Volume 5 Issue 3
Aug.  2020
Turn off MathJax
Article Contents
B. Ashok, N. Hariram, Suchart Siengchin, A. VaradaRajulu. Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 180-185. doi: 10.1016/j.jobab.2020.07.003
Citation: B. Ashok, N. Hariram, Suchart Siengchin, A. VaradaRajulu. Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 180-185. doi: 10.1016/j.jobab.2020.07.003

Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method

doi: 10.1016/j.jobab.2020.07.003
More Information
  • Corresponding author: B. Ashok, E-mail address: basaashok@osmania.ac.in
  • Received Date: 2020-03-26
  • Accepted Date: 2020-05-30
  • Publish Date: 2020-08-01
  • Tamarind fruit shell powder (TFSP) with particle size of < 50 μm (obtained from cleaned tamarind fruit shells) was modified with in situ generated copper nanoparticles (CuNPs) by simple one step hydrothermal method. The modified TFSP was characterized by scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and antibacterial tests. The generated stable CuNPs on the surface of the modified TFSP were spherical in shape with an average size of 88 nm. The FT-IR spectroscopy analysis indicated the involvement of the functional groups of the TFSP in the generation and stabilization of the CuNPs. The XRD analysis indicated the presence of both CuNPs and Cu2O nanoparticles in the modified TFSP. The thermal analysis indicated the presence of 5.6 wt% of copper nanoparticles as calculated from the difference of residual char content between the unmodified and modified TFSP. The modified TFSP with in situ generated CuNPs exhibited obvious antibacterial activity against both the Gram negative and Gram positive bacteria and hence can be considered as low cost filler in the preparation of antibacterial polymer hybrid nanocomposites for packaging and medical applications.

     

