Turn off MathJax
Article Contents
Lourdes M. Orejuela-Escobar, Andrea C. Landázuri, Barry Goodell. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.01.004
Citation: Lourdes M. Orejuela-Escobar, Andrea C. Landázuri, Barry Goodell. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.01.004

Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus

doi: 10.1016/j.jobab.2021.01.004
More Information
  • Corresponding author: E-mail addresses: lorejuela@usfq.edu.ec (L.M.Orejuela-Escobar), alandazuri@usfq.edu.ec (A.C.Landázuri), bgoodell@umass.edu (B.Goodell)
  • Received Date: 2020-08-12
  • Accepted Date: 2020-11-01
  • Rev Recd Date: 2020-10-25
  • The projection of world population growth with concurrent generation of large volumes of agro-industrial waste that negatively affect the environment is of great concern. Therefore, this review article describes the nexus between concepts of Circular Bioeconomy, Zero Waste Technology, Sustainable Development, Biorefineries, and alternatives and research efforts to generate less environmental impact. A brief analysis of the Ecuadorian industry and exports is described, emphasizing the fact that, to improve the Ecuadorian trade balance, it is necessary to increase industrial competitiveness. It is important to have emerging technologies and innovation in order to promote the replacement of fossil-derived raw materials with renewable raw materials and develop more environmentally friendly processes and industries. This paper analyses the state of biomass research and its transformation in Ecuador, together with current pretreatment research on biomass to obtain bioproducts and biofuels in a biorefinery that promotes clean production for the extraction of phytochemicals using green solvents, such as deep eutectic solvents; and technologies to recover high-value added materials with enhanced properties. In conclusion, the need to develop technologies and markets to commercialize high value-added products coming from biorefineries is highlighted, as this will increase the income both in rural and urban areas and will strengthen the productivity and profitability of the Ecuadorian agroindustry. Our goal through this analysis is to improve Ecuador's trade balance while also contributing to the circular bioeconomy that promotes sustainable development.

     

