, H., Zhao, Y.H., Liu, S.Q., Li, P.C., Yuan, D., He, C.B., 2020b. Hierarchical porous carbon monolith derived from lignin for high areal capacitance supercapacitors. Microporous Mesoporous Mater. 297, 109960.
    [59]

    Li, Y., Ragauskas, A.J., 2012a. Ethanol organosolv lignin-based rigid polyurethane foam reinforced with cellulose nanowhiskers. RSC Adv. 2, 3347.
    [60]

    Li, Y., Ragauskas, A.J., 2012b. Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol. 32, 210-224.
    [61]

    Liu, C.J., Wang, H.M., Karim, A.M., Sun, J.M., Wang, Y., 2014a. Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev. 43, 7594-7623.
    [62]

    Liu, J., Liu, H.F., Deng, L., Liao, B., Guo, Q.X., 2013. Improving aging resistance and mechanical properties of waterborne polyurethanes modified by lignin amines. J. Appl. Polym. Sci. 130, 1736-1742.
    [63]

    Liu, W.F., Fang, C., Wang, S.Y., Huang, J.H., Qiu, X.Q., 2019. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks. Macromolecules 52, 6474-6484.
    [64]

    Liu, W.J., Jiang, H., Yu, H.Q., 2015a. Thermochemical conversion of lignin to functional materials:a review and future directions. Green Chem. 17, 4888-4907.
    [65]

    Liu, W.S., Zhou, R., Goh, H.L.S., Huang, S., Lu, X.H., 2014b. From waste to functional additive:toughening epoxy resin with lignin. ACS Appl. Mater. Interfaces 6, 5810-5817.
    [66]

    Liu, W.S., Zhou, R., Zhou, D., Ding, G.Q., Soah, J.M., Yue, C.Y., Lu, X.H., 2015b. Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83, 188-197.
    [67]

    Lovell, E.L., Hibbert, H., 1941. Studies on lignin and related compounds. LⅡ. New method for the fractionation of lignin and other polymers. J. Am. Chem. Soc. 63, 2070-2073.
    [68]

    Mahmood, N., Yuan, Z.S., Schmidt, J., (Charles) Xu, C., 2013. Production of polyols via direct hydrolysis of kraft lignin:Effect of process parameters. Bioresour. Technol. 139, 13-20.
    [69]

    Mahmood, N., Yuan, Z.S., Schmidt, J., Tymchyshyn, M., Xu, C.C., 2016a. Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem. 18, 2385-2398.
    [70]

    Mahmood, N., Yuan, Z.S., Schmidt, J., Xu, C., 2015. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur. Polym. J. 68, 1-9.
    [71]

    Mahmood, N., Yuan, Z.S., Schmidt, J., Xu, C.C., 2016b. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams:a review. Renew. Sustain. Energy Rev. 60, 317-329.
    [72]

    Mohammadpour, R., Mir Mohamad Sadeghi, G., 2020. Effect of liquefied lignin content on synthesis of bio-based polyurethane foam for oil adsorption application. J. Polym. Environ. 28, 892-905.
    [73]

    Nadji, H., Bruzzèse, C., Belgacem, M.N., Benaboura, A., Gandini, A., 2005. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290, 1009-1016.
    [74]

    Naseem, A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M., Noreen, A., 2016. Lignin-derivatives based polymers, blends and composites:a review. Int. J. Biol. Macromol. 93, 296-313.
    [75]

    Pan, X.J., Saddler, J.N., 2013. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 6, 12.
    [76]

    Pandey, M.P., Kim, C.S., 2011. Lignin depolymerization and conversion:a review of thermochemical methods. Chem. Eng. Technol. 34, 29-41.
    [77]

    Park, S.Y., Kim, J.Y., Youn, H.J., Choi, J.W., 2018. Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int. J. Biol. Macromol. 106, 793-802.
    [78]

    Passoni, V., Scarica, C., Levi, M., Turri, S., Griffini, G., 2016. Fractionation of industrial softwood kraft lignin:solvent selection as a tool for tailored material properties. ACS Sustainable Chem. Eng. 4, 2232-2242.
    [79]

    Ponnusamy, V.K., Nguyen, D.D., Dharmaraja, J., Shobana, S., Banu, J.R., Saratale, R.G., Chang, S.W., Kumar, G., 2019. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 271, 462-472.
    [80]

    Qian, Y., Qiu, X.Q., Zhu, S.P., 2015. Lignin:a nature-inspired Sun blocker for broad-spectrum sunscreens. Green Chem. 17, 320-324.
    [81]

