Volume 5 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Siti Nuurul Huda Mohammad Azmin, Najah Aliah Binti Mohd Hayat, Mohd Shukri Mat Nor. Development and Characterization of Food Packaging Bioplastic Film from Cocoa Pod Husk Cellulose Incorporated with Sugarcane Bagasse Fibre[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 259-266. doi: 10.1016/j.jobab.2020.10.003
Citation: Siti Nuurul Huda Mohammad Azmin, Najah Aliah Binti Mohd Hayat, Mohd Shukri Mat Nor. Development and Characterization of Food Packaging Bioplastic Film from Cocoa Pod Husk Cellulose Incorporated with Sugarcane Bagasse Fibre[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 259-266. doi: 10.1016/j.jobab.2020.10.003

Development and Characterization of Food Packaging Bioplastic Film from Cocoa Pod Husk Cellulose Incorporated with Sugarcane Bagasse Fibre

doi: 10.1016/j.jobab.2020.10.003

Ministry of Education Malaysia, Fundamental Research Grant Scheme for Research Acculturation of Early Career Researchers FRGS-RACER, R/FRGS/A0700/01552A/003/2019/00665

More Information
  • Corresponding author: Siti Nuurul Huda Mohammad Azmin, E-mail address:huda.ma@umk.edu.my
  • Received Date: 2020-04-17
  • Accepted Date: 2020-07-11
  • Rev Recd Date: 2020-06-13
  • Available Online: 2020-10-09
  • Publish Date: 2020-10-01
  • Agricultural wastes, including cocoa pod husk (waste from the chocolate industry) and sugarcane bagasse (waste from the sugar industry), are increasing day by day. The development of food packaging biofilms from these two wastes could be beneficial to the environment and human. Therefore, this study was conducted to develop biodegradable plastic films by using cocoa pod husk and sugarcane bagasse. Cellulose and fibre were extracted from cocoa pod husk and sugarcane bagasse, respectively. The developed bioplastic films were divided into several concentration ratios of cellulose and fibre which are 100:0 (100% cellulose), 75:25 (cellulose:fibre), 50:50 (cellulose:fibre), 25:75 (cellulose:fibre), and 0:100 (100% fibre). The physicochemical properties for all bioplastic concentration ratios were determined in terms of sensory evaluation, drying time, moisture content, water absorption and water vapor permeability. From the observation and analysis of the physicochemical properties of bioplastic, we found that the most suitable bioplastic film for food packaging goes to the combination of 75% cellulose and 25% fibre bioplastic, as it demonstrated the lowest water absorption percentage and water vapor permeability.


