Volume 5 Issue 3
Jul.  2020
Article Contents
Turn off MathJax

Citation:

Synthesis of Lignin-Poly(N-methylaniline)-Reduced Graphene Oxide Hydrogel for Organic Dye and Lead Ions Removal

  • Corresponding author: Lifeng Yan, lfyan@ustc.edu.cn
  • Received Date: 2020-02-11
    Accepted Date: 2020-03-25
    Fund Project:

    This work is supported by the National Natural Science Foundation of China (No. 51673180 and No. 51873201).

  • Lignin is one of the major contents of lignocellulose and can be used as feedstock for adsorbent materials for wastewater treatment. Here, a lignin-poly(N-methylaniline)-graphene oxide (lignin-PNMA-rGO) hydrogel has been prepared by a two-step method, microspheres of lignin-PNMA was synthesis by the polymerization of NMA monomer in the presence of lignin in aqueous solution, and then they were encapsulated by the as-prepared reduced graphene oxide (GO) hydrogel via a reduction induced self-assembly of the GO nanosheets.The scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and UV-Vis studies have been carried out and revealed that the formation of the 3D porous nanocomposite hydrogel with multilevel structures and sufficient active sites. The lignin-PNMA-rGO adsorbent exhibited high adsorption capacity for both organic dye methylene blue (MB, 201.7 mg/g) and Pb2+ ion (753.5 mg/g). The new lignin-based adsorbent is a low-cost, environmentally benign, which is an attractive adsorbent for wastewater treatment.
  • 加载中
  • [1]

    Chen, J.C., Eraghi Kazzaz, A., AlipoorMazandarani, N., Hosseinpour Feizi, Z., Fatehi, P., 2018. Production of flocculants, adsorbents, and dispersants from lignin. Molecules 23, 868.
    [2]

    de Araújo Padilha, C.E., da Costa Nogueira, C., de Santana Souza, D.F., de Oliveira, J.A., dos Santos, E.S., 2020. Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal. Ind. Crop. Prod. 146, 112167.
    [3]

    Gao, D.W., Hu, Q., Pan, H.Y., Jiang, J.P., Wang, P., 2015. High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers. Bioresour. Technol. 193, 507-512.
    [4]

    Ge, Y.Y., Li, Z.L., 2018. Application of lignin and its derivatives in adsorption of heavy metal ions in water:a review. ACS Sustainable Chem. Eng. 6, 7181-7192.
    [5]

    Godwin, P.M., Pan, Y., Xiao, H., Afzal, M.T., 2019. Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. J. Bioresour. Bioprod. 4, 31-42.
    [6]

    He, Z.W., Lü, Q.F., Zhang, J.Y., 2012. Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-Ion adsorbability. ACS Appl. Mater. Interfaces 4, 369-374.
    [7]

    Jiang, C.L., Wang, X.H., Qin, D.M., Da, W.X., Hou, B.X., Hao, C., Wu, J.B., 2019. Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J. Hazard. Mater. 369, 50-61.
    [8]

    Jiang, S.H., Wu, J.X., Zhou, J., Lü, Q.F., 2018. High-performance reactive silver-Ion adsorption and reductive performance of poly(N -methylaniline). Adv. Polym. Technol. 37, 1486-1495.
    [9]

    Li, F.F., Wang, X.L., Yuan, T.Q., Sun, R.C., 2016. A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(ii) removal. J. Mater. Chem. A 4, 11888-11896.
    [10]

    Lü, Q.F., Luo, J.J., Lin, T.T., Zhang, Y.Z., 2014. Novel lignin-poly(N-methylaniline) composite sorbent for silver Ion removal and recovery. ACS Sustainable Chem. Eng. 2, 465-471.
    [11]

    Lü, Q.F., Zhang, J.Y., Yang, J., He, Z.W., Fang, C.Q., Lin, Q.L., 2013. Self-assembled poly(N-methylaniline)-lignosulfonate spheres:from silver-Ion adsorbent to antimicrobial material. Chem. Eur. J. 19, 10935-10944.
    [12]

    Ma, M.S., Liu, Z., Hui, L.F., Shang, Z., Yuan, S.Y., Dai, L., Liu, P.T., Liu, X.L., Ni, Y.H., 2019. Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes. Int. J. Biol. Macromol. 139, 640-646.
    [13]

