Volume 6 Issue 1
Jan.  2021
Article Contents
Turn off MathJax


Recent Advancements in Applications of Chitosan-based Biomaterials for Skin Tissue Engineering

  • The use of polymer based composites in the treatment of skin tissue damages, has got huge attention in clinical demand, which enforced the scientists to improve the methods of biopolymer designing in order to obtain highly efficient system for complete restoration of damaged tissue. In last few decades, chitosan-based biomaterials have major applications in skin tissue engineering due to its biocompatible, hemostatic, antimicrobial and biodegradable capabilities. This article overviewed the promising biological properties of chitosan and further discussed the various preparation methods involved in chitosan-based biomaterials. In addition, this review also gave a comprehensive discussion of different forms of chitosan-based biomaterials including membrane, sponge, nanofiber and hydrogel that were extensively employed in skin tissue engineering. This review will help to form a base for the advanced applications of chitosan-based biomaterials in treatment of skin tissue damages.
  • 加载中
  • [1]

    Abdel-Rahman, R.M., Hrdina, R., Abdel-Mohsen, A.M., Fouda, M.M.G., Soliman, A.Y., Mohamed, F.K., Mohsin, K., Pinto, T.D., 2015. Chitin and chitosan from Brazilian Atlantic Coast: isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 80, 107-120.

    Abid, S., Hussain, T., Nazir, A., Zahir, A., Ramakrishna, S., Hameed, M., Khenoussi, N., 2019. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int. J. Biol. Macromol. 135, 1222-1236.

    Adeli, H., Khorasani, M.T., Parvazinia, M., 2019. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 122, 238-254.

    Ahmadi, F., Oveisi, Z., Samani, S.M., Amoozgar, Z., 2015. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res. Pharm. Sci. 10, 1-16.

    Ahmed, T.A., Aljaeid, B.M., 2016. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther. 10, 483-507.

    Annabi, N., Mithieux, S.M., Weiss, A.S., Dehghani, F., 2009. The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials 30, 1-7.

    Archana, D., Dutta, J., Dutta, P.K., 2013. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 57, 193-203.

    Azad, A.K., Sermsintham, N., Chandrkrachang, S., Stevens, W.F., 2004. Chitosan membrane as a wound-healing dressing: Characterization and clinical application. J. Biomed. Mater. Res. Part B: Appl. Biomater. 69B, 216-222.

    Bagher, Z., Ehterami, A., Safdel, M.H., Khastar, H., Semiari, H., Asefnejad, A., Davachi, S.M., Mirzaii, M., Salehi, M., 2020. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J. Drug. Deliv. Sci. Technol. 55, 101379.

    Balan, V., Verestiuc, L., 2014. Strategies to improve chitosan hemocompatibility: a review. Eur. Polym. J. 53, 171-188.

    Basseri, H., Bakhtiyari, R., Hashemi, S.J., Baniardelani, M., Shahraki, H., Hosainpour, L., 2019. Antibacterial/antifungal activity of extracted chitosan from American cockroach (Dictyoptera: Blattidae) and German cockroach (Blattodea: Blattellidae). J. Med. Entomol. 56, 1208-1214.

    Behera, S.S., Das, U., Kumar, A., Bissoyi, A., Singh, A.K., 2017. Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. Int. J. Biol. Macromol. 98, 329-340.

    Bellini, M.Z., Caliari-Oliveira, C., Mizukami, A., Swiech, K., Covas, D.T., Donadi, E.A., Oliva-Neto, P., Moraes, A.M., 2015. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J. Biomater. Appl. 29, 1155-1166.

    Berger, L.R.R., Stamford, N.P., Willadino, L.G., Laranjeira, D., de Lima, M.A.B., Malheiros, S.M.M., de Oliveira, W.J., Stamford, T.C.M., 2016. Cowpea resistance induced against Fusarium oxysporum f. sp. tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from Cunninghamella elegans. Biol. Control. 92, 45-54.

    Binder, J.B., Raines, R.T., 2009. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979-1985.

    Blakeney, B.A., Tambralli, A., Anderson, J.M., Andukuri, A., Lim, D.J., Dean, D.R., Jun, H.W., 2011. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomater. 32, 1583-1590.

    Bolat, Y., Bilgin, Ş., Günlü, A., Izci, L., Koca, S.B., Çetinkaya, S., Koca, H.U., 2010. Chitin-chitosan yield of freshwater crab (Potamon potamios, Olivier 1804) shell. Pak. Vet. J. 30, 227-231.

    Boyce, S.T., Lalley, A.L., 2018. Tissue engineering of skin and regenerative medicine for wound care. Burn. Trauma 6, 4.

    Campos, M.G.N., Mei, L.H.I., Santos, A.R., 2015. Sorbitol-plasticized and neutralized chitosan membranes as skin substitutes. Mat. Res. 18, 781-790.

    Cardoso, A.M., de Oliveira, E.G., Coradini, K., Bruinsmann, F.A., Aguirre, T., Lorenzoni, R., Barcelos, R.C.S., Roversi, K., Rossato, D.R., Pohlmann, A.R., Guterres, S.S., Burger, M.E., Beck, R.C.R., 2019. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Mater. Sci. Eng.: C 96, 205-217.

    Chang, S.H., Lin, H.T.V., Wu, G.J., Tsai, G.J., 2015. pH effects on solubility, Zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. 134, 74-81.

    Chang, S.H., Wu, C.H., Tsai, G.J., 2018. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym. 181, 1026-1032.

    Chen, C.L., Wang, L.C., Zhu, B., Zhou, Z.Q., El-Hout, S.I., Yang, J., Zhang, J., 2021. 2, 5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: catalysts, processes and reaction mechanism. J. Energy Chem. 54, 528-554.

    Chen, H.L., Huang, J., Yu, J.H., Liu, S.Y., Gu, P., 2011. Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int. J. Biol. Macromol. 48, 13-19.

    Chen, Y., Qiu, H.Y., Dong, M.H., Cheng, B., Jin, Y.G., Tong, Z.R., Li, P.W., Li, S.D., Yang, Z.M., 2019. Preparation of hydroxylated lecithin complexed iodine/carboxymethyl chitosan/sodium alginate composite membrane by microwave drying and its applications in infected burn wound treatment. Carbohydr. Polym. 206, 435-445.

    Cheung, R., Ng, T., Wong, J., Chan, W., 2015. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs 13, 5156-5186.

    Chien, P.J., Sheu, F., Lin, H.R., 2007. Quality assessment of low molecular weight chitosan coating on sliced red pitayas. J. Food Eng. 79, 736-740.

    Chung, M.J., Park, J.K., Park, Y.I., 2012. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int. Immunopharmacol. 12, 453-459.

    Cook, J.P., Goodall, G.W., Khutoryanskaya, O.V., Khutoryanskiy, V.V., 2012. Microwave‐assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol. Rapid Commun. 33, 332-336.

    Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E, 2011. Chitosan: a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 981-1014

    de Isla, N., Huseltein, C., Jessel, N., Pinzano, A., Decot, V., Magdalou, J., Bensoussan, D., Stoltz, J.F., 2010. Introduction to tissue engineering and application for cartilage engineering. Biomed. Mater. Eng. 20, 127-133.

    de Lima, J.M., Sarmento, R.R., de Souza, J.R., Brayner, F.A., Feitosa, A.P., Padilha, R., Alves, L.C., Porto, I.J., Batista, R.F., de Oliveira, J.E., de Medeiros, E.S., Bonan, P.R., Castellano, L.R., 2015. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed. Res. Int. 2015, 247965.

    de Paz, L.E.C., Resin, A., Howard, K.A., Sutherland, D.S., Wejse, P.L., 2011. Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl. Environ. Microbiol. 77, 3892-3895.

    de Queiroz Antonino, R., Lia Fook, B., de Oliveira Lima, V., de Farias Rached, R., Lima, E., da Silva Lima, R., Peniche Covas, C., Lia Fook, M., 2017. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar. Drugs 15, 141.

    Deepa, R., Paul, W., Anilkumar, T.V., Sharma, C.P., 2013. Differential healing of full thickness rabbit skin wound by fibroblast loaded chitosan sponge. J. Biomater. Tissue Eng. 3, 261-272.

    Dhandayuthapani, B., Krishnan, U.M., Sethuraman, S., 2010. Fabrication and characterization of chitosan‐gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 94, 264-272.

    Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M., 2013. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 33, 379-403.

    Di Mario, F., Rapanà, P., Tomati, U., Galli, E., 2008. Chitin and chitosan from Basidiomycetes. Int. J. Biol. Macromol. 43, 8-12.

    Domalik-Pyzik, P., Chłopek, J., Pielichowska, K., 2019. Chitosan-based hydrogels: preparation, properties, and applications. Polymers and Polymeric Composites: A Reference Series. Cham: Springer International Publishing, 1665-1693.

    Dong, P., Yuan, L.W., Hao, W.C., Xia, Y.Y., Da, G.Z., Wang, T.M., 2009. Biocompatibility of chitosan/heparin multilayer coating on NiTi alloy. Mater. Sci. Forum 610/611/612/613, 1179-1182.

    Du, Y.J., Zhao, Y.Q., Dai, S.C., Yang, B., 2009. Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov. Food Sci. Emerg. Technol. 10, 103-107.

    Duan, B., Dong, C.H., Yuan, X.Y., Yao, K.D., 2004. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J. Biomater. Sci. Polym. Ed. 15, 797-811.

    Duan, B., Yuan, X.Y., Zhu, Y., Zhang, Y.Y., Li, X.L., Zhang, Y., de Yao, K., 2006. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur. Polym. J. 42, 2013-2022.

    Dutta, S., Kim, J., Ide, Y., Ho Kim, J., Hossain, M.S.A., Bando, Y., Yamauchi, Y., Wu, K.C.W., 2017. 3D network of cellulose-based energy storage devices and related emerging applications. Mater. Horiz. 4, 522-545.

    Ehterami, A., Salehi, M., Farzamfar, S., Samadian, H., Vaez, A., Ghorbani, S., Ai, J., Sahrapeyma, H., 2019. Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J. Drug Deliv. Sci. Technol. 51, 204-213.

    Eldin, M.M., Soliman, E.A., Hashem, A.I., Tamer, T.M., 2008. Antibacterial activity of chitosan chemically modified with new technique. Trends Biomater. Artif. Organs 22, 125-137.

    Fernandes, J.C., Spindola, H., de Sousa, V., Santos-Silva, A., Pintado, M.E., Malcata, F.X., Carvalho, J.E., 2010. Anti-inflammatory activity of chitooligosaccharides in vivo. Mar. Drugs 8, 1763-1768.

    Fu, J., Yang, F.C., Guo, Z.G., 2018. The chitosan hydrogels: from structure to function. New J. Chem. 42, 17162-17180.

    Galvis-Sánchez, A.C., Sousa, A.M.M., Hilliou, L., Gonçalves, M.P., Souza, H.K.S., 2016. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development. Green Chem. 18, 1571-1580.

    Garg, T., Chanana, A., Joshi, R., 2012a. Preparation of chitosan scaffolds for tissue engineering using freeze drying technology. IOSR J. Pharm. 2, 72-73.

    Garg, T., Singh, O., Arora, S., Murthy, R.S.R., 2012b. Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug 29, 1-63.

    Ghosal, K., Manakhov, A., Zajíčková, L., Thomas, S., 2017. Structural and surface compatibility study of modified electrospun poly(ε-caprolactone) (PCL) composites for skin tissue engineering. AAPS Pharmscitech 18, 72-81.

    Goy, R.C., Morais, S.T.B., Assis, O.B.G., 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira De Farmacognosia 26, 122-127.

    Hajji, S., Younes, I., Rinaudo, M., Jellouli, K., Nasri, M., 2015. Characterization and in vitro evaluation of cytotoxicity, antimicrobial and antioxidant activities of chitosans extracted from three different marine sources. Appl. Biochem. Biotechnol. 177, 18-35.

    Halim, A., Periayah, M., Saad, A.M., 2016. Chitosan: a promising marine polysaccharide for biomedical research. Pharmacogn. Rev. 10, 39.

    Han, F., Dong, Y., Su, Z., Yin, R., Song, A.H., Li, S.M., 2014. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. Int. J. Pharm. 476, 124-133.

    Hiep, N.T., Khon, H.C., Niem, V.V.T., Toi, V.V., Ngoc Quyen, T., Hai, N.D., Ngoc Tuan Anh, M., 2016. Microwave-assisted synthesis of chitosan/polyvinyl alcohol silver nanoparticles gel for wound dressing applications. Int. J. Polym. Sci. 2016, 1-11.

    Hohman, M.M., Shin, M., Rutledge, G., Brenner, M.P., 2001. Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 13, 2221-2236.

    Hu, K.J., Hu, J.L., Ho, K.P., Yeung, K.W., 2004. Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr. Polym. 58, 45-52.

    Ikeda, T., Ikeda, K., Yamamoto, K., Ishizaki, H., Yoshizawa, Y., Yanagiguchi, K., Yamada, S., Hayashi, Y., 2014. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res. Int. 2014, 1-8.

    Ing, L.Y., Zin, N.M., Sarwar, A., Katas, H., 2012. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater. 2012, 1-9.

    Islam, M.M., Masum, S.M., Mahbub, K.R., 2011. In vitro antibacterial activity of shrimp chitosan against Salmonela paratyphi and Staphylococcus aureus. J. Bangla. Chem. Soc. 24, 185-190.

    Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P.T., Nair, S.V., Tamura, H., 2011. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 29, 322-337.

    Ji, C.D., Annabi, N., Khademhosseini, A., Dehghani, F., 2011. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 7, 1653-1664.

    Kabashima, K., Honda, T., Ginhoux, F., Egawa, G., 2019. The immunological anatomy of the skin. Nat. Rev. Immunol. 19, 19-30.

    Kaya, M., Akata, I., Baran, T., Menteş, A., 2015a. Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Food Biophys. 10, 162-168.

    Kaya, M., Asan-Ozusaglam, M., Erdogan, S, 2016. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan. J. Biosci. Bioeng. 121, 678-684.

    Kaya, M., Baran, T., Asan-Ozusaglam, M., Cakmak, Y.S., Tozak, K.O., Mol, A., Mentes, A., Sezen, G, 2015b. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol. Bioprocess Eng. 20, 168-179.

    Kaya, M., Baran, T., Erdoğan, S., Menteş, A., Aşan Özüsağlam, M., Çakmak, Y.S, 2014d. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater. Sci. Eng.: C 45, 72-81.

    Kaya, M., Baran, T., Saman, I., Asan Ozusaglam, M., Cakmak, Y.S., Menteş, A., 2014b. Physicochemical characterization of chitin and chitosan obtained from resting eggs of Ceriodaphnia quadrangula (Branchiopoda: Cladocera: Daphniidae). J Crustacean Biol 34, 283-288.

    Kaya, M., Cakmak, Y.S., Baran, T., Asan-Ozusaglam, M., Mentes, A., Tozak, K.O, 2014a. New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol. Bioprocess Eng. 19, 58-69.

    Kaya, M., Seyyar, O., Baran, T., Erdoğan, S., Kar, M, 2014c. A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: with new surface morphology. Int. J. Biol. Macromol. 65, 553-558.

    Khalid, A., Naeem, N., Khan, T., Wahid, F., 2020. Polysaccharide composites as a wound-healing sponge. In: Al-Ahmed, A., Inamuddin (Eds.), Advanced Applications of Polysaccharides and their Composites. Materials Research Forum LLC, 1-26.

    Kim, S., 2018. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Polym. Sci. 2018, 1-13.

    Kleekayai, T., Suntornsuk, W., 2011. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol. 27, 1145-1154.

    Kong, M., Chen, X.G., Xing, K., Park, H.J., 2010. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144, 51-63.

    Koosha, M., Raoufi, M., Moravvej, H., 2019. One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf B Biointerfaces 179, 270-279.

    Kronenthal, R., 2013. Polymers in medicine and surgery. Berlin: Springer Science & Business Media.

    Liao, Y.T., Matsagar, B.M., Wu, K.C.W., 2018. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustain. Chem. Eng. 6, 13628-13643.

    Limam, Z., Selmi, S., Sadok, S., El Abed, A., 2011. Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10, 640-647.

    Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., Li, Z., Wang, J., 2018. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 8, 7533-7549.

    Liu, X.C., You, L.J., Tarafder, S., Zou, L., Fang, Z.X., Chen, J.D., Lee, C.H., Zhang, Q.Q., 2019. Curcumin-releasing chitosan/aloe membrane for skin regeneration. Chem. Eng. J. 359, 1111-1119.

    Ma, P.X., 2008. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60, 184-198.

    Ma, Y., Xin, L., Tan, H.P., Fan, M., Li, J.L., Jia, Y., Ling, Z.H., Chen, Y., Hu, X.H., 2017. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater. Sci. Eng.: C 81, 522-531.

    Ma, Z.X., Kim, D., Adesogan, A.T., Ko, S., Galvao, K., Jeong, K.C., 2016. Chitosan microparticles exert broad-spectrum antimicrobial activity against antibiotic-resistant micro-organisms without increasing resistance. ACS Appl. Mater. Interfaces 8, 10700-10709.

    Madni, A., Khan, R., Ikram, M., Naz, S.S., Khan, T., Wahid, F., 2019. Fabrication and characterization of chitosan-vitamin C-lactic acid composite membrane for potential skin tissue engineering. Int. J. Polym. Sci. 2019, 1-8.

    Masood, N., Ahmed, R., Tariq, M., Ahmed, Z., Masoud, M.S., Ali, I., Asghar, R., Andleeb, A., Hasan, A., 2019. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 559, 23-36.

    Morgado, P.I., Miguel, S.P., Correia, I.J., Aguiar-Ricardo, A., 2017. Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohydr. Polym. 159, 136-145.

    Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M.M.F.A., Ihsan, A.U., Shumzaid, M., Kakar, M.U., Khan, T.M., Akabar, M.D., Hussain, M. I., Zhou, Q.G., 2019. Chitosan oligosaccharide (COS): an overview. Int. J. Biol. Macromol. 129, 827-843.

    Nguyen, V.C., Nguyen, V.B., Hsieh, M.F., 2013. Curcumin-loaded chitosan/gelatin composite sponge for wound healing application. Int. J. Polym. Sci. 2013, 1-7.

    No, H.K., Kim, S.H., Lee, S.H., Park, N.Y., Prinyawiwatkul, W., 2006. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr. Polym. 65, 174-178.

    No, H.K., Young Park, N., Ho Lee, S., Meyers, S.P., 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65-72.

    Oduor-Odeto, P.M., Struszezyk, M.H., Peter, M.G., 2007. Characterisation of chitosan from blowfly larvae and some crustacean species from Kenyan Marin waters prepared under different conditions. West Ind. Oc. J. Mar. Sci. 4, 99-108.

    Oliveira, M.I., Santos, S.G., Oliveira, M.J., Torres, A.L., Barbosa, M.A., 2012. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur. Cell Mater. 24, 136-153.

    Oryan, A., Sahvieh, S., 2017. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003-1011.

    Pandey, A.R., Singh, U.S., Momin, M., Bhavsar, C., 2017. Chitosan: Application in tissue engineering and skin grafting. J. Polym. Res. 24, 125.

    Park, C.H., Lee, W.I., 2012. Compression molding in polymer matrix composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs). Amsterdam: Elsevier, 47-94.

    Patil, P.S., Fathollahipour, S., Inmann, A., Pant, A., Amini, R., Shriver, L.P., Leipzig, N.D., 2019. Fluorinated methacrylamide chitosan hydrogel dressings improve regenerated wound tissue quality in diabetic wound healing. Adv. Wound Care (New Rochelle) 8, 374-385.

    Pereira, R.F., Bártolo, P.J., 2016. Traditional therapies for skin wound healing. Adv. Wound Care (New Rochelle) 5, 208-229.

    Pezeshki-Modaress, M., Rajabi-Zeleti, S., Zandi, M., Mirzadeh, H., Sodeifi, N., Nekookar, A., Aghdami, N, 2014. Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: In vitro and in vivo study. J. Biomed. Mater. Res. Part A 102, 3908-3917.

    Pini, R., Storti, G., Mazzotti, M., Tai, H.Y., Shakesheff, K.M., Howdle, S.M., 2007. Sorption and Swelling of Poly(D, L-lactic acid) and Poly(lactic-co-glycolic acid) in Supercritical CO2. Macromol. Symp. 259, 197-202.

    Pochanavanich, P., Suntornsuk, W., 2002. Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 35, 17-21.

    Prasad, T., Shabeena, E.A., Vinod, D., Kumary, T.V., Anil Kumar, P.R., 2015. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J Mater Sci Mater Med 26, 5352.

    Qu, D.F., Han, J.Z., 2016. Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet. R. Bras. Zootec. 45, 661-666.

    Rahmani del Bakhshayesh, A., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., Alizadeh-Ghodsi, M., Davaran, S., Montaseri, A., 2018. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol. 46, 691-705.

    Rajitha, P., Gopinath, D., Biswas, R., Sabitha, M., Jayakumar, R., 2016. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases. Expert Opin. Drug Del. 13, 1177-1194.

    Ran, L.X., Zou, Y.N., Cheng, J.W., Lu, F., 2019. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int. J. Biol. Macromol. 125, 392-403.

    Ravishankar, K., Venkatesan, M., Desingh, R.P., Mahalingam, A., Sadhasivam, B., Subramaniyam, R., Dhamodharan, R., 2019. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Eng. C 102, 447-457.

    Ruiz, G.A.M., Corrales, H.F.Z., 2017. Chitosan, chitosan derivatives and their biomedical applications. In: Shalaby, E. (Eds.). Biological Activities and Application of Marine Polysaccharides, Books on Demand (BoD), 87-106.

    Sacco, P., Furlani, F., de Marzo, G., Marsich, E., Paoletti, S., Donati, I., 2018. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels 4, 67.

    Sagheer, F.A.A., Al-Sughayer, M.A., Muslim, S., Elsabee, M.Z., 2009. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410-419.

    Sah, M.K., Rath, S.N., 2016. Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater. Sci. Eng. C 67, 807-821.

    Saharan, V., Sharma, G., Yadav, M., Choudhary, M.K., Sharma, S.S., Pal, A., Raliya, R., Biswas, P, 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 75, 346-353.

    Salehi, M., Farzamfar, S., Bastami, F., Tajerian, R., 2016. Fabrication and characterization of electrospun plla/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed. Eng. Appl. Basis Commun. 28, 1650035.

    Sami El-banna, F., Mahfouz, M.E., Leporatti, S., El-Kemary, M., Hanafy, N.A.N., 2019. Chitosan as a natural copolymer with unique properties for the development of hydrogels. Appl. Sci. 9, 2193.

    Sarkar, S.D., Farrugia, B.L., Dargaville, T.R., Dhara, S., 2013. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J. Biomed. Mater. Res. Part A 101, 3482-3492.

    Sharma, S., Batra, S., 2019. Recent advances of chitosan composites in artificial skin: the next era for potential biomedical application. Materials for Biomedical Engineering. Amsterdam: Elsevier, 97-119.

    Shpichka, A., Butnaru, D., Bezrukov, E.A., Sukhanov, R.B., Atala, A., Burdukovskii, V., Zhang, Y.Y., Timashev, P., 2019. Skin tissue regeneration for burn injury. Stem Cell Res. Ther. 10, 94.

    Sionkowska, A., Płanecka, A., 2013. Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J. Mol. Liq. 178, 5-14.

    Sivashankari, P.R., Prabaharan, M., 2016. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int. J. Biol. Macromol. 93, 1382-1389.

    Tamer, T.M., Valachová, K., Hassan, M.A., Omer, A.M., El-Shafeey, M., Mohy Eldin, M.S., Šoltés, L., 2018. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In vitro and in vivo evaluation studies. Mater. Sci. Eng.: C 90, 227-235.

    Tomida, H., Fujii, T., Furutani, N., Michihara, A., Yasufuku, T., Akasaki, K., Maruyama, T., Otagiri, M., Gebicki, J.M., Anraku, M., 2009. Antioxidant properties of some different molecular weight chitosans. Carbohydr. Res. 344, 1690-1696.

    Tong, C., Hao, H.J., Xia, L., Liu, J.J., Ti, D.D., Dong, L., Hou, Q., Song, H.J., Liu, H.L., Zhao, Y.L., Fu, X.B., Han, W.D., 2016. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 24, 45-56.

    Tsigos, I., Martinou, A., Kafetzopoulos, D., Bouriotis, V., 2000. Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol. 18, 305-312.

    Tu, J., Xu, Y.L., Xu, J.Q., Ling, Y., Cai, Y.Q., 2016. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. Int. J. Biol. Macromol. 86, 848-856.

    Vilar, J.C. Jr, Ribeaux, D.R., Alves da Silva, C.A., de Campos-Takaki, G.M., 2016. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. Int. J. Microbiol. 2016, 1-7.

    Visentin, A.F., Dong, T.Y., Poli, J., Panzer, M.J., 2014. Rapid, microwave-assisted thermal polymerization of poly(ethylene glycol) diacrylate-supported ionogels. J. Mater. Chem. A 2, 7723.

    Vivcharenko, V., Benko, A., Palka, K., Wojcik, M., Przekora, A., 2020. Elastic and biodegradable chitosan/agarose film revealing slightly acidic pH for potential applications in regenerative medicine as artificial skin graft. Int. J. Biol. Macromol. 164, 172-183.

    Wahid, F., Khan, T., Hussain, Z., Ullah, H., 2018. Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Inamuddin Asiri, A.M., Mohammad, A. (Eds.). Applications of Nanocomposite Materials in Drug Delivery. UK: Woodhead Publishing, 701-735.

    Xie, Y., Yi, Z.X., Wang, J.X., Hou, T.G., Jiang, Q., 2018. Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing. Int. J. Biol. Macromol. 112, 1225-1233.

    Xu, Z.P., Shi, L.Y., Yang, M.Y., Zhang, H.P., Zhu, L.J., 2015. Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: characterization, in vitro and in vivo studies. J. Mater. Chem. B 3, 3634-3642.

    Yamada, M., Kurano, M., Inatomi, S., Taguchi, G., Okazaki, M., Shimosaka, M., 2008. Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris. FEMS Microbiol Lett 289, 130-137.

    Yang, E.J., Kim, J.G., Kim, J.Y., Kim, S.C., Lee, N.H., Hyun, C.G., 2010. Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Central Eur. J. Biol. 5, 95-102.

    Yen, M.T., Tseng, Y.H., Li, R.C., Mau, J.L., 2007. Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Sci. Technol. 40, 255-261.

    Younes, I., Rinaudo, M, 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13, 1133-1174.

    Yuan, J., Hou, Q., Chen, D., Zhong, L., Dai, X., Zhu, Z., Li, M., Fu, X., 2020. Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. Sci China Life Sci. 63, 552-562.

    Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X, 2010. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J Biomed Mater Res A 95, 870-881.

    Zhang, J.J., Yang, Z., Li, C., Dou, Y.N., Li, Y.J., Thote, T., Wang, D.A., Ge, Z.G., 2013. Cells behave distinctly within sponges and hydrogels due to differences of internal structure. Tissue Eng. Part A 19, 2166-2175.

    Zhao, Y., Park, R.D., Muzzarelli, R.A., 2010. Chitin deacetylases: properties and applications. Mar. Drugs 8, 24-46.

    Zhong, Z.M., Chen, R., Xing, R., Chen, X.L., Liu, S., Guo, Z.Y., Ji, X., Wang, L., Li, P.C., 2007. Synthesis and antifungal properties of sulfanilamide derivatives of chitosan. Carbohydr. Res. 342, 2390-2395.

    Zhou, H.Y., Zhang, Y.P., Zhang, W.F., Chen, X.G., 2011. Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr. Polym. 83, 1643-1651.

    Ziani, K., Fernández-Pan, I., Royo, M., Maté, J.I., 2009. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll. 23, 2309-2314.

    Zou, P., Lee, W.H., Gao, Z., Qin, D., Wang, Y., Liu, J., Sun, T., Gao, Y., 2020. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr. Polym. 232, 115786.

    Zulkifli, F.H., Hussain, F.S.J., Zeyohannes, S.S., Rasad, M.S.B.A., Yusuff, M.M., 2017. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater. Sci. Eng. C 79, 151-160.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article Metrics

Article views(39) PDF downloads(9) Cited by()

Proportional views

Recent Advancements in Applications of Chitosan-based Biomaterials for Skin Tissue Engineering

    Corresponding author: Fazli Wahid, fazli.wahid@fbse.paf-iast.edu.pk
  • a Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
  • b Department of Pharmacy, Women Institute of Learning, Abbottabad, Pakistan
  • c Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, Pakistan

Abstract: The use of polymer based composites in the treatment of skin tissue damages, has got huge attention in clinical demand, which enforced the scientists to improve the methods of biopolymer designing in order to obtain highly efficient system for complete restoration of damaged tissue. In last few decades, chitosan-based biomaterials have major applications in skin tissue engineering due to its biocompatible, hemostatic, antimicrobial and biodegradable capabilities. This article overviewed the promising biological properties of chitosan and further discussed the various preparation methods involved in chitosan-based biomaterials. In addition, this review also gave a comprehensive discussion of different forms of chitosan-based biomaterials including membrane, sponge, nanofiber and hydrogel that were extensively employed in skin tissue engineering. This review will help to form a base for the advanced applications of chitosan-based biomaterials in treatment of skin tissue damages.

Reference (144)



    DownLoad:  Full-Size Img  PowerPoint