Volume 5 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Blessy Joseph, Sagarika V K, Chinnu Sabu, Nandakumar Kalarikkal, Sabu Thomas. Cellulose Nanocomposites:Fabrication and Biomedical Applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 231-247. doi: 10.1016/j.jobab.2020.10.001
Citation: Blessy Joseph, Sagarika V K, Chinnu Sabu, Nandakumar Kalarikkal, Sabu Thomas. Cellulose Nanocomposites:Fabrication and Biomedical Applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 231-247. doi: 10.1016/j.jobab.2020.10.001

Cellulose Nanocomposites:Fabrication and Biomedical Applications

doi: 10.1016/j.jobab.2020.10.001
More Information
  • Corresponding author: Sabu Thomas, E-mail address:sabuthomas@mgu.ac.in
  • Received Date: 2020-04-20
  • Accepted Date: 2020-07-14
  • Rev Recd Date: 2020-06-15
  • Available Online: 2020-10-09
  • Publish Date: 2020-10-01
  • Cellulose is a linear biopolymer which is composed of nanofibrils, thus having a large surface area. This low-cost, low-density, high-specific-surface-area, easily processable polymer is found in nature in the form of plants, bacteria and tunicates. Cellulose has outstanding characteristics including low cytotoxicity, biocompatibility, good mechanical properties, high chemical stability, and cost effectiveness which make them suitable candidates for biomedical applications. The manipulation of cellulose at nanoscale resulted in nanocellulose having exceptional physicochemical properties. Therefore, cellulose nanocomposite is a fascinating area of research which has applications in biomedical fields like wound healing, bone tissue engineering, three dimensional printing, drug carriers, medical implants etc. This review is mainly focused on the developments in the generation of cellulose nanocomposites and their potential applications in the biomedical field.

     

  • loading
  • Abbasi R., Baheti V., 2018. Preparation of nanocellulose from jute fiber waste. J. Text. Eng. Fash. Technol., 4:101-104. http://www.researchgate.net/publication/328243064_Preparation_of_nanocellulose_from_jute_fiber_waste
    Abraham E., Deepa B., Pothan L.A., John M., Narine S.S., Thomas S., Anandjiwala R., 2013. Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose, 20:417-427. doi: 10.1007/s10570-012-9830-1
    Abraham R., Wong C., Puri M., 2016. Enrichment of cellulosic waste hemp (Cannabis sativa) hurd into non-toxic microfibres. Materials 9, 562. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=materials-09-00562
    Anglès M.N., Dufresne A., 2001. Plasticized starch/tunicin whiskers nanocomposite materials. 2. mechanical behavior. Macromolecules, 34:2921-2931.
    Atiqah M.S.N., Gopakumar D.A., Owolabi F.A.T., Pottathara Y.B., Rizal S., Aprilia N.A.S., Hermawan D., Paridah M.T., Thomas S., Abdul K.H.P.S., 2019. Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers. Polymers 11, 1813. http://www.researchgate.net/publication/337047718_Extraction_of_Cellulose_Nanofibers_via_Eco-friendly_Supercritical_Carbon_Dioxide_Treatment_Followed_by_Mild_Acid_Hydrolysis_and_the_Fabrication_of_Cellulose_Nanopapers/download
    Azeredo H.M.C., Rosa M.F., Mattoso L.H.C., 2017. Nanocellulose in bio-based food packaging applications. Ind. Crop. Prod., 97:664-671. doi: 10.1016/j.indcrop.2016.03.013
    Azizi Samir M.A.S., Alloin F., Dufresne A., 2006. High performance nanocomposite polymer electrolytes. Compos. Interfaces, 13:545-559. doi: 10.1163/156855406777408656
    Azizi Samir M.A.S., Alloin F., Sanchez J.Y., Dufresne A., 2004. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer, 45:4149-4157. doi: 10.1016/j.polymer.2004.03.094
    Azzam F., Heux L., Putaux J.L., Jean B., 2010. Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules, 11:3652-3659. doi: 10.1021/bm101106c
    Barud H.S., Barrios C., Regiani T., Marques R.F.C., Verelst M., Dexpert-Ghys J., Messaddeq Y., Ribeiro S.J.L., 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng.:C, 28:515-518. doi: 10.1016/j.msec.2007.05.001
    Bezerra R.D.S., Teixeira P.R.S., Teixeira A.S.N.M., Eiras C., Osajima J.A., Filho E.C.S., 2015. Chemical functionalization of cellulosic materials-Main reactions and applications in the contaminants removal of aqueous medium. In: Cellulose-Fundamental Aspects and Current Trends. London: InTech.