    Reimann, A., Mörck, R., Yoshida, H., Hatakeyama, H., Kringstad, K.P., 1990. Kraft lignin in polyurethanes. Ⅲ. Effects of the molecular weight of PEG on the properties of polyurethanes from a kraft lignin-PEG-MDI system. J. Appl. Polym. Sci. 41, 39-50.
    [82]

    Sadeghifar, H., Wells, T., Le, R.K., Sadeghifar, F., Yuan, J.S., Jonas Ragauskas, A., 2017. Fractionation of organosolv lignin using acetone:water and properties of the obtained fractions. ACS Sustainable Chem. Eng. 5, 580-587.
    [83]

    Saito, T., Brown, R.H., Hunt, M.A., Pickel, D.L., Pickel, J.M., Messman, J.M., Baker, F.S., Keller, M., Naskar, A.K., 2012. Turning renewable resources into value-added polymer:development of lignin-based thermoplastic. Green Chem. 14, 3295.
    [84]

    Saito, T., Perkins, J.H., Jackson, D.C., Trammel, N.E., Hunt, M.A., Naskar, A.K., 2013. Development of lignin-based polyurethane thermoplastics. RSC Adv. 3, 21832.
    [85]

    Saito, T., Perkins, J.H., Vautard, F., Meyer, H.M., Messman, J.M., Tolnai, B., Naskar, A.K., 2014. Methanol fractionation of softwood kraft lignin:impact on the lignin properties. ChemSusChem 7, 221-228.
    [86]

    Saraf, V.P., Glasser, W.G., 1984. Engineering plastics from lignin. Ⅲ. Structure property relationships in solution cast polyurethane films. J. Appl. Polym. Sci. 29, 1831-1841.
    [87]

    Saraf, V.P., Glasser, W.G., Wilkes, G.L., McGrath, J.E., 1985. Engineering plastics from lignin. VI. Structure-property relationships of PEG-containing polyurethane networks. J. Appl. Polym. Sci. 30, 2207-2224.
    [88]

    Sen, S., Patil, S., Argyropoulos, D.S., 2015. Thermal properties of lignin in copolymers, blends, and composites:a review. Green Chem. 17, 4862-4887.
    [89]

    Seyed Shahabadi, S.I., Kong, J.H., Lu, X.H., 2017. Aqueous-only, green route to self-healable, UV-resistant, and electrically conductive polyurethane/graphene/lignin nanocomposite coatings. ACS Sustainable Chem. Eng. 5, 3148-3157.
    [90]

    Sun, J.T., Li, H., Wang, C., Yuan, D., Stubbs, L.P., He, C.B., 2016a. The effect of residual SolventN, N'-dimethylformamide on the curing reaction and mechanical properties of epoxy and lignin epoxy composites. Macromol. Chem. Phys. 217, 1065-1073.
    [91]

    Sun, J.T., Wang, C., Stubbs, L.P., He, C.B., 2017. Carboxylated lignin as an effective cohardener for enhancing strength and toughness of epoxy. Macromol. Mater. Eng. 302, 1700341.
    [92]

    Sun, J.T., Wang, C., Yeo, J.C.C., Yuan, D., Li, H., Stubbs, L.P., He, C.B., 2016b. Lignin epoxy composites:preparation, morphology, and mechanical properties. Macromol. Mater. Eng. 301, 328-336.
    [93]

    Sun, Y., Yang, L.P., Lu, X.H., He, C.B., 2015. Biodegradable and renewable poly(lactide)-lignin composites:synthesis, interface and toughening mechanism. J. Mater. Chem. A 3, 3699-3709.
    [94]

    Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R., 2014. Progress in green polymer composites from lignin for multifunctional applications:a review. ACS Sustainable Chem. Eng. 2, 1072-1092.
    [95]

    Thring, R.W., Vanderlaan, M.N., Griffin, S.L., 1996. Fractionation of alcell® lignin by sequential solvent extraction. J. Wood Chem. Technol. 16, 139-154.
    [96]

    Thring, R.W., Vanderlaan, M.N., Griffin, S.L., 1997. Polyurethanes from alcell® lignin. Biomass Bioenergy 13, 125-132.
    [97]

    Upton, B.M., Kasko, A.M., 2016. Strategies for the conversion of lignin to high-value polymeric materials:review and perspective. Chem. Rev. 116, 2275-2306.
    [98]

