Volume 6 Issue 1
Jan.  2021
Article Contents
Turn off MathJax

Citation:

Synthesis and Applications of Fungal Mycelium-based Advanced Functional Materials

  • Corresponding author: Muhammad Wajid Ullah, wajid_kundi@hust.edu.cn ;  Guang Yang, yang_sunny@yahoo.com
  • Received Date: 2020-10-20
    Accepted Date: 2020-12-14
    Fund Project:

    No. 51973076), BRICS STI Framework Programme 3rd call 2019 (No. 2018YFE0123700), China Postdoctoral Science Foundation (No. 2016M602291), and Fundamental Research Funds for Central Universities, Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.

    This work was supported by National Natural Science Foundation of China (No. 21774039

  • Over the last couple of decades, the introduction of living systems to material science for the synthesis of functional materials from biological resources is receiving immense consideration. This is also in accordance with the need for green and sustainable development of new materials. For example, the growing concerns of the degradation of synthetic plastics are shifting the direction of materials-related research to the use of polymeric materials acquired from renewable resources. For example, the fungal mycelium-based materials are produced by growing the vegetative part of mushroom-forming fungi on different organic substrates. Such fungi are known for their ability to degrade agricultural wastes such as straws and sawdust. The mycelium-based composites having tailored structural, physical, chemical, mechanical, and biological properties are relying on the strain, feeding substrate, and the manufacturing process. The mycelium cell wall mainly contains the chitin, glucans, proteins, and lipids, whose concentrations depend upon the feeding substrate that ultimately defines the final properties of the synthesized materials. The mycelium-based functional materials with tunable properties are synthesized by selecting the desired components and the synthesis method. The pure and composites of stiff, elastic, porous, less dense, fast-growing, and low-cost mycelium-derived materials with efficient antimicrobial, antioxidant, and skin whitening properties pave their way in various applications such as construction, packaging, medicine, and cosmetics. This review describes the synthesis and structural organization of mycelium-based materials. It further discusses the effect of different factors on the material properties. Finally, it summarizes different applications of mycelium-based materials in medicine, cosmetics, packaging, and construction fields.
  • 加载中
  • [1]

    Abhijith, R., Ashok, A., Rejeesh, C.R., 2018. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater. Today: Proc. 5, 2139-2145.
    [2]

    Aggarwal, B.B., Sung, B., 2009. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol. Sci. 30, 85-94.
    [3]

    Ahmad, M.F., Ahmad, F.A., Azad, Z.A.A., Alam, M.I., Ansari, J.A., Panda, B.P., 2013. Edible mushrooms as health promoting agent. Adv. Sci. Focus. 1, 189-196.
    [4]

    Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B., 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 161, 64-71.
    [5]

    Appels, F.V.W., Dijksterhuis, J., Lukasiewicz, C.E., Jansen, K.M.B., Wösten, H.A.B., Krijgsheld, P., 2018. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 8, 4703.
    [6]

    Cerimi, K., Akkaya, K.C., Pohl, C., Schmidt, B., Neubauer, P., 2019. Fungi as source for new bio-based materials: a patent review. Fungal Biol. Biotechnol. 6, 17.
    [7]

    Chambergo, F.S., Valencia, E.Y., 2016. Fungal biodiversity to biotechnology. Appl. Microbiol. Biotechnol. 100, 2567-2577.
    [8]

    Chang, J.H., Chan, P.L., Xie, Y.C., Ma, K.L., Cheung, M.K., Kwan, H.S., 2019. Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. PLoS One 14, e0209812.
    [9]

    Chen, G.Q., Yi, B., Zeng, G.M., Niu, Q.Y., Yan, M., Chen, A.W., Du, J.J., Huang, J., Zhang, Q.H., 2014. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surfaces B: Biointerfaces 117, 199-205.
    [10]

    Collet, F., Pretot, S, 2014. Thermal conductivity of hemp concretes: variation with formulation, density and water content. Constr. Build. Mater. 65, 612-619.
    [11]

    Dangre, D.M., Dafne, L.P., Bhagat, R.P., 2012. Effct ofPleurotus nebrodensis extract on melanin synthesis: a natural alternative for cosmetics. Int. J. Med. Arom. Plants 4, 579-588.
    [12]

    Du, H., Perré, P., 2020. A novel lattice-based model for investigating three-dimensional fungal growth on solid media. Phys. A: Stat. Mech. Appl. 541, 123536.
    [13]

    Dubost, N.J., Beelman, R.B., Peterson, D., Royse, D.J., 2006. Identification and quantification of ergothioneine in cultivated mushrooms by liquid chromatography-mass spectroscopy. Int. J. Med. Mushrooms 8, 215-222.
    [14]

    Eastwood, D.C., Floudas, D., Binder, M., Majcherczyk, A., Schneider, P., Aerts, A., 2011. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333, 762-765.
    [15]

    El Enshasy, H.A., Hatti-Kaul, R., 2013. Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol. 31, 668-677.
    [16]

    Farooq, U., Ullah, M.W., Yang, Q.L., Aziz, A., Xu, J.J., Zhou, L., Wang, S.Q., 2020. High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens. Bioelectron. 157, 112163.
    [17]

    Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37, 1552-1596.
    [18]

    Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., 2012. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715-1719.
    [19]

    Free, S.J., 2013. Fungal cell wall organization and biosynthesis. Advances in Genetics 81, 33-82.
    [20]

    Gibson, A.P.M.G., 2006. Fire properties of polymer composite materials. Dordrecht: Springer Netherlands.
    [21]

    Goldman, D.L., Vicencio, A.G., 2012. The chitin connection. mBio 3, e00056-12.
    [22]

    Guilger-Casagrande M., de Lima R., 2019. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol 7, 287.
    [23]

    Gunawardena, D., Bennett, L., Shanmugam, K., King, K., Williams, R., Zabaras, D., Head, R., Ooi, L., Gyengesi, E., Münch, G., 2014. Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages. Food Chem. 148, 92-96.
    [24]

    Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292.
    [25]

    Hawksworth, D.L., Lücking, R., 2017. Fungal diversity revisited: 2.2 to 3.8 million species. The Fungal Kingdom. Washington, DC, USA: ASM Press, 79-95.
    [26]

    Hsu, K.D., Chen, H.J., Wang, C.S., Lum, C.C., Wu, S.P., Lin, S.P., Cheng, K.C., 2016. Extract of Ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor. Sci. Rep. 6, 32854.
    [27]

    Hyde, K.D., Bahkali, A.H., Moslem, M.A., 2010. Fungi: an unusual source for cosmetics. Fungal Divers. 43, 1-9.
    [28]

    Ibrar, M., Ullah, M.W., Manan, S., Farooq, U., Rafiq, M., Hasan, F., 2020. Fungi from the extremes of life: an untapped treasure for bioactive compounds. Appl. Microbiol. Biotechnol. 104, 2777-2801.
    [29]

    Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C., 2018. Mechanical behavior of mycelium-based particulate composites. J. Mater. Sci. 53, 16371-16382.
    [30]

    Jailani, M., Nor, M., Jamaludin, N., Tamiri, F.M. 2014. A preliminary study of sound absorption using multi-layer coconut coir fibers. Electron. J. Technical Acoust. 3, 1-8.
    [31]

    Jalmi, P., Bodke, P., Wahidullah, S., Raghukumar, S., 2012. The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications. World J. Microbiol. Biotechnol. 28, 505-512.
    [32]

    Jasim, A., Ullah, M.W., Shi, Z.J., Lin, X., Yang, G., 2017. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr. Polym. 163, 62-69.
    [33]

    Jiang, L., Walczyk, D., Mcintyre, G., 2013a. A new process for manufacturing biocomposite laminate and sandwich parts using mycelium as a binder. American Society for Composites 29th Technical Conference.
    [34]

    Jiang, L., Walczyk, D., Mooney, L., Putney, S., 2013b. Manufacturing of mycelium-based biocomposites. International SAMPE Technical Conference.
    [35]

    Jones, M., Bhat, T., Huynh, T., Kandare, E., Yuen, R., Wang, C.H., John, S., 2018. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 42, 816-825.
    [36]

    Jones, M., Huynh, T., Dekiwadia, C., Daver, F., John, S., 2017. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanoscience 11, 241-257.
    [37]

    Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397.
    [38]

    Jones, M., Weiland, K., Kujundzic, M., Theiner, J., Kählig, H., Kontturi, E., John, S., Bismarck, A., Mautner, A., 2019. Waste-derived low-cost mycelium nanopapers with tunable mechanical and surface properties. Biomacromolecules 20, 3513-3523.
    [39]

    Joshi, K., Meher, M.K., Poluri, K.M., 2020. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl. Bio Mater. 3, 1884-1892.
    [40]

    Kadoya, K., Matsunaga, N., Nagashima, A., 1985. Viscosity and thermal conductivity of dry air in the gaseous phase. J. Phys. Chem. Ref. Data 14, 947-970.
    [41]

    Kalač, P., 2013. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 93, 209-218.
    [42]

    Kang X., Kirui A., Muszyński A., Widanage M.C.D., Chen A., Azadi P., Wang P., Mentink-Vigier F., Wang T., 2018. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun 9, 2747.
    [43]

    Keles, A., Koca, I., Gençcelep, H., 2011. Antioxidant properties of wild edible mushrooms. J. Food Process. Technol. 2, 6.
    [44]

    Khamrai, M., Banerjee, S.L., Kundu, P.P., 2018. A sustainable production method of mycelium biomass using an isolated fungal strain Phanerochaete chrysosporium (accession no: KY593186): its exploitation in wound healing patch formation. Biocatal. Agric. Biotechnol. 16, 548-557.
    [45]

    Kim, Y., Ullah, M.W., Ul-Islam, M., Khan, S., Jang, J.H., Park, J.K., 2019. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J. 142, 135-144.
    [46]

    Lee, T.G., Lee, S.Y., Jeong, J.H., Jo, B.K., 2003. Screening of tyrosinase inhibiting activity from the marine-derived fungus.Pigment Cell Research 16, 604.
    [47]

    Lelivelt, R.J.J., Lindner, G., Teuffel, P., Lamers, H., 2015. The production process and compressive strength of Mycelium-based materials. First International Conference on Bio-based Building Materials.
    [48]

    Levina, N.N., Lew, R.R., 2006. The role of tip-localized mitochondria in hyphal growth. Fungal Genet Biol 43, 65-74.
    [49]

    Li, H., Zhao, H., Gao, Z., Song, X., Wang, W., Yuan, F., Feng, Y., Zhang, Y., Zhang, J., Zhang, S., Jia, L., 2019. The antioxidant and anti-aging effects of acetylated mycelia polysaccharides from Pleurotus djamor. Molecules 24, 2698.
    [50]

    Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., Yang, G., 2018. Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater. Manuf., 1, 41-49.
    [51]

    Liu, H., He, L., 2012. Comparison of the moisture retention capacity of Tremella polysaccharides and hyaluronic acid. J. Anhui Agric. Sci. 40, 13093-13094.
    [52]

    Liu, J.K., 2002. Biologically active substances from mushrooms in Yunnan, China. Heterocycles 57, 157.
    [53]

    Liu, R., Long, L., Sheng, Y., Xu, J.F., Qiu, H.Y., Li, X.Y., Wang, Y.X., Wu, H.G., 2019. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crop. Prod. 141, 111732.
    [54]

    Lupo, M.P., Cole, A.L., 2007. Cosmeceutical peptides. Dermatol. Ther. 20, 343-349.
    [55]

    Madurwar, M.V., Ralegaonkar, R.V., Mandavgane, S.A., 2013. Application of agro-waste for sustainable construction materials: a review. Constr. Build. Mater. 38, 872-878.
    [56]

    Mohanty, C., Das, M., Sahoo, S.K., 2012. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Molm Pharmm 9, 2801-2811.
    [57]

    Mohorčič, M., Friedrich, J., Renimel, I., André, P., Mandin, D., Chaumont, J.P., 2007. Production of melanin bleaching enzyme of fungal origin and its application in cosmetics. Biotechnol. Bioprocess Eng. 12, 200-206.
    [58]

    Molnár, Z., Bódai, V., Szakacs, G., Erdélyi, B., Fogarassy, Z., Sáfrán, G., Varga, T., Kónya, Z., Tóth-Szeles, E., Szűcs, R., Lagzi, I., 2018. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 8, 3943.
    [59]

    Money, N.P., 2016. Fungal cell biology and development. The Fungi. Amsterdam: Elsevier, 37-66.
    [60]

    Nopharatana, M., Mitchell, D.A., Howes, T., 2003. Use of confocal scanning laser microscopy to measure the concentrations of aerial and penetrative hyphae during growth of Rhizopus oligosporus on a solid surface. Biotechnol. Bioeng. 84, 71-77.
    [61]

    Ocampo, A., Reddy, P., Belmonte, J.C.I., 2016. Anti-aging strategies based on cellular reprogramming. Trends Mol. Med. 22, 725-738.
    [62]

    Park, J., Ul-Islam, M., Wajid Ullah, M., Khan, S., Kamal, T., Ul-Islam, S., Shah, N., 2016. Recent advancement in cellulose based Nanocomposite for addressing environmental challenges. Recent Patents Nanotechnol. 10, 1.
    [63]

    Pelletier, M.G., Holt, G.A., Wanjura, J.D., Bayer, E., McIntyre, G., 2013. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crop. Prod. 51, 480-485.
    [64]

    Peters, R.J., 2013. Acoustics and noise control. London: Routledge.
    [65]

    Poucheret, P., Fons, F., Rapior, S., 2006. Biological and pharmacological activity of higher fungi: 20-Year retrospective analysis. Cryptogam. Mycol. 27, 311-333.
    [66]

    Raudaskoski, M., 2019. The central role of Septa in the basidiomycete Schizophyllum commune hyphal morphogenesis. Fungal Biol. 123, 638-649.
    [67]

    Ruiz-Herrera, J., Ortiz-Castellanos, L., 2019. Cell wall glucans of fungi: a review. Cell Surf. 5, 100022.
    [68]

    Samsudin, E.M., Ismail, L.H., Kadir, A.A., 2016. A review on physical factors influencing absorption performance of fibrous sound absorption material from natural fibers. ARPN J. Eng. Appl. Sci. 11, 3703-3710.
    [69]

    Sartori, I., Hestnes, A.G., 2007. Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy Build. 39, 249-257.
    [70]

    Sator, P.G., Schmidt, J.B., Hönigsmann, H., 2003. Comparison of epidermal hydration and skin surface lipids in healthy individuals and in patients with atopic dermatitis. J. Am. Acad. Dermatol. 48, 352-358.
    [71]

    Smith, M.L., Bruhn, J.N., Anderson, J.B., 1992. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356, 428-431.
    [72]

    Solodovnik, T., Stolyarenko, H., Slis, A., Kultenko, V., 2017. Study of heat treatment effect on structure and solubility of chitosan films. Chem. Chem. Technol. 11, 175-179.
    [73]

    Steinhorst, L., Kudla, J., 2013. Calcium—A central regulator of pollen germination and tube growth. Biochim. et Biophys. Acta BBA-Mol. Cell Res. 1833, 1573-1581.
    [74]

    Synytsya, A., Novák, M., 2013. Structural diversity of fungal glucans. Carbohydr Polym 92, 792-809.
    [75]

    Thoemen, H., Humphrey, P.E., 2006. Modeling the physical processes relevant during hot pressing of wood-based composites. Part I. Heat and mass transfer. Holz Als Roh - Und Werkstoff 64, 1-10.
    [76]

    Tomiyama, T., Kaihou, S., Ishida, M., Nishikawa, H., Yamazaki, N., Tsuji, K., Mitsutake, S., Igarashi, Y., 2008. The water retention effects and action for atopic dermatitis-like symptoms of ethyl alcohol extract (from tamogi-take mushroom) on animal model of atopic dermatitis. Nippon. Eiyo Shokuryo Gakkaishi 61, 21-26.
    [77]

    Ul-Islam, M., Khan, S., Ullah, M.W., Park, J.K., 2019a. Comparative study of plant and bacterial cellulose pellicles regenerated from Dissolved states. Int. J. Biol. Macromol. 137, 247-252.
    [78]

    Ul-Islam, M., Subhan, F., Islam, S.U., Khan, S., Shah, N., Manan, S., Ullah, M.W., Yang, G., 2019b. Development of three-dimensional bacterial cellulose/chitosan scaffolds: analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. Int. J. Biol. Macromol. 137, 1050-1059.
    [79]

    Ullah, M.W., Manan, S., Kiprono, S.J., Ul-Islam, M., Yang, G., 2019. Synthesis, structure, and properties of bacterial cellulose. Nanocellulose. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 81-113.
    [80]

    Ullah, M.W., Shi, Z.J., Shi, X.D., Zeng, D., Li, S.X., Yang, G., 2017. Microbes as structural templates in biofabrication: study of surface chemistry and applications. ACS Sustainable Chem. Eng. 5, 11163-11175.
    [81]

    Uysal, H., Demirboğa, R., Şahin, R., Gül, R., 2004. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34, 845-848.
    [82]

    Vidal-Diez de Ulzurrun, G., Baetens, J.M., van den Bulcke, J., De Baets, B., 2017. Modelling three-dimensional fungal growth in response to environmental stimuli. J. Theor. Biol. 414, 35-49.
    [83]

    Vigneshwaran, N., Kathe, A.A., Varadarajan, P.V., Nachane, R.P., Balasubramanya, R.H., 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete Chrysosporium. Colloids Surfaces B: Biointerfaces 53, 55-59.
    [84]

    Villena, G.K., Fujikawa, T., Tsuyumu, S., Gutiérrez-Correa, M., 2010. Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy. Bioresour. Technol. 101, 1920-1926.
    [85]

    Wang, X.M., Zhang, Z.S., Zhao, M.X., 2015. Carboxymethylation of polysaccharides from Tremella fuciformis for antioxidant and moisture-preserving activities. Int. J. Biol. Macromol. 72, 526-530.
    [86]

    Wang, Z., Wang, H., Kang, Z., Wu, Y., Xing, Y., Yang, Y., 2020. Antioxidant and anti-tumour activity of triterpenoid compounds isolated from Morchella mycelium. Arch. Microbiol. 202, 1677-1685.
    [87]

    Widsten, P., Tuominen, S., Qvintus-Leino, P., Laine, J.E., 2004. The influence of high defibration temperature on the properties of medium-density fiberboard (MDF) made from laccase-treated softwood fibers. Wood Sci. Technol. 38, 521-528.
    [88]

    Wu, Y.Z., Choi, M.H., Li, J.S., Yang, H.T., Shin, H.J., 2016. Mushroom cosmetics: the present and future. Cosmetics 3, 22.
    [89]

    Xu, C.P., Ojeda, M., Arancon, R.A.D., Romero, A.A., Domingo, J.L., Gómez, M., Blanco, J., Luque, R., 2015. Bioinspired porous ZnO nanomaterials from fungal polysaccharides: advanced materials with unprecedented low toxicityin vitrofor human cells. ACS Sustainable Chem. Eng. 3, 2716-2725.
    [90]

    Xu, N., Gao, Z., Zhang, J.J., Jing, H.J., Li, S.S., Ren, Z.Z., Wang, S.X., Jia, L., 2017. Hepatoprotection of enzymatic-extractable mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. Carbohydr. Polym. 157, 196-206.
    [91]

    Yang, Z.J., Zhang, F., Still, B., White, M., Amstislavski, P., 2017. Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 29, 04017030.
    [92]

    Ziegler, A.R., Bajwa, S.G., Holt, G.A., McIntyre, G., Bajwa, D.S., 2016. Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Appl. Eng. Agric. 32, 931-938.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(54) PDF downloads(8) Cited by()

Related
Proportional views

Synthesis and Applications of Fungal Mycelium-based Advanced Functional Materials

    Corresponding author: Muhammad Wajid Ullah, wajid_kundi@hust.edu.cn
    Corresponding author: Guang Yang, yang_sunny@yahoo.com
  • a Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • b Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Sultanate of Oman
Fund Project:  No. 51973076), BRICS STI Framework Programme 3rd call 2019 (No. 2018YFE0123700), China Postdoctoral Science Foundation (No. 2016M602291), and Fundamental Research Funds for Central Universities, Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.This work was supported by National Natural Science Foundation of China (No. 21774039

Abstract: Over the last couple of decades, the introduction of living systems to material science for the synthesis of functional materials from biological resources is receiving immense consideration. This is also in accordance with the need for green and sustainable development of new materials. For example, the growing concerns of the degradation of synthetic plastics are shifting the direction of materials-related research to the use of polymeric materials acquired from renewable resources. For example, the fungal mycelium-based materials are produced by growing the vegetative part of mushroom-forming fungi on different organic substrates. Such fungi are known for their ability to degrade agricultural wastes such as straws and sawdust. The mycelium-based composites having tailored structural, physical, chemical, mechanical, and biological properties are relying on the strain, feeding substrate, and the manufacturing process. The mycelium cell wall mainly contains the chitin, glucans, proteins, and lipids, whose concentrations depend upon the feeding substrate that ultimately defines the final properties of the synthesized materials. The mycelium-based functional materials with tunable properties are synthesized by selecting the desired components and the synthesis method. The pure and composites of stiff, elastic, porous, less dense, fast-growing, and low-cost mycelium-derived materials with efficient antimicrobial, antioxidant, and skin whitening properties pave their way in various applications such as construction, packaging, medicine, and cosmetics. This review describes the synthesis and structural organization of mycelium-based materials. It further discusses the effect of different factors on the material properties. Finally, it summarizes different applications of mycelium-based materials in medicine, cosmetics, packaging, and construction fields.

Reference (92)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return