Volume 5 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Mingxue Su, Wenzhi Li, Qiaozhi Ma, Bowen Zhu. Production of jet fuel intermediates from biomass platform compounds via aldol condensation reaction over iron-modified MCM-41 lewis acid zeolite[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 256-265. doi: 10.1016/j.jobab.2020.10.004
Citation: Mingxue Su, Wenzhi Li, Qiaozhi Ma, Bowen Zhu. Production of jet fuel intermediates from biomass platform compounds via aldol condensation reaction over iron-modified MCM-41 lewis acid zeolite[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 256-265. doi: 10.1016/j.jobab.2020.10.004

Production of jet fuel intermediates from biomass platform compounds via aldol condensation reaction over iron-modified MCM-41 lewis acid zeolite

doi: 10.1016/j.jobab.2020.10.004
Funds:

National Key R & D Program of China 2018YFB1501601

National Natural Science Foundation of China 51676178

Transformational Technologies for Clean Energy and Demonstration, and Strategic Priority Research Program of the Chinese Academy of Sciences XDA 21060101

More Information
  • Corresponding author: Wenzhi Li, E-mail address:liwenzhi@ustc.edu.cn
  • Received Date: 2020-04-20
  • Accepted Date: 2020-07-13
  • Rev Recd Date: 2020-06-14
  • Available Online: 2020-10-09
  • Publish Date: 2020-10-01
  • Liquid fuel intermediates could be produced via aldol condensation reaction between furfural or 5-hydroxymethylfurfural (HMF) and acetone. It was found that iron-modified MCM-41 zeolite can be an effective Lewis acid catalyst for C-C bond formation via aldol condensation of furfural or HMF with acetone. The 4-(2-furyl)-3-buten-2-one and 1, 5-di-2-furanyl-1, 4-pentadien-3-one (FAc and F2Ac), or 1, 5-di-2-furanyl-1, 4-pentadien-3-one and 1, 5-bis[(5-hydroxlmethyl)-2-furanyl]-1, 4-pentadien-3-one (HAc and H2Ac), as two main condensation products of furfural with acetone or HMF with acetone, were observed. After 24 h at 160℃, 86.9% conversion of furfural with 60.0% yield of the FAc as well as 7.5% yield of the F2Ac and 88.9% conversion of the HMF with 41.1% yield of the HAc as well as 3.5% yield of the H2Ac were achieved. Although furfural or HMF conversion was almost same after 24 h at 160℃, iron-modified MCM-41 zeolite catalyst displayed an enhanced selectivity to condensation products of furfural with acetone. In addition, catalysts showed an improved selectivity to the F2Ac and H2Ac at higher reaction temperature. The reusability and regeneration studies showed that iron-modified MCM-41 zeolite catalyst could not be reused directly, but could be regenerated by calcination in air, and the catalytic performance of regenerated catalyst was acceptable.

     

  • loading
  • Barrett, C.J., Chheda, J.N., Huber, G.W., Dumesic, J.A., 2006. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl. Catal. B:Environ. 66, 111-118. doi: 10.1016/j.apcatb.2006.03.001
    Bohre, A., Dutta, S., Saha, B., Abu-Omar, M.M., 2015a. Upgrading furfurals to drop-in biofuels:an overview. ACS Sustainable Chem. Eng. 3, 1263-1277. doi: 10.1021/acssuschemeng.5b00271
    Bohre, A., Saha, B., Abu-Omar, M.M., 2015b. Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal-acid catalysts. ChemSusChem 8, 4022-4029. doi: 10.1002/cssc.201501136
    Cara, C., Rombi, E., Musinu, A., Mameli, V., Ardu, A., Sanna Angotzi, M., Atzori, L., Niznansky, D., Xin, H.L., Cannas, C., 2017. MCM-41 support for ultrasmall γ-Fe2O3 nanoparticles for H2S removal. J. Mater. Chem. A 5, 21688-21698. doi: 10.1039/C7TA03652C
    Chang, C.C., Green, S.K., Williams, C.L., Dauenhauer, P.J., Fan, W., 2014. Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem. 16, 585-588. doi: 10.1039/C3GC40740C
    Chen, W., Li, X., Tang, Y., Zhou, J., Wu, D., Wu, Y., Li, L., 2018. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation. J. Hazard Mater. 346, 226-233. doi: 10.1016/j.jhazmat.2017.12.036
    Chiang, H.L., Wu, F.Y., Huang, P.H., Lee, T.Y., 2018. Characteristics of acetylene cracking on MCM-41 to form carbon materials and their exhaust emission. Microporous Mesoporous Mater. 268, 100-108. doi: 10.1016/j.micromeso.2018.04.006
    Faba, L., Díaz, E., Ordóñez, S., 2011. Performance of bifunctional Pd/MxNyO (M=Mg, Ca; N=Zr, Al) catalysts for aldolization-hydrogenation of furfural-acetone mixtures. Catal. Today 164, 451-456. doi: 10.1016/j.cattod.2010.11.032
    Faba, L., Díaz, E., Ordóñez, S., 2012. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl. Catal. B:Environ. 113/114, 201-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9cce0e9a0a90c12655cb10423ddae68
    Gou, J.S., Wang, Z.P., Li, C., Qi, X.D., Vattipalli, V., Cheng, Y.T., Huber, G., Conner, W.C., Dauenhauer, P.J., Mountziaris, T.J., Fan, W., 2017. The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. Green Chem. 19, 3549-3557. doi: 10.1039/C7GC01395G
    Huber, G.W., Chheda, J.N., Barrett, C.J., Dumesic, J.A., 2005. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446-1450. doi: 10.1126/science.1111166
    Kruger, J.S., Nikolakis, V., Vlachos, D.G., 2012. Carbohydrate dehydration using porous catalysts. Curr. Opin. Chem. Eng. 1, 312-320. doi: 10.1016/j.coche.2012.06.003
    Kubička, D., Kubičková, I., Čejka, J., 2013. Application of molecular sieves in transformations of biomass and biomass-derived feedstocks. Catal. Rev. 55, 1-78. doi: 10.1080/01614940.2012.685811
    Lewis, J.D., van de Vyver, S., Roman-Leshkov, Y., 2015. ChemInform abstract: acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. ChemInform 46, no.
    Li, H., Yang, S., Riisager, A., Pandey, A., Sangwan, R.S., Saravanamurugan, S., Luque, R., 2016. Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem. 18, 5701-5735. doi: 10.1039/C6GC02415G
    Muller, P., Burt, S.P., Love, A.M., McDermott, W.P., Wolf, P., Hermans, I., 2016. Mechanistic study on the Lewis acid catalyzed synthesis of 1, 3-butadiene over Ta-BEA using modulated operando DRIFTS-MS. ACS Catal. 6, 6823-6832. doi: 10.1021/acscatal.6b01642
    O'Neill, R.E., Vanoye, L., de de Bellefon, C., Aiouache, F., 2014. Aldol-condensation of furfural by activated dolomite catalyst. Appl. Catal. B:Environ. 144, 46-56. doi: 10.1016/j.apcatb.2013.07.006
    Sádaba, I., Ojeda, M., Mariscal, R., Fierro, J.L.G., Granados, M.L., 2011. Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Appl. Catal. B:Environ. 101, 638-648. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1922a2770da3d2ccb75a66cff3424c4f
    Sádaba, I., Ojeda, M., Mariscal, R., Richards, R., López Granados, M., 2012. Preparation and characterization of Mg-Zr mixed oxide aerogels and their application as aldol condensation catalysts. Chemphyschem 13, 3282-3292. doi: 10.1002/cphc.201200440
    Salviano, A.B., Santos, M.R.D., Araújo, L.M., Ardisson, J.D., Lago, R.M., Araujo, M.H., 2018. Iron oxide nanoparticles supported on mesoporous MCM-41 for efficient adsorption of hazardous β-lactamic antibiotics. Water Air Soil Pollut. 229, 1-14. doi: 10.1007/s11270-017-3647-3
    Savidha, R., Pandurangan, A., Palaichamy, M., Murugesan, V., 2003. Vapor-phase isopropylation of phenol over Fe-containing Al-MCM-41 molecular sieves. Catal. Lett. 91, 49-61. doi: 10.1023/B:CATL.0000006317.76045.1f
    Shen, W.Q., Tompsett, G.A., Hammond, K.D., Xing, R., Dogan, F., Grey, C.P., Conner, W.C. Jr, Auerbach, S.M., Huber, G.W., 2011. Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY. Appl. Catal. A:Gen. 392, 57-68. doi: 10.1016/j.apcata.2010.10.023
    Stöcker, M., 2008. Biofuels and biomass-to-liquid fuels in the biorefinery:catalytic conversion of lignocellulosic biomass using porous material. Angewandte Chemie International Edition, 47, 9200-9211. doi: 10.1002/anie.200801476
    Su, M.X., Li, W.Z., Zhang, T.W., Xin, H.S., Li, S., Fan, W., Ma, L.L., 2017. Production of liquid fuel intermediates from furfural via aldol condensation over Lewis acid zeolite catalysts. Catal. Sci. Technol. 7, 3555-3561. doi: 10.1039/C7CY01028A
    Tolborg, S., Meier, S., Saravanamurugan, S., Fristrup, P., Taarning, E., Sádaba, I., 2016. Shape-selective valorization of Biomass-derived glycolaldehyde using Tin-containing zeolites. ChemSusChem 9, 3054-3061. doi: 10.1002/cssc.201600757
    Ulu, A., Ozcan, I., Koytepe, S., Ates, B., 2018. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization. Int. J. Biol. Macromol. 115, 1122-1130. doi: 10.1016/j.ijbiomac.2018.04.157
    van de Vyver, S., Odermatt, C., Romero, K., Prasomsri, T., Román-Leshkov, Y., 2015. Solid Lewis acids catalyze the carbon-carbon coupling between carbohydrates and formaldehyde. ACS Catal. 5, 972-977. doi: 10.1021/cs5015964
    Wang, Y., Lewis, J.D., Romanleshkov, Y., 2016. Synthesis of itaconic acid ester analogues via self-aldol condensation of ethyl pyruvate catalyzed by hafnium BEA zeolites. ACS Catal. 6, 2739-2744. doi: 10.1021/acscatal.6b00561
    West, R.M., Liu, Z.Y., Peter, M., G rtner, C.A., Dumesic, J.A., 2008. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J. Mol. Catal. A:Chem. 296, 18-27. doi: 10.1016/j.molcata.2008.09.001
    Xing, R., Subrahmanyam, A.V., Olcay, H., Qi, W., van Walsum, G.P., Pendse, H.P., Huber, G.W., 2010. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chem. 12, 1933-1946. doi: 10.1039/c0gc00263a
    Xu, D.Y., Sun, X.W., Zhao, X., Huang, L.X., Qian, Y., Tao, X.M., Guo, Q.J., 2018a. Heterogeneous Fenton degradation of rhodamine B in aqueous solution using Fe-loaded mesoporous MCM-41 as catalyst. Water Air Soil Pollut. 229, 1-9. doi: 10.1007/s11270-017-3647-3
    Xu, W., Ollevier, T., Kleitz, F., 2018b. Iron-modified mesoporous silica as an efficient solid Lewis acid catalyst for the mukaiyama aldol reaction. ACS Catal. 8, 1932-1944. doi: 10.1021/acscatal.7b03485
    Yang, J.F., Li, N., Li, S.S., Wang, W.T., Li, L., Wang, A.Q., Wang, X.D., Cong, Y., Zhang, T., 2014. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chem. 16, 4879-4884. doi: 10.1039/C4GC01314J
    Zhang, Z.X., Hu, M.N., Mei, Q.M., Tang, J.H., Fei, Z.Y., Chen, X., Liu, Q., Cui, M.F., Qiao, X., 2019. Iron-doped mesoporous silica, Fe-MCM-41, as an active Lewis acid catalyst for acidolysis of benzyl chloride with fatty acid. J. Porous Mater. 26, 261-269. doi: 10.1007/s10934-018-0645-9
    Zinoviev, S., Müller-Langer. F., Das. P., Bertero, N., Fornasiero P., Kaltschmitt, M., Centi, G., Miertus S., 2010. Next-generation biofuels:survey of emerging technologies and sustainability issues. ChemSusChem, 3:1106-1133. doi: 10.1002/cssc.201000052
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (586) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return