    Bhattacharya D., Germinario L.T., Winter W.T., 2008. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr. Polym., 73:371-377. doi: 10.1016/j.carbpol.2007.12.005
    Bitinis N., Fortunati E., Verdejo R., Bras J., Kenny J.M., Torre L., López-Manchado M.A., 2013. Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II:properties evaluation. Carbohydr. Polym., 96:621-627. http://europepmc.org/abstract/med/23768607
    Blessy J., Hanna J.M., Sabu T.N.K., 2018. Nanocellulose:health care applications. In:Mishra M. (ed.). Encyclopedia of Polymer Applications. Boca Raton:CRC Press, 1829-1852.
    Cai J., Liu Y.T., Zhang L.N., 2006. Dilute solution properties of cellulose in LiOH/urea aqueous system. J. Polym. Sci. Part B:Polym. Phys., 44:3093-3101. doi: 10.1002/polb.20938
    Cai J., Zhang L.N., 2005. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci., 5:539-548. doi: 10.1002/mabi.200400222
    Cai J., Zhang L.N., 2006. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules, 7:183-189. doi: 10.1021/bm0505585
    Campbell T.A., Ivanova O.S., 2013.3D printing of multifunctional nanocomposites. Nano Today, 8:119-120. doi: 10.1016/j.nantod.2012.12.002
    Chai H.B., Chang Y., Zhang Y.C., Chen Z.Z., Zhong Y., Zhang L.P., Sui X.F., Xu H., Mao Z.P., 2020. The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties. Int. J. Biol. Macromol., 155:1578-1588. doi: 10.1016/j.ijbiomac.2019.11.135
    Chakrabarty A., Teramoto Y., 2018. Recent advances in nanocellulose composites with polymers:a guide for choosing partners and how to incorporate them. Polymers 10, 517. http://www.researchgate.net/publication/325087965_Recent_Advances_in_Nanocellulose_Composites_with_Polymers_A_Guide_for_Choosing_Partners_and_How_to_Incorporate_Them
    Chang P.R., Jian R.J., Zheng P.W., Yu J.G., Ma X.F., 2010. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr. Polym., 79:301-305. doi: 10.1016/j.carbpol.2009.08.007
    Chazeau L., Cavaillé J.Y., Perez J., 2000. Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J. Polym. Sci. B Polym. Phys., 38:383-392. doi: 10.1002/(SICI)1099-0488(20000201)38:3<383::AID-POLB5>3.0.CO;2-Q
    Chen X.Y., Low H.R., Loi X.Y., Merel L., Mohd Cairul Iqbal M.A., 2019. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel:characterizations and biocompatibility studies for wound dressing. J. Biomed. Mater. Res. Part B:Appl. Biomater., 107:2140-2151. doi: 10.1002/jbm.b.34309
    Chen Y.M., Xi T.F., Zheng Y.D., Guo T.T., Hou J.Q., Wan Y.Z., Gao C., 2009. In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J. Bioact. Compatible Polym., 24:137-145. doi: 10.1177/0883911509102710
    Chirayil C.J., Joy J., Mathew L., Mozetic M., Koetz J., Thomas S., 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crop. Prod., 59:27-34. doi: 10.1016/j.indcrop.2014.04.020
    Clift M.J.D., Foster E.J., Vanhecke D., Studer D., Wick P., Gehr P., Rothen-Rutishauser B., Weder C., 2011. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules, 12:3666-3673. doi: 10.1021/bm200865j
    Czaja W., Krystynowicz A., Bielecki S., Brownjr R., 2006. Microbial cellulose:the natural power to heal wounds. Biomaterials, 27:145-151. doi: 10.1016/j.biomaterials.2005.07.035
    Díez I., Eronen P., sterberg M., Linder M.B., Ikkala O., Ras R.H.A., 2011. Functionalization of nanofibrillated cellulose with silver nanoclusters:fluorescence and antibacterial activity. Macromol. Biosci., 11:1185-1191. doi: 10.1002/mabi.201100099
    Dugan J.M., Gough J.E., Eichhorn S.J., 2013. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine, 8:287-298. doi: 10.2217/nnm.12.211
    Edgar K.J., 2004. Cellulose esters, organic. Encyclopedia of Polymer Science and Technology, 9:129-158.