  • loading
  • Alekseeva, O., Chulovskaya, O., Bagrovskaya, N., Parfenyuk, V., 2011. Copper nanopartical composites based on cellulose derivatives. Chem. and Chem. Tech. 5, 447-450. doi: 10.23939/chcht05.04.447
    Ashok, B., Feng, T.H., Natarajan, H., Anumakonda, V.R., 2019. Preparation and characterization of tamarind nut powder with in situ generated copper nanoparticles using one-step hydrothermal method. Int. J. Polym. Anal. Charact. 24, 548-555. doi: 10.1080/1023666X.2019.1626546
    Ashok, B., Obi Reddy, K., Yorseng, K., Rajini, N., Hariram, N., Siengchin, S., Varada Rajulu, A., 2018. Modification of natural fibers from Thespesia lampas plant by in situ generation of silver nanoparticles in single-step hydrothermal method. Int. J. Polym. Anal. Charact. 23, 509-516. doi: 10.1080/1023666X.2018.1486270
    El-Fadel, M., Findikakis, A.N., Leckie, J.O., 1997. Environmental impacts of solid waste landfilling. J. Environ. Manag. 50, 1-25. doi: 10.1006/jema.1995.0131
    Giusti, L., 2009. A review of waste management practices and their impact on human health. Waste Manag. 29, 2227-2239. doi: 10.1016/j.wasman.2009.03.028
    Hamer, G., 2003. Solid waste treatment and disposal:effects on public health and environmental safety. Biotechnol. Adv. 22, 71-79. doi: 10.1016/j.biotechadv.2003.08.007
    Harrison, R.M., Hester, R.E., 2007. Environmental and health impact of solid waste management activities. Cambridge:Royal Society of Chemistry.
    Li, J.Y., Zhang, J.M., Natarajan, H., Zhang, J., Ashok, B., Rajulu Anumakonda, V., 2019. Modification of agricultural waste tamarind fruit shell powder by in situ generation of silver nanoparticles for antibacterial filler applications. Int. J. Polym. Anal. Charact. 24, 421-427. doi: 10.1080/1023666X.2019.1602319
    Luo, Y.L., Chen, L.L., Xu, F., Feng, Q.S., 2012. Fabrication and characterization of copper nanoparticles in PVA/PAAm IPNs and swelling of the resulting nanocomposites. Met. Mater. Int. 18, 899-908 doi: 10.1007/s12540-012-5024-5
    Manas, R., Sunil, K.M., Tejas, S.K., Sushil, K.S., Niroj, K.S., Kalpana, B., Sabyasachi, S., Mainak, D., 2012. Carbon dioxide gating in silk cocoon. Biointerphases. 7, 1-11. doi: 10.1007/s13758-011-0001-y
    Pavia, D.L., Lampman, G.M., Kriz, G.S., 1996. Introduction to spectroscopy. 2nd ed. New York:Saunders Golden Sunburst Series.
    Sadanand, V., Feng, T.H., Rajulu, A.V., Satyanarayana, B., 2017. Preparation and properties of low-cost cotton nanocomposite fabrics with in situ-generated copper nanoparticles by simple hydrothermal method. Int. J. Polym. Anal. Charact. 22, 587-594. doi: 10.1080/1023666X.2017.1344916
    Sadanand, V., Rajini, N., Varada Rajulu, A., Satyanarayana, B., 2016. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr. Polym. 150, 32-39. doi: 10.1016/j.carbpol.2016.04.121
    Senthil Muthu Kumar, T., Rajini, N., Jawaid, M., Varada Rajulu, A., Winowlin Jappes, J.T., 2018. Preparation and properties of cellulose/tamarind nut powder green composites. J. Nat. Fibers 15, 11-20. doi: 10.1080/15440478.2017.1302386
    Senthil Muthu Kumar, T., Rajini, N., Jawaid, M., Veranda Rajulu, A., Siengchin, S., 2017b. Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications. Waste Manag. 69, 445-454. doi: 10.1016/j.wasman.2017.07.035
    Senthil Muthu Kumar, T., Rajini, N., Tian, H.F., Rajulu, A.V., Winowlin Jappes, J.T., Siengchin, S., 2017a. Development and analysis of biodegradable poly(propylene carbonate)/tamarind nut powder composite films. Int. J. Polym. Anal. Charact. 22, 415-423. doi: 10.1080/1023666X.2017.1313483
    Sivasankar, V., Rajkumar, S., Murugesh, S., Darchen, A., 2012. Tamarind (Tamarindus indica) fruit shell carbon:a calcium-rich promising adsorbent for fluoride removal from groundwater. J. Hazard. Mater. 225/226, 164-172. http://www.sciencedirect.com/science/article/pii/S0304389412004979
    Suguna, M., Kumar, N.S., Subbaiah, M.V., Krishnaiah, A, 2010. Removal of divalent manganese from aqueous solution using Tamarindus indica Fruit Nut Shell. Journal of Chemical and Pharmaceutical Research 2, 7-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001980360
    Sukumar, S., Rudrasenan, A., Padmanabhan Nambiar, D., 2020. Green-synthesized rice-shaped copper oxide nanoparticles using Caesalpinia bonducella seed extract and their applications. ACS Omega 5, 1040-1051. doi: 10.1021/acsomega.9b02857
    Tsai, W.T., Chang, C.Y., Lee, S.L., 1998. A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresour. Technol. 64, 211-217. doi: 10.1016/S0960-8524(97)00168-5
    Wang, D.H., Sun, X.S., 2002. Low density particleboard from wheat straw and corn pith. Ind. Crop. Prod. 15, 43-50. doi: 10.1016/S0926-6690(01)00094-2
    Xia, G.M., Sadanand, V., Ashok, B., Reddy, K.O., Zhang, J., Rajulu, A.V., 2015. Preparation and properties of cellulose/waste leather buff biocomposites. Int. J. Polym. Anal. Charact. 20, 693-703. doi: 10.1080/1023666X.2015.1081132
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (825) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return