    Vanderlaan, M.N., Thring, R.W., 1998. Polyurethanes from Alcell® lignin fractions obtained by sequential solvent extraction. Biomass Bioenergy 14, 525-531.
    [99]

    Wang, C., Kelley, S.S., Venditti, R.A., 2016. Lignin-based thermoplastic materials. ChemSusChem 9, 770-783.
    [100]

    Wang, H., Lin, W.S., Qiu, X.Q., Fu, F.B., Zhong, R.S., Liu, W.F., Yang, D.J., 2018a. In situ synthesis of flowerlike lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane. ACS Sustainable Chem. Eng. 6, 3696-3705.
    [101]

    Wang, H., Qiu, X.Q., Liu, W.F., Fu, F.B., Yang, D.J., 2017. A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating. Ind. Eng. Chem. Res. 56, 11133-11141.
    [102]

    Wang, S.X., Yang, L.P., Stubbs, L.P., Li, X., He, C.B., 2013a. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for Lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12275-12282.
    [103]

    Wang, S.Y., Liu, W.F., Yang, D.J., Qiu, X.Q., 2019a. Highly resilient lignin-containing polyurethane foam. Ind. Eng. Chem. Res. 58, 496-504.
    [104]

    Wang, Y.Y., Li, M., Wyman, C.E., Cai, C.M., Ragauskas, A.J., 2018b. Fast fractionation of technical lignins by organic cosolvents. ACS Sustainable Chem. Eng. 6, 6064-6072.
    [105]

    Wang, Y.Y., Wyman, C.E., Cai, C.M., Ragauskas, A.J., 2019b. Lignin-based polyurethanes from unmodified kraft lignin fractionated by sequential precipitation. ACS Appl. Polym. Mater. 1, 1672-1679.
    [106]

    Wang, Z.M., Yang, X.H., Zhou, Y.H., Liu, C.G., 2013b. Mechanical and thermal properties of polyurethane films from peroxy-acid wheat straw lignin. BioResources 8, 3833-3843.
    [107]

    Wu, LeoC.F., Glasser, W.G., 1984. Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin. J. Appl. Polym. Sci. 29, 1111-1123.
    [108]

    Xiong, W.L., Qiu, X.Q., Yang, D.J., Zhong, R.S., Qian, Y., Li, Y.Y., Wang, H., 2017. A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate. Chem. Eng. J. 326, 803-810.
    [109]

    Xu, C.B., Ferdosian, F., 2017. Lignin-based polyurethane (PU) resins and foams. Green Chemistry and Sustainable Technology. Berlin, Heidelberg:Springer Berlin Heidelberg, 133-156.
    [110]

    Xu, C.P., Arancon, R.A.D., Labidi, J., Luque, R., 2014. Lignin depolymerisation strategies:towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485-7500.
    [111]

    Xue, B.L., Huang, P.L., Sun, Y.C., Li, X.P., Sun, R.C., 2017. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv. 7, 6123-6130.
    [112]

    Xue, B.L., Wen, J.L., Sun, R.C., 2014. Lignin-based rigid polyurethane foam reinforced with pulp fiber:synthesis and characterization. ACS Sustainable Chem. Eng. 2, 1474-1480.
    [113]

    Yang, D.J., Wang, S.Y., Zhong, R.S., Liu, W.F., Qiu, X.Q., 2019. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Front. Chem. Sci. Eng. 13, 59-69.
    [114]

    Yang, L., Wang, X.F., Cui, Y., Tian, Y.M., Chen, H.Z., Wang, Z.C., 2014a. Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams. Polym. Adv. Technol. 25, 1089-1098.
    [115]

    Yang, Y., Deng, Y.H., Tong, Z., Wang, C.Y., 2014b. Renewable lignin-based xerogels with self-cleaning properties and superhydrophobicity. ACS Sustainable Chem. Eng. 2, 1729-1733.
    [116]

    Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1987a. Fractionation of kraft lignin by successive extraction with organic solvents. Ⅱ. thermal properties of kraft lignin fractions. Holzforschung 41, 171-176.
    [117]

    Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1987b. Kraft lignin in polyurethanes I. Mechanical properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 34, 1187-1198.
    [118]

    Yoshida, H., Mörck, R., Kringstad, K.P., Hatakeyama, H., 1990. Kraft lignin in polyurethanes. Ⅱ. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 40, 1819-1832.
    [119]

    Yu, P., He, H., Jiang, C., Jia, Y.C., Wang, D.Q., Yao, X.J., Jia, D.M., Luo, Y.F., 2016. Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin. J. Appl. Polym. Sci. 133, 42922.
    [120]

    Zhang, C.Q., Wu, H.C., Kessler, M.R., 2015a. High bio-content polyurethane composites with urethane modified lignin as filler. Polymer 69, 52-57.
    [121]

    Zhang, L.N., Huang, J., 2001a. Effects of hard-segment compositions on properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 81, 3251-3259.
    [122]

    Zhang, L.N., Huang, J., 2001b. Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films. J. Appl. Polym. Sci. 80, 1213-1219.
    [123]

    Zhang, N., Li, Z., Xiao, Y.N., Pan, Z., Jia, P.Y., Feng, G.D., Bao, C.Y., Zhou, Y.H., Hua, L.L., 2020. Lignin-based phenolic resin modified with whisker silicon and its ap-plication. J. Bioresour. Bioprod. 5, 69-77.
    [124]

    Zhang, Q.Q., Zhang, G.Y., Xu, J., Gao, C.H., Wu, Y.M., 2015b. Recent advances on ligin-derived polyurethane polymers. Rev. Adv. Mater. Sci. 40, 146-154.
    [125]

    Zhang, X.F., Kim, Y., Elsayed, I., Taylor, M., Eberhardt, T.L., Hassan, E.B., Shmulsky, R, 2019a. Rigid polyurethane foams containing lignin oxyalkylated with ethylene carbonate and polyethylene glycol. Ind. Crop. Prod. 141, 111797.
    [126]

    Zhang, Y., Liao, J.J., Fang, X.C., Bai, F.D., Qiao, K., Wang, L.M., 2017. Renewable high-performance polyurethane bioplastics derived from lignin-poly(ε-caprolactone). ACS Sustainable Chem. Eng. 5, 4276-4284.
    [127]

    Zhang, Y., Wang, J.Y., Fang, X.C., Liao, J.J., Zhou, X., Zhou, S.M., Bai, F.D., Peng, S.Z., 2019b. High solid content production of environmentally benign ultra-thin lignin-based polyurethane films:Plasticization and degradation. Polymer 178, 121572.
    [128]

    Zhang, Y.M., Yan, R., Ngo, T.D., Zhao, Q., Duan, J.C., Du, X.W., Wang, Y.L., Liu, B.J., Sun, Z.Y., Hu, W., Xie, H.M, 2019c. Ozone oxidized lignin-based polyurethane with improved properties. Eur. Polym. J. 117, 114-122.
    [129]

    Zhou, W.P., Chen, F.G., Zhang, H., Wang, J., 2017. Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. J. Wood Chem. Technol. 37, 323-333.
    [130]

    Zou, C., Ma, H.Z., Guo, Y.P., Guo, D.L., Xu, G.X., 2018. Catalytic depolymerization/degradation of alkali lignin by dual-component catalysts in supercritical ethanol. J. Bioresour. Bioprod. 3, 18-24.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(55) PDF downloads(15) Cited by()

Related
Proportional views

Conversion of Biomass Lignin to High-value Polyurethane: A Review

    Corresponding author: Chaobin He, msehc@nus.edu.sg
  • a Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
  • b Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, 117574, Singapore;
  • c Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis 138634, Singapore
Fund Project:  No. 51903194), Hubei Provincial Natural Science Foundation of China (No. 2019CFB190), and Youths Science Foundation of Wuhan Institute of Technology (No. K201803).This work is supported by National Natural Science Foundation of China (No. 51803156

Abstract: Lignin, as a major by-product of pulp and paper industry, has attracted extensive interest for the preparation of high value-added products, due to the merits of abundant, sustainable, inexpensive, and unique functional groups. This review focuses on the strategies to develop high performance polyurethane (PU) materials from lignin on the basis of main reports, in which lignin was used not only as macromonomer to substitute petroleum-based polyols, but also as blending filler for PU industry. Pre-treatment approaches, especially lignin fractions extracted with various solvents and chemical modifications, e.g., depolymerization, hydroxyalkylation, dealkylation, and esterication, were widely explored to enable lignin more reactive and available to synthesize PU products. In addition, lignin/PU blends were also prepared to fulfill industrial demand. With adjustment of lignin structure, the PU formulation, and synthesis procedures, various lignin-based PU products with advanced properties and a higher bio-substitution ratio have been developed, demonstrating the potential industrial application of lignin for high value-added sustainable materials.

Reference (130)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return