    Mary, A.S., Sheem Mers, S.V., 2019. Synthesis and characterization of electroactive poly (N-methylaniline-Co-O-toluidine). Chem. Sci. Trans. 8, 347-358.
    [14]

    Musielak, M., Gagor, A., Zawisza, B., Talik, E., Sitko, R., 2019. Graphene oxide/carbon nanotube membranes for highly efficient removal of metal ions from water. ACS Appl. Mater. Interfaces 11, 28582-28590.
    [15]

    Su, H., Bi, Z.H., Ni, Y., Yan, L.F., 2019. One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution. Green Energy Environ. 4, 391-399.
    [16]

    Tan, T.C.N., Sen, T.K., 2020. Aqueous-phase methylene blue (MB) dye removal by mixture of Eucalyptus bark (EB) biomass and Kaolin clay (KC) adsorbents:kinetics, thermodynamics, and isotherm modeling. Sep. Sci. Technol. 55, 1036-1050.
    [17]

    Wang, H.F., Song, Y.Q., Ye, X.X., Wang, H., Liu, W.S., Yan, L.F., 2018. Asymmetric supercapacitors assembled by dual spinel Ferrites@Graphene nanocomposites as electrodes. ACS Appl. Energy Mater. 1, 3206-3215.
    [18]

    Wang, H.F., Wu, J., Qiu, J., Zhang, K.F., Shao, J.W., Yan, L.F., 2019a. In situ formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors. Sustain. Energy Fuels 3, 3109-3115.
    [19]

    Wang, H.F., Zhang, K.F., Song, Y.Q., Qiu, J., Wu, J., Yan, L.F., 2019b. MnCo2S4 nanoparticles anchored to N- and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. Carbon 146, 420-429.
    [20]

    Yan, L.F., Chen, J., Bangal, P.R., 2007. Dissolving cellulose in a NaOH/thiourea aqueous solution:a topochemical investigation. Macromol. Biosci. 7, 1139-1148.
    [21]

    Yan, L.F., Shuai, Q., Gong, X.L., Gu, Q., Yu, H.Q., 2009. Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. CLEAN-Soil Air Water 37, 392-398.
    [22]

    Yang, J., Wu, J.X., Lü, Q.F., Lin, T.T., 2014. Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(Ⅱ) ions. ACS Sustainable Chem. Eng. 2, 1203-1211.
    [23]

    Yang, Y., Deng, Y.H., Tong, Z., Wang, C.Y., 2014. Renewable lignin-based xerogels with self-cleaning properties and superhydrophobicity. ACS Sustainable Chem. Eng. 2, 1729-1733.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(31) PDF downloads(6) Cited by()

Related
Proportional views

Synthesis of Lignin-Poly(N-methylaniline)-Reduced Graphene Oxide Hydrogel for Organic Dye and Lead Ions Removal

    Corresponding author: Lifeng Yan, lfyan@ustc.edu.cn
  • CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iCHEM, University of Science and Technology of China, Hefei 230026, China
Fund Project:  This work is supported by the National Natural Science Foundation of China (No. 51673180 and No. 51873201).

Abstract: Lignin is one of the major contents of lignocellulose and can be used as feedstock for adsorbent materials for wastewater treatment. Here, a lignin-poly(N-methylaniline)-graphene oxide (lignin-PNMA-rGO) hydrogel has been prepared by a two-step method, microspheres of lignin-PNMA was synthesis by the polymerization of NMA monomer in the presence of lignin in aqueous solution, and then they were encapsulated by the as-prepared reduced graphene oxide (GO) hydrogel via a reduction induced self-assembly of the GO nanosheets.The scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and UV-Vis studies have been carried out and revealed that the formation of the 3D porous nanocomposite hydrogel with multilevel structures and sufficient active sites. The lignin-PNMA-rGO adsorbent exhibited high adsorption capacity for both organic dye methylene blue (MB, 201.7 mg/g) and Pb2+ ion (753.5 mg/g). The new lignin-based adsorbent is a low-cost, environmentally benign, which is an attractive adsorbent for wastewater treatment.

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return