    Egal M., Budtova T., Navard P., 2008. The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose, 15:361-370. doi: 10.1007/s10570-007-9185-1
    Erdmenger T., Haensch C., Hoogenboom R., Schubert U.S., 2007. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol. Biosci., 7:440-445. doi: 10.1002/mabi.200600253
    Fang B., Wan Y.Z., Tang T.T., Gao C., Dai K.R., 2009. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng. Part A, 15:1091-1098. doi: 10.1089/ten.tea.2008.0110
    Fathi M., Karim M., Ahmadi N., 2019. Nanostructures of cellulose for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes. Amsterdam:Elsevier, 493-519.
    Fernandes S.C.M., Sadocco P., Alonso-Varona A., Palomares T., Eceiza A., Silvestre A.J.D., Mondragon I., Freire C.S.R., 2013. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl. Mater. Interfaces, 5:3290-3297. doi: 10.1021/am400338n
    Gericke M., Liebert T., Heinze T., 2009. Polyelectrolyte synthesis and in situ complex formation in ionic liquids. J. Am. Chem. Soc., 131:13220-13221. doi: 10.1021/ja905003r
    Gericke M., Liebert T., Seoud O.A.E., Heinze T., 2011. Tailored media for homogeneous cellulose chemistry:ionic liquid/Co-solvent mixtures. Macromol. Mater. Eng., 296:483-493. doi: 10.1002/mame.201000330
    Hangasky J.A., Detomasi T.C., Lemon C.M., Marletta M.A., 2020. Glycosidic bond oxidation:the structure, function, and mechanism of polysaccharide monooxygenases. Comprehensive Natural Products III. Amsterdam:Elsevier, 298-331. http://www.sciencedirect.com/science/article/pii/B9780124095472148590
    Hasan M., Gopakumar D., Arumughan V., Pottathara Y., Sisanth K.S., Pasquini D., Bračič M., Seantier B., Nzihou A., Thomas S., Rizal S., Abdul H.P.S., 2019. Robust superhydrophobic cellulose nanofiber aerogel for multifunctional environmental applications. Polymers 11, 495. http://www.researchgate.net/publication/331776803_Robust_Superhydrophobic_Cellulose_Nanofiber_Aerogel_for_Multifunctional_Environmental_Applications
    Heinze T., 2015. Cellulose:structure and properties. Advances in Polymer Science. Cham:Springer International Publishing, 1-52.
    Helenius G., B ckdahl H., Bodin A., Nannmark U., Gatenholm P., Risberg B., 2006. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. 76A, 431-438. doi: 10.1002/jbm.a.30570
    Jiji S., Udhayakumar S., Maharajan K., Rose C., Muralidharan C., Kadirvelu K., 2020. Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing. Carbohydr. Polym. 245, 116573. http://www.sciencedirect.com/science/article/pii/S0144861720307475
    Jorfi M., Foster E.J., 2015. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/app.41719
    Joseph B., James J., Grohens Y., Kalarikkal N., Thomas S., 2020. Material aspects during additive manufacturing of nano-cellulose composites. Structure and Properties of Additive Manufactured Polymer Components. Amsterdam:Elsevier, 409-428. http://www.sciencedirect.com/science/article/pii/B9780128195352000144
    Jung A., Berlin P., 2005. New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose, 12:67-84. doi: 10.1007/s10570-004-4356-9
    Kajsa M., Athanasios M., Ivan T., Héctor M. ., Daniel H., Paul G., 2015.3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16:1489-1496. doi: 10.1021/acs.biomac.5b00188
    Kalia S., Dufresne A., Cherian B.M., Kaith B.S., Avérous L., Njuguna J., Nassiopoulos E., 2011. Cellulose-based bio-and nanocomposites:a review. Int. J. Polym. Sci., 2011:1-35. http://www.tandfonline.com/servlet/linkout?suffix=CIT0027&dbid=16&doi=10.1080%2F17435390.2018.1464229&key=10.1155%2F2011%2F837875
    Kassab Z., Abdellaoui Y., Salim M.H., Bouhfid R., Qaiss A.E.K., El Achaby M., 2020. Micro-and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydr. Polym. 245, 116506. http://www.sciencedirect.com/science/article/pii/S0144861720306809
    Khattab M.M., Abdel-Hady N.A., Dahman Y., 2017. Cellulose nanocomposites. Cellulose-reinforced nanofibre composites. Amsterdam:Elsevier, 483-516.
    Kian L.K., Jawaid M., Ariffin H., Karim Z., 2018. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol., 114:54-63. doi: 10.1016/j.ijbiomac.2018.03.065
    Kian L.K., Saba N., Jawaid M., Sultan M.T.H., 2019. A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int. J. Biol. Macromol., 121:1314-1328. doi: 10.1016/j.ijbiomac.2018.09.040
    Kiran Pulidindi H. P., 2020. Nanocellulose market size by product (nano fibrillated cellulose, nanocrystalline cellulose), by application (composites, paper processing, food & beverages, paints & coatings, oil & gas, personal care). Industry Analysis Report, Regional Outlook, Growth Potential, Price Trend, Competitive Market Share & Forecast, 2020-2026.
    Klemm D., Kramer F., Moritz S., Lindstr m T., Ankerfors M., Gray D., Dorris A., 2011. Nanocelluloses:a new family of nature-based materials. Angew. Chem. Int. Ed., 50:5438-5466. doi: 10.1002/anie.201001273
    Klemm D., Schumann D., Udhardt U., Marsch S., 2001. Bacterial synthesized cellulose:artificial blood vessels for microsurgery. Prog. Polym. Sci., 26:1561-1603. doi: 10.1016/S0079-6700(01)00021-1
    Kumar Gupta P., Raghunath S.S., Prasanna D.V., Venkat P., Shree V., Chithananthan C., Choudhary S., Surender K., Geetha K., 2019. An update on overview of cellulose, its structure and applications. London:InTech.
    Lenz R., 1994. Cellulose, structure, accessibility and reactivity. J. Polym. Sci. A Polym. Chem. 32, 2401. http://ci.nii.ac.jp/ncid/BA22049120
    Li J., Wan Y.Z., Li L.F., Liang H., Wang J.H., 2009. Preparation and characterization of, 2:3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng.:C, 29:1635-1642. doi: 10.1016/j.msec.2009.01.006
    Li T., Song J.W., Zhao X.P., Yang Z., Pastel G., Xu S.M., Jia C., Dai J.Q., Chen C.J., Gong A., Jiang F., Yao Y.G., Fan T.Z., Yang B., W gberg L., Yang R.G., Hu L.B., 2018. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 4, eaar3724.
    Li Y.Y., Zhu H.L., Wang Y.B., Ray U., Zhu S.Z., Dai J.Q., Chen C.J., Fu K., Jang S.H., Henderson D., Li T., Hu L.B., 2017. Cellulose-nanofiber-enabled 3D printing of a carbon-nanotube microfiber network. Small Methods 1, 1700222. doi: 10.1002/smtd.201700222/full
    Lin N., Dufresne A., 2014. Nanocellulose in biomedicine:current status and future prospect. Eur. Polym. J., 59:302-325. doi: 10.1016/j.eurpolymj.2014.07.025
    Lin W.C., Lien C.C., Yeh H.J., Yu C.M., Hsu S.H., 2013. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym., 94:603-611. doi: 10.1016/j.carbpol.2013.01.076
    Liu D.G., Zhong T.H., Chang P.R., Li K.F., Wu Q.L., 2010. Starch composites reinforced by bamboo cellulosic crystals. Bioresour. Technol., 101:2529-2536. doi: 10.1016/j.biortech.2009.11.058
    Luo H.L., Xiong G.Y., Hu D., Ren K.J., Yao F.L., Zhu Y., Gao C., Wan Y.Z., 2013. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys., 143:373-379. doi: 10.1016/j.matchemphys.2013.09.012
    Majewicz T.G., Erazo-Majewicz P.E., Podlas T.J., 2002. Cellulose ethers. Encyclopedia of Polymer Science and Technology, 5:507-532.
    Mao R., Goutianos S., Tu W., Meng N., Yang G., Berglund L.A., Peijs T., 2017. Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper. J. Mater. Sci., 52:9508-9519. doi: 10.1007/s10853-017-1108-4
    Miyashiro D., Hamano R., Umemura K., 2020. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials 10, 186. http://www.mdpi.com/1996-1944/13/22/5062
    Mondal S., 2017. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym., 163:301-316. doi: 10.1016/j.carbpol.2016.12.050
    Morán J.I., Alvarez V.A., Cyras V.P., Vázquez A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15:149-159. doi: 10.1007/s10570-007-9145-9
    Nechyporchuk O., Belgacem M.N., Bras J., 2016. Production of cellulose nanofibrils:a review of recent advances. Ind. Crop. Prod., 93:2-25. doi: 10.1016/j.indcrop.2016.02.016
    Noishiki Y., Nishiyama Y., Wada M., Kuga S., Magoshi J., 2002. Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J. Appl. Polym. Sci., 86:3425-3429. doi: 10.1002/app.11370
    Nunes R.C.R., 2017. Rubber nanocomposites with nanocellulose. In:Thomas S., Maria H.J. Progress in Rubber Nanocomposites. Online:Woodhead Publishing, 463-494. http://www.researchgate.net/publication/312002735_Rubber_nanocomposites_with_nanocellulose
    Oksman K., Aitom ki Y., Mathew A.P., Siqueira G., Zhou Q., Butylina S., Tanpichai S., Zhou X.J., Hooshmand S., 2016. Review of the recent developments in cellulose nanocomposite processing. Compos. Part A:Appl. Sci. Manuf., 83:2-18. doi: 10.1016/j.compositesa.2015.10.041
    Osorio M., Ortiz I., Ga án P., Naranjo T., Zuluaga R., van Kooten T.G., Castro C., 2019. Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering. Mater. Sci. Eng.:C, 100:697-705. doi: 10.1016/j.msec.2019.03.045
    Pai A.R., Binumol T., Gopakumar D.A., Pasquini D., Seantier B., Kalarikkal N., Thomas S., 2020. Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym. 246, 116663. http://www.sciencedirect.com/science/article/pii/S0144861720308377
    Pal S., Nisi R., Stoppa M., Licciulli A., 2017. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega, 2:3632-3639. doi: 10.1021/acsomega.7b00442
    Palaganas N.B., Mangadlao J.D., de Leon A.C.C., Palaganas J.O., Pangilinan K.D., Lee Y.J., Advincula R.C., 2017.3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography. ACS Appl. Mater. Interfaces, 9:34314-34324. doi: 10.1021/acsami.7b09223
    Pandey J.K., Nakagaito A.N., Takagi H., 2013. Fabrication and applications of cellulose nanoparticle-based polymer composites. Polym. Eng. Sci., 53:1-8. doi: 10.1002/pen.23242
    Paralikar S.A., Simonsen J., Lombardi J., 2008. Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J. Membr. Sci., 320:248-258. doi: 10.1016/j.memsci.2008.04.009
    Pereira M.M., Raposo N.B., Brayner R., Teixeira E.M., Oliveira V., Quint o C.R., Camargo L.A., Mattoso L.C., Brand o H.M., 2013. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology 24, 075103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdff28d605d520e7fca54051ff43811c
    Phomrak S., Phisalaphong M., 2017. Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process. J. Nanomater., 2017:1-9. http://downloads.hindawi.com/journals/jnm/2017/4739793.xml
    Phomrak S., Phisalaphong M., 2020. Lactic acid modified natural rubber-bacterial cellulose composites. Appl. Sci. 10, 3583. http://www.researchgate.net/publication/341590318_Lactic_Acid_Modified_Natural_Rubber-Bacterial_Cellulose_Composites
    Qian S.P., Zhang H.H., Yao W.C., Sheng K.C., 2018. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos. Part B:Eng., 133:203-209. doi: 10.1016/j.compositesb.2017.09.040
    Qiu K.Y., Netravali A.N., 2014. A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym. Rev., 54:598-626. doi: 10.1080/15583724.2014.896018
    Radotić K., Mićić M., 2016. Methods for extraction and purification of lignin and cellulose from plant tissues. Springer Protocols Handbooks. New York, NY:Springer, 365-376. doi: 10.1007/978-1-4939-3185-9_26
    Ranganagowda R.P.G., Kamath S.S., Bennehalli B., 2019. Extraction and characterization of cellulose from natural Areca fiber. Mat. Sci. Res. India, 16:86-93. doi: 10.13005/msri/160112
    Rashad A., Mohamed-Ahmed S., Ojansivu M., Berstad K., Yassin M.A., Kivij rvi T., Heggset E.B., Syverud K., Mustafa K., 2018. Coating 3D printed polycaprolactone scaffolds with nanocellulose promotes growth and differentiation of mesenchymal stem cells. Biomacromolecules, 19:4307-4319. doi: 10.1021/acs.biomac.8b01194
    Rojas J., Bedoya M., Ciro Y., 2015. Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellulose-Fundamental Aspects and Current Trends. London:InTech.
    Saba N., Safwan A., Sanyang M.L., Mohammad F., Pervaiz M., Jawaid M., Alothman O.Y., Sain M., 2017. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol., 102:822-828. doi: 10.1016/j.ijbiomac.2017.04.074
    Saska S., Teixeira L.N., Tambasco de Oliveira P., Minarelli Gaspar A.M., Lima Ribeiro S.J., Messaddeq Y., Marchetto R., 2012. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J. Mater. Chem. 22, 22102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c76ddb6145414873e1b86e494d4c22c1
    Sharma A., Thakur M., Bhattacharya M., Mandal T., Goswami S., 2019. Commercial application of cellulose nano-composites-A review. Biotechnology Reports 21, e00316.
    Shimotoyodome A., Suzuki J., Kumamoto Y., Hase T., Isogai A., 2011. Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules, 12:3812-3818. doi: 10.1021/bm2010609
    Siqueira G., Bras J., Follain N., Belbekhouche S., Marais S., Dufresne A., 2013. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr. Polym., 91:711-717. doi: 10.1016/j.carbpol.2012.08.057
    Somord K., Somord K., Suwantong O., Thanomsilp C., Peijs T., Soykeabkaew N., 2018. Self-reinforced poly(lactic acid) nanocomposites with integrated bacterial cellulose and its surface modification. Nanocomposites, 4:102-111. doi: 10.1080/20550324.2018.1532671
    Sultan S., Mathew A.P., 2019.3D printed porous cellulose nanocomposite hydrogel scaffolds. J. Vis. Exp. DOI: 10.3791/59401
    Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D., 2002. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc., 124:4974-4975. doi: 10.1021/ja025790m
    Teixeira M.A., Paiva M.C., Amorim M.T.P., Felgueiras H.P., 2020. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials 10, 557. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_nanomaterials_thesis/040006286921.html
    Tenhunen T.M., Moslemian O., Kammiovirta K., Harlin A., K ri inen P., sterberg M., Tammelin T., Orelma H., 2018. Surface tailoring and design-driven prototyping of fabrics with 3D-printing:an all-cellulose approach. Mater. Des., 140:409-419. doi: 10.1016/j.matdes.2017.12.012
    Torgbo S., Sukyai P., 2019. Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater. Chem. Phys. 237, 121868. http://www.sciencedirect.com/science/article/pii/S0254058419306650
    Tummala G.K., Lopes V.R., Mihranyan A. M., Ferraz N., 2019. Biocompatibility of nanocellulose-reinforced PVA hydrogel with human corneal epithelial cells for ophthalmic applications. J. Funct. Biomater. 10, 35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000237897
    Vilela C., Engstr m J., Valente B.F.A., Jawerth M., Carlmark A., Freire C.S.R., 2019. Exploiting poly(ɛ-caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites. Polym. Compos., 40:1342-1353. doi: 10.1002/pc.24865
    Wan Y., Hong L., Jia S., Huang Y., Zhu Y., Wang Y., Jiang H., 2006. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos. Sci. Technol., 66:1825-1832. doi: 10.1016/j.compscitech.2005.11.027
    Wang N., Ding E.Y., Cheng R.S., 2007. Surface modification of cellulose nanocrystals. Front. Chem. Eng. China, 1:228-232. doi: 10.1007/s11705-007-0041-5
    Wang Q.Q., Sun J.Z., Yao Q., Ji C.C., Liu J., Zhu Q.Q., 2018.3D printing with cellulose materials. Cellulose, 25:4275-4301. doi: 10.1007/s10570-018-1888-y
    Wang Y.X., Cao X.D., Zhang L.N., 2006. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular Bioscience, 6:524-531. doi: 10.1002/mabi.200600034
    Wondraczek H., Heinze T., 2014. Cellulosic biomaterials. Polysaccharides. Cham:Springer International Publishing, 1-34.
    Xu X.Z., Liu F., Jiang L., Zhu J.Y., Haagenson D., Wiesenborn D.P., 2013. Cellulose nanocrystals vs. cellulose nanofibrils:a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces, 5:2999-3009. doi: 10.1021/am302624t
    Yang X., Reid M.S., Olsen P., Berglund L.A., 2019. Eco-friendly cellulose nanofibrils designed by nature-Effects from preserving native state. ACS Nano, 14:724-735. http://www.researchgate.net/publication/338240048_Eco-Friendly_Cellulose_Nanofibrils_Designed_by_Nature_-_Effects_from_Preserving_Native_State
    Yoshinaga F., Tonouchi N., Watanabe K., 1997. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem., 61:219-224. doi: 10.1271/bbb.61.219
    Yu H.Y., Yan C.F., 2017. Mechanical properties of cellulose nanofibril (CNF)-and cellulose nanocrystal (CNC)-based nanocomposites. Handbook of Nanocellulose and Cellulose Nanocomposites. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 393-443.
    Yuan H.B., Chen L., Hong F.F., 2020. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl. Mater. Interfaces, 12:3382-3392. doi: 10.1021/acsami.9b17732
    Zhou J.P., Zhang L.N., 2000. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J. 32, 866. http://www.nature.com/articles/pj2000152
    Zhu R., Yadama V., Liu H., Lin R.J.T., Harper D.P., 2017. Fabrication and characterization of Nylon 6/cellulose nanofibrils melt-spun nanocomposite filaments. Compos. Part A:Appl. Sci. Manuf., 97:111-119. doi: 10.1016/j.compositesa.2017.02.025
    Zimmermann T., P hler E., Schwaller P., 2005. Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Adv. Eng. Mater., 7:1156-1161. doi: 10.1002/adem.200500157
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (627) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return