  • loading
  • [1]
    Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R., 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids. J. Am. Chem. Soc., 126: 9142-9147.
    [2]
    Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K., 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc., 126: 9142-9147.
    [3]
    Abbott, A.P., Capper, G., Davies, D.L., McKenzie, K.J., Obi, S.U., 2006. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data, 51: 1280-1282.
    [4]
    Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V., 2003. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun., 1: 70-71.
    [5]
    Abolore Idris, M., 2016. Moringa oleifera seed extract : a review on its environmental applications. Int. J. Appl. Environ. Sci., 11: 1469-1486.
    [6]
    Abougor, H., 2014. Utilization of Deep Eutectic Solvent as a Pretreatment Option for Lignocellulosic Biomass. Cookeville: Tennessee Technological University.
    [7]
    Abubakar, A.N.F., Achmadi, S.S., Suparto, I.H., 2017. Triterpenoid of avocado (Persea americana) seed and its cytotoxic activity toward breast MCF-7 and liver HepG2 cancer cells. Asian Pac. J. Trop. Biomed., 7: 397-400.
    [8]
    Acosta, R., Alcida Nabarlatz, D., Ranzi, E., Costa, M., Sanabria, J., Nabarlatz, D., 2018. Biomass from Colombian agroindustrial activities: characterization and potential for oligosaccharides production valorisation of sewage sludge. View project production of xylooligosaccharides from residual biomass of Colombian agroindustry view project Bi. Chem. Eng. Trans., 65: 667-672.
    [9]
    Ademosun, A.O., Oboh, G., Olupona, A.J., Oyeleye, S.I., Adewuni, T.M., Nwanna, E.E., 2016. Comparative study of chemical composition, in vitro inhibition of cholinergic and monoaminergic enzymes, and antioxidant potentials of essential oil from peels and seeds of sweet orange (Citrus sinensis [L. ] osbeck) fruits. J. Food Biochem., 40: 53-60.
    [10]
    Ahmed, G., Hamrick, D., Fajardo, G.A., 2015. Review of Ecuador's Agri-Industries Global Value Chains Bottlenecks and Roadmap for Implementation. Washington, DC World Bank, p. 54.
    [11]
    Akalazu, J.N., Uchegbu, R.I., 2020. Biochemical composition and antimicrobial activities of seed extracts of avocado (Persea americana). FASEB J., 34: 1.
    [12]
    Alfarra, R.S., Ali, N.E., Yusoff, M.M., 2014. Removal of heavy metals by natural adsorbent: review. Int. J. Biosci., 6655: 130-139.
    [13]
    Almeida Streitwieser, D., 2017. Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness. Bioresour. Technol., 241: 985-992.
    [14]
    Almeida Streitwieser, D., Cadena Cabezas, I., 2018. Preliminary study of biomethane production of organic waste based on their content of sugar, starch, lipid, protein and fibre. Chem. Eng. Trans., 65: 661-666. http://www.researchgate.net/publication/340132761_Preliminary_Study_of_Biomethane_Production_of_Organic_Waste_based_on_their_Content_of_Sugar_Starch_Lipid_Protein_and_Fibre
    [15]
    Almeida Streitwieser, D., Regalado, D.A., Ampudia, M.J., 2010. Estudio de la co-digestión anaeróbica de desechos orgánicos agroindustriales. Av. Cienc. Ing., 2: 2 Quito.
    [16]
    Andrade W.X., Pisco, I., Quinde, L., Coronel, C., 2020. Informacion Técnica y Económica. Revista Industrias, Cómo lograr una debida reactivación económica? 10-21. Available at: https://revistaindustrias.com/como-lograr-una-debida-reactivacion-de-la-economia-2/.
    [17]
    Angel Siles López, J., Li, Q., Thompson, I.P., 2010. Biorefinery of waste orange peel. Crit. Rev. Biotechnol., 30: 63-69.
    [18]
    Antia, B., Okokon, J., Okon, P., 2005. Hypoglycemic activity of aqueous leaf extract of Persea americana Mill. Indian J. Pharmacol. 37, 325.
    [19]
    Anvoh, K.Y.B., Bi, A.Z., Gnakri, D., 2009. Production and characterization of juice from mucilage of cocoa beans and its transformation into marmalade. Pakistan J. Nutrition 8, 129-133.
    [20]
    Araújo, R.G., Rodriguez-Jasso, R.M., Ruiz, H.A., Pintado, M.M.E., Aguilar, C.N., 2018. Avocado by-products: nutritional and functional properties. Trends Food Sci. Technol., 80: 51-60.
    [21]
    Arlene, A.A., Prima, K.A., Utama, L., Anggraini, S.A., 2015. The preliminary study of the dye extraction from the avocado seed using ultrasonic assisted extraction. Procedia Chem. 16, 334-340. http://www.sciencedirect.com/science/article/pii/S1876619615002090
    [22]
    Attard, T.M., Bukhanko, N., Eriksson, D., Arshadi, M., Geladi, P., Bergsten, U., Budarin, V.L., Clark, J.H., Hunt, A.J., 2018. Supercritical extraction of waxes and lipids from biomass: a valuable first step towards an integrated biorefinery. J. Clean. Prod. 177, 684-698.
    [23]
    Aydeniz Güneşer, B., Yilmaz, E., 2019. Comparing the effects of conventional and microwave roasting methods for bioactive composition and the sensory quality of cold-pressed orange seed oil. J. Food Sci. Technol. 56, 634-642.
    [24]
    Aydin, F., Yilmaz, E., Soylak, M., 2017. A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem. J. 132, 280-285.
    [25]
    Ayu, D.F., Andarwulan, N., Hariyadi, P., Purnomo, E.H., 2016. Effect of tocopherols, tocotrienols, β-carotene, and chlorophyll on the photo-oxidative stability of red palm oil. Food Sci. Biotechnol. 25: 401-407.
    [26]
    Bahar, M., Deng, Y., Fletcher, J.N., Kinghorn, A.D., 2007. Plant-Derived Natural Products in Drug Discovery and Development: an Overview. