Citation: | Battu Deeksha, Vajja Sadanand, N. Hariram, Anumakonda Varada Rajulu. Preparation and Properties of Cellulose Nanocomposite Fabrics with in situ Generated Silver Nanoparticles by Bioreduction Method[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 75-81. doi: 10.1016/j.jobab.2021.01.003 |
The aim of the present study was to develop antibacterial cellulose (cotton) nanocomposite fabrics (CNCFs) with in situ generated silver nanoparticles using medicinal plant Vitex leaf extract. The developed CNCFs were characterized by scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and antibacterial tests. Further, these CNCFs possessed good antibacterial activities. These CNCFs prepared using simple and environmentally friendly method can be considered for medical applications in, such as, surgical aprons, wound cleaning, wound dressing, and hospital bed materials.
Banerjee, P. , Satapathy, M. , Mukhopahayay, A. , Das, P. , 2014. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 1, 1-10 doi: 10.1186/s40643-014-0001-0
|
Bindhani, B. K. , Panigrahi, A. K. , 2015. Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum sanctum L. (Tulsi) and study of its antibacterial activities. J. Nanomed. Nanotechnol. S6: 8. http://www.researchgate.net/publication/283811934_Biosynthesis_and_Characterization_of_Silver_Nanoparticles_Snps_by_using_Leaf_Extracts_of_Ocimum_Sanctum_L_Tulsi_and_Study_of_its_Antibacterial_Activities
|
Brumbaugh, A. D. , Cohen, K. A. , St Angelo, S. K. , 2014. Ultrasmall copper nanoparticles synthesized with a plant tea reducing agent. ACS Sustainable Chem. Eng. 2, 1933-1939. doi: 10.1021/sc500393t
|
Cady, N. C. , Behnke, J. L. , Strickland, A. D. , 2011. Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen. A. baumannii, and mammalian cell biocompatibility in vitro. Adv. Funct. Mater. 21, 2506-2514
|
Heera, P. , Shanmugam, S. , Ramachandran, J. , 2015. Green synthesis of copper nanoparticles. Int. J. Curr. Res. and Acad. Rev. 3, 268-275. http://www.researchgate.net/publication/335680394_GREEN_SYNTHESIS_OF_COPPER_NANOPARTICLES
|
Ibrahim, H. M. M. , 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8, 265-275. doi: 10.1016/j.jrras.2015.01.007
|
Jamshidi, A. , Jahangiri, M. , 2014. Synthesis of copper nanoparticles and its antibacterial activity against Escherichia coli. Asian J. Biol. Sci. 7, 183-186. doi: 10.3923/ajbs.2014.183.186
|
Kathireswari, P. , Gomathi, S. , Saminathan, K. , 2014. Green synthesis of silver nanoparticles using Vitex negundo and its antimicrobial activity against human pathogens. Int. J. Curr. Microbiol. App. Sci. 3, 614-621.
|
Kulkarni. V. D. , Kulkarni, P. S. , 2013. Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Inter. J. Chem. Stud. 1, 1-4.
|
Kumar Trivedi, M. , 2015. The potential impact of biofield energy treatment on the physical and thermal properties of silver oxide powder. Int. J. Biomed. Sci. Eng. 3, 62. doi: 10.11648/j.ijbse.20150305.11
|
Li, R. , He, M. , Li, T. , Zhang, L. N. , 2015. Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr. Polym. 115, 269-275. doi: 10.1016/j.carbpol.2014.08.046
|
Logeswari, P. , Silambarasan, S. , Abraham, J. , 2013. Eco friendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci. Iran. 20, 1049-1054.
|
Mahdieh, M. , Zolanvari, A. , Azimee, A. S. , Mahdieh, M. , 2012. Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci. Iran. 19, 926-929. doi: 10.1016/j.scient.2012.01.010
|
Muthulakshmi, L. , Rajini, N. , Nellaiah, H. , Kathiresan, T. , Jawaid, M. , Rajulu, A. V. , 2017a. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int. J. Biol. Macromol. 95, 1064-1071. doi: 10.1016/j.ijbiomac.2016.09.114
|
Muthulakshmi, L. , Rajini, N. , Nellaiah, H. , Kathiresan, T. , Jawaid, M. , Varada Rajulu, A. , 2017b. Experimental investigation of cellulose/silver nanocomposites using in situ generation method. J. Polym. Environ. 25, 1021-1032. doi: 10.1007/s10924-016-0871-7
|
Sadanand, V. , Rajini, N. , Satyanarayana, B. , Varada Rajulu, A. , 2016a. Preparation and properties of cellulose/silver nanoparticle composites with in situ-generated silver nanoparticles using Ocimum sanctum leaf extract. Int. J. Polym. Anal. Charact. 21, 408-416. doi: 10.1080/1023666X.2016.1161100
|
Sadanand, V. , Rajini, N. , Varada Rajulu, A. , Satyanarayana, B. , 2016b. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr. Polym. 150, 32-39. doi: 10.1016/j.carbpol.2016.04.121
|
Sutradhar, P. , Saha, M. , Maiti, D. , 2014. Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostructure Chem. 4, 1-6. doi: 10.1007/s40097-014-0086-1
|
Vainio, U. , Pirkkalainen, K. , Kisko, K. , Goerigk, G. , Kotelnikova, N. E. , Serimaa, R. , 2007. Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering. Eur. Phys. J. D. 42, 93-101. doi: 10.1140/epjd/e2007-00015-y
|
Varaprasad, K. , Vimala, K. , Ravindra, S. , Narayana Reddy, N. , Venkata Subba Reddy, G. , Mohana Raju, K. , 2011. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J. Mater. Sci. : Mater. Med. 22, 1863-1872. doi: 10.1007/s10856-011-4369-5
|
Zoghbi, M. D. G. B. , Andrade, E. H. A. , Maia, J. G. S. , 1999. The essential oil of Vitex agnus-castus L. growing in the Amazon region. Flavour Fragr. J. 14, 211-213. doi: 10.1002/(SICI)1099-1026(199907/08)14:4<211::AID-FFJ812>3.0.CO;2-W
|