Volume 5 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Wenguang Zhao, Hui Ding, Jie Zhu, Xianxiang Liu, Qiong Xu, Dulin Yin. Esterification of Levulinic Acid into n-Butyl Levulinate Catalyzed by Sulfonic Acid-Functionalized Lignin-Montmorillonite Complex[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 303-311. doi: 10.1016/j.jobab.2020.10.008
Citation: Wenguang Zhao, Hui Ding, Jie Zhu, Xianxiang Liu, Qiong Xu, Dulin Yin. Esterification of Levulinic Acid into n-Butyl Levulinate Catalyzed by Sulfonic Acid-Functionalized Lignin-Montmorillonite Complex[J]. Journal of Bioresources and Bioproducts, 2020, 5(4): 303-311. doi: 10.1016/j.jobab.2020.10.008

Esterification of Levulinic Acid into n-Butyl Levulinate Catalyzed by Sulfonic Acid-Functionalized Lignin-Montmorillonite Complex

doi: 10.1016/j.jobab.2020.10.008
Funds:

the National Natural Science Foundation of China 21606082

the National Natural Science Foundation of China 21776068

the National Natural Science Foundation of China 21975070

Hunan Provincial Natural Science Foundation of China 2018JJ3334

China Postdoctoral Science Foundation 2019M662787

More Information
  • Corresponding author: Xianxiang Liu,Email address:lxx@hunnu.edu.cn
  • Received Date: 2020-04-15
  • Accepted Date: 2020-07-10
  • Rev Recd Date: 2020-06-12
  • Available Online: 2020-10-09
  • Publish Date: 2020-10-01
  • In this study, sulfonic acid-functionalized lignin-montmorillonite complex (LMT-SO3H) was prepared and employed as an efficient heterogeneous catalyst for the esterification of levulinic acid (LA) into n-butyl levulinate (BL). An intermediate pseudo-butyl levulinate (p-BL) was determined by distilled water treatment and nuclear magnetic resonance (NMR) analysis, and a possible mechanism for the esterification of LA is proposed. The effects of various process parameters were studied and the results showed that the LMT-SO3H catalyst had the excellent catalytic performance for esterification of the LA. Under optimum reaction conditions, the yield of BL was 99.3% and the conversion of LA was 99.8%. The LMT-SO3H catalyst exhibited strong acidic sites and high stability even after seven cycles of usage. Furthermore, esterification of the LA with various alcohols over the LMT-SO3H was further investigated.

     

  • loading
  • Badgujar, K.C., Badgujar, V.C., Bhanage, B.M., 2020. A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Process. Technol. 197, 106213. http://www.sciencedirect.com/science/article/pii/S0378382019309142
    Bonacci, S., Nardi, M., Costanzo, P., de Nino, A., Gioia, M.L.D., Oliverio, M., Procopio, A., 2019. Montmorillonite K10-catalyzed solvent-free conversion of furfural into cyclopentenones. Catalysts 9, 301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000218319
    Cao, J.J., Ma, M.W., Liu, J.C., Yang, Y.Q., Liu, H., Xu, X.L., Huang, J.H., Yue, H.J., Tian, G., Feng, S.H., 2019. Highly effective transformation of carbohydrates to 5-Hydroxymethylfurfural with Al-montmorillonite as catalyst. Appl. Catal. A:Gen. 571, 96-101. doi: 10.1016/j.apcata.2018.12.011
    Christensen, E., Williams, A., Paul, S., Burton, S., McCormick, R.L., 2011. Properties and performance of levulinate esters as diesel blend components. Energy Fuels 25, 5422-5428. doi: 10.1021/ef201229j
    Ciptonugroho, W., Al-Shaal, M.G., Mensah, J.B., Palkovits, R., 2016. One pot synthesis of WOx/mesoporous-ZrO2 catalysts for the production of levulinic-acid esters. J. Catal. 340, 17-29. doi: 10.1016/j.jcat.2016.05.001
    Cirujano, F.G., Corma, A., Llabrés i Xamena, F.X., 2015. Conversion of levulinic acid into chemicals:synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chem. Eng. Sci. 124, 52-60. doi: 10.1016/j.ces.2014.09.047
    Das, J., Parida, K.M., 2007. Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst for esterification of acetic acid using n-butanol. J. Mol. Catal. A:Chem. 264, 248-254. doi: 10.1016/j.molcata.2006.09.033
    Demolis, A., Essayem, N., Rataboul, F., 2014. Synthesis and applications of alkyl levulinates. ACS Sustain. Chem. Eng. 2, 1338-1352. doi: 10.1021/sc500082n
    Dharne, S., Bokade, V.V., 2011. Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. J. Nat. Gas Chem. 20, 18-24. doi: 10.1016/S1003-9953(10)60147-8
    Enumula, S.S., Gurram, V.R.B., Chada, R.R., Burri, D.R., Kamaraju, S.R.R., 2017. Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst. J. Mol. Catal. A:Chem. 426, 30-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20ab26420375266499b249ce87e8af7b
    Gao, J., Kong, W.X., Zhou, L.Y., He, Y., Ma, L., Wang, Y., Yin, L.Y., Jiang, Y.J., 2017. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem. Eng. J. 309, 70-79. doi: 10.1016/j.cej.2016.10.021
    Gao, Y., Yue, Q.Y., Gao, B.Y., Sun, Y.Y., Wang, W., Li, Q., Wang, Y., 2013. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chem. Eng. J. 217, 345-353. doi: 10.1016/j.cej.2012.09.038
    Iborra, M., Tejero, J., Fité, C., Ramírez, E., Cunill, F., 2019. Liquid-phase synthesis of butyl levulinate with simultaneous water removal catalyzed by acid Ion exchange resins. J. Ind. Eng. Chem. 78, 222-231. doi: 10.1016/j.jiec.2019.06.011
    Kalghatgi, S.G., Bhanage, B.M., 2019. Green syntheses of levulinate esters using ionic liquid 1-Methyl imidazolium hydrogen sulphate[MIM] [HSO4] in solvent free system. J. Mol. Liq. 281, 70-80. doi: 10.1016/j.molliq.2019.02.053
    Kang, S.M., Fu, J.X., Zhang, G., 2018. From lignocellulosic biomass to levulinic acid:a review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 94, 340-362. doi: 10.1016/j.rser.2018.06.016
    Kolvari, E., Koukabi, N., Hosseini, M.M., 2015. Perlite:a cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction. J. Mol. Catal. A:Chem. 397, 68-75. doi: 10.1016/j.molcata.2014.10.026
    Maheria, K.C., Kozinski, J., Dalai, A., 2013. Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal. Lett. 143, 1220-1225. doi: 10.1007/s10562-013-1041-3
    Manikandan, K., Cheralathan, K.K., 2017. Heteropoly acid supported on silicalite-1 possesing intracrystalline nanovoids prepared using biomass-an efficient and recyclable catalyst for esterification of levulinic acid. Appl. Catal. A:Gen. 547, 237-247. doi: 10.1016/j.apcata.2017.09.007
    Marcel, R., Durillon, T., Djakovitch, L., Fache, F., Rataboul, F., 2019. First example of the use of biosourced alkyl levulinates as solvents for synthetic chemistry:application to the heterogeneously catalyzed heck coupling. ChemistrySelect 4, 3329-3333. doi: 10.1002/slct.201900153
    Morawala, D., Dalai, A., Maheria, K., 2019. Rice husk mediated synthesis of meso-ZSM-5 and its application in the synthesis of n-butyl levulinate. J. Porous Mater. 26, 677-686. doi: 10.1007/s10934-018-0664-6
    Morawala, D.H., Dalai, A.K., Maheria, K.C., 2020. Synthesis of n-butyl levulinate using mesoporous zeolite H-BEA catalysts with different catalytic characteristics. Catal. Lett. 150, 1049-1060. doi: 10.1007/s10562-019-03005-0
    Mukherjee, A., Dumont, M.J., Raghavan, V., 2015. Review:sustainable production of hydroxymethylfurfural and levulinic acid:challenges and opportunities. Biomass Bioenergy 72, 143-183. doi: 10.1016/j.biombioe.2014.11.007
    Najafi Chermahini, A., Nazeri, M., 2017. Esterification of the levulinic acid with n-butyl and isobutyl alcohols over aluminum-containing MCM-41. Fuel Process. Technol. 167, 442-450. doi: 10.1016/j.fuproc.2017.07.034
    Nandiwale, K.Y., Bokade, V.V., 2015. Esterification of renewable levulinic acid to n-butyl levulinate over modified H-ZSM-5. Chem. Eng. Technol. 38, 246-252. doi: 10.1002/ceat.201400326
    Pachamuthu, M.P., Srinivasan, V.V., Karvembu, R., Luque, R., 2019. Preparation of mesoporous stannosilicates SnTUD-1 and catalytic activity in levulinic acid esterification. Microporous Mesoporous Mater. 287, 159-166. doi: 10.1016/j.micromeso.2019.05.061
    Pavlovic, J., Popova, M., Mihalyi, R.M., Mazaj, M., Mali, G., Kovač, J., Lazarova, H., Rajic, N., 2019. Catalytic activity of SnO2-and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous Mesoporous Mater. 279, 10-18. doi: 10.1016/j.micromeso.2018.12.009
    Pileidis, F.D., Titirici, M.M., 2016. Levulinic acid biorefineries:new challenges for efficient utilization of biomass. ChemSusChem 9, 562-582. doi: 10.1002/cssc.201501405
    Shirini, F., Mamaghani, M., Atghia, S.V., 2011. Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite (SANM):a novel, efficient and recyclable catalyst for the chemoselective N-Boc protection of amines in solventless media. Catal. Commun. 12, 1088-1094. doi: 10.1016/j.catcom.2011.03.030
    Su, F., Wu, Q.Y., Song, D.Y., Zhang, X.H., Wang, M., Guo, Y.H., 2013. Pore morphology-controlled preparation of ZrO2-based hybrid catalysts functionalized by both organosilica moieties and Keggin-type heteropoly acid for the synthesis of levulinate esters. J. Mater. Chem. 1, 13209-13221. doi: 10.1039/c3ta12412f
    Sun, X.L., Zhao, X.H., Zu, Y.G., Li, W.G., Ge, Y.L., 2014. Preparing, characterizing, and evaluating ammoniated lignin diesel from papermaking black liquor. Energy Fuels 28, 3957-3963. doi: 10.1021/ef5008165
    Tian, Y., Zhang, R.Q., Zhao, W.G., Wen, S., Xiang, Y.P., Liu, X.X., 2020. A new sulfonic acid-functionalized organic polymer catalyst for the synthesis of biomass-derived alkyl levulinates. Catal. Lett. 15, doi: 10.1007/s10562-020-03253-5.
    Varadwaj, G.B.B., Parida, K., Nyamori, V.O., 2016. Transforming inorganic layered montmorillonite into inorganic-organic hybrid materials for various applications:a brief overview. Inorg. Chem. Front. 3, 1100-1111. http://pubs.rsc.org/en/content/articlepdf/2016/qi/c6qi00179c
    Xu, X.L., Zhang, X.L., Zou, W.J., Yue, H.J., Tian, G., Feng, S.H., 2015. Conversion of carbohydrates to methyl levulinate catalyzed by sulfated montmorillonite. Catal. Commun. 62, 67-70. doi: 10.1016/j.catcom.2015.01.011
    Yan, L., Yao, Q., Fu, Y., 2017. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chem. 19, 5527-5547. doi: 10.1039/C7GC02503C
    Yang, F., Tang, J.J., 2019. Catalytic upgrading of renewable levulinic acid to levulinate esters using perchloric acid decorated nanoporous silica gels. ChemistrySelect 4, 1403-1409. doi: 10.1002/slct.201803608
    Yang, J.F., Li, G.Y., Zhang, L.L., Zhang, S.F., 2018. Efficient production of N-butyl levulinate fuel additive from levulinic acid using amorphous carbon enriched with oxygenated groups. Catalysts 8, 14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000202942
    Yi, X.L., He, W., Zhang, X.D., Yue, Y.Z., Yang, G.H., Wang, Z.Y., Zhou, M.J., Wang, L.Z., 2017. Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium Ion batteries. Electrochimica Acta 232, 550-560. doi: 10.1016/j.electacta.2017.02.130
    Zhang, H., Li, H., Hu, Y.L., Venkateswara Rao, K.T., Xu, C., Yang, S., 2019. Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renew. Sustain. Energy Rev. 114, 109296. http://www.researchgate.net/publication/336184868_Advances_in_production_of_bio-based_ester_fuels_with_heterogeneous_bifunctional_catalysts
    Zhang, J., Wu, S., Li, B., Zhang, H., 2012. Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem 4, 1230-1237. doi: 10.1002/cctc.201200113
    Zhou, L.Y., He, Y., Ma, L., Jiang, Y.J., Huang, Z.H., Yin, L.Y., Gao, J., 2018. Conversion of levulinic acid into alkyl levulinates:Using lipase immobilized on meso-molding three-dimensional macroporous organosilica as catalyst. Bioresour. Technol. 247, 568-575. doi: 10.1016/j.biortech.2017.08.134
    Zhou, S.L., Liu, X.X., Lai, J.H., Zheng, M., Liu, W.Z., Xu, Q., Yin, D.L., 2019. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol. Chem. Eng. J. 361, 571-577. doi: 10.1016/j.cej.2018.12.111
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (375) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return