  • loading
  • Abdul-Latif, N.S., Ong, M.Y., Nomanbhay, S., Salman, B., Show, P.L., 2020. Estimation of carbon dioxide (CO2) reduction by utilization of algal biomass bioplastic in Malaysia using carbon emission pinch analysis (CEPA). Bioengineered 11, 154-164. doi: 10.1080/21655979.2020.1718471
    Agustin, M.B., Ahmmad, B., Alonzo, S.M.M., Patriana, F.M., 2014. Bioplastic based on starch and cellulose nanocrystals from rice straw. J. Reinf. Plast. Compos. 33, 2205-2213. doi: 10.1177/0731684414558325
    Andrady, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B Biol. Sci. 364, 1977-1984. doi: 10.1098/rstb.2008.0304
    Barnes, D.K.A., Milner, P., 2005. Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar. Biol. 146, 815-825. doi: 10.1007/s00227-004-1474-8
    Beninia, K.C.C.C., Voorwald, H.J.C., Cioffi, M.O.H., 2011. Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Eng. 10, 3246-3251. doi: 10.1016/j.proeng.2011.04.536
    Bertuzzi, M.A., Castro Vidaurre, E.F., Armada, M., Gottifredi, J.C., 2007. Water vapor permeability of edible starch based films. J. Food Eng. 80, 972-978. http://www.sciencedirect.com/science/article/pii/S0260877406005632
    Borah, A., Balasubramanian, S., Kaur, A., Kaur, J., Sukhija, S., 2019. Thermal and microbial characteristics of barley pasta as affected by moisture content. Our Herit. 67, 300-314.
    Canopoli, L., Fidalgo, B., Coulon, F., Wagland, S.T., 2018. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. Waste Manag. 76, 55-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63deb073657008639514af4063a8a357
    Devasahayam, S., Raman, R.K., Chennakesavulu, K., Bhattacharya, S., 2019. Plastics:villain or hero? polymers and recycled polymers in mineral and metallurgical processing:a review. Materials 12, 655. http://www.researchgate.net/publication/331249931_materials_Plastics-Villain_or_Hero_Polymers_and_Recycled_Polymers_in_Mineral_and_Metallurgical_Processing-A_Review
    Dietrich, K., Dumont, M.J., del Rio, L.F., Orsat, V., 2017. Producing PHAs in the bioeconomy:towards a sustainable bioplastic. Sustain. Prod. Consum. 9, 58-70. http://www.sciencedirect.com/science/article/pii/S2352550916300203
    Fiorentino, G., Ripa, M., Ulgiati, S., 2017. Chemicals from biomass:technological versus environmental feasibility. A review. Biofuels, Bioprod. Biorefining 11, 195-214. doi: 10.1002/bbb.1729
    Herrera, M.A., Mathew, A.P., Oksman, K., 2014. Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr. Polym. 112, 494-501. doi: 10.1016/j.carbpol.2014.06.036
    Ilyas, R.A., Sapuan, S.M., Ibrahim, R., Atikah, M.S.N., Atiqah, A., Ansari, M.N.M., Norrrahim, M.N.F., 2019. Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. In: Nanocrystalline Materials. IntechOpen.
    Jabeen, N., Majid, I., Nayik, G.A., 2015. Bioplastics and food packaging:a review. Cogent Food Agric. 1, 1117749. http://www.cabdirect.org/abstracts/20163105559.html
    Judawisastra, H., Sitohang, R.D.R., Marta, L., Mardiyati, 2017. Water absorption and its effect on the tensile properties of tapioca starch/polyvinyl alcohol bioplastics. IOP Conf. Ser.: Mater. Sci. Eng. 223, 012066.
    Karan, H., Funk, C., Grabert, M., Oey, M., Hankamer, B., 2019. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 24, 237-249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a72a0d56624378ad82ef72b8d053ec5a
    Koay, S.C., Husseinsyah, S., Osman, H., 2013. Modified cocoa pod husk-filled polypropylene composites by using methacrylic acid. BioResources 8, 3260-3275. http://www.researchgate.net/publication/262563257_Modified_Cocoa_Pod_Husk-Filled_Polypropylene_Composites_by_Using_Methacrylic_Acid
    Li, Y., Liu, Yushang, Liu, Yang, Lai, W., Huang, F., Ou, A., Qin, R., Liu, X., Wang, X., 2018. Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustain. Chem. Eng. 6, 11979-11988. doi: 10.1021/acssuschemeng.8b02284
    Lisin, N., Hutomo, G.S., Syahraeni, K., 2015. Hidrolisis Selulosa Dari pod husk kakao hydrolysis of cellulose from cocoa pod husk using sulfuric acid. J. Agrotekbis 3, 482-490.
    Luchese, C.L., Frick, J.M., Patzer, V.L., Spada, J.C., Tessaro, I.C., 2015. Synthesis and characterization of biofilms using native and modified pinh o starch. Food Hydrocoll. 45, 203-210. doi: 10.1016/j.foodhyd.2014.11.015
    Nazarian, M., Mansourizadeh, A., Abbasi, M., 2019. Preparation of blend hydrophilic polyetherimide-cellulose acetate hollow fiber membrane for oily wastewater treatment. J. Appl. Membr. Sci. Technol. 23. DOI: 10.11113/amst.v23n3.159.
    North, E.J., Halden, R.U., 2013. Plastics and environmental health:the road ahead. Rev. Environ. Health 28, 1-8. http://www.ncbi.nlm.nih.gov/pubmed/23337043
    Petersen, K., V ggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M.B., Nilsson, N.H., Mortensen, G., 1999. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 10, 52-68. doi: 10.1016/S0924-2244(99)00019-9
    Saharan, B.S., Sharma, D., 2012. Bioplastics-for sustainable development:a review. International Journal of Mirobial Resource Technology 1, 11-23. http://www.researchgate.net/publication/235652278_Bioplastics-For_Sustainable_De
    Scott, J.L., Buchard, A., 2019. Polymers from plants:biomass fixed carbon dioxide as a resource. Managing Global Warming. Amsterdam:Elsevier, 503-525.
    Simão, J.A., Carmona, V.B., Marconcini, J.M., Mattoso, L.H.C., Barsberg, S.T., Sanadi, A.R., 2016. Effect of fiber treatment condition and coupling agent on the mechanical and thermal properties in highly filled composites of sugarcane bagasse fiber/PP. Mat. Res. 19, 746-751. doi: 10.1590/1980-5373-MR-2015-0609
    Song, Y.H., Zheng, Q., 2009. Structure and properties of methylcellulose microfiber reinforced wheat gluten based green composites. Ind. Crop. Prod. 29, 446-454. doi: 10.1016/j.indcrop.2008.09.002
    Verma, R., Vinoda, K.S., Papireddy, M., Gowda, A.N.S., 2016. Toxic pollutants from plastic waste:a review. Procedia Environ. Sci. 35, 701-708. http://www.sciencedirect.com/science/article/pii/S187802961630158X
    Wang, J., Gardner, D.J., Stark, N.M., Bousfield, D.W., Tajvidi, M., Cai, Z., 2018. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6, 49-70. doi: 10.1021/acssuschemeng.7b03523
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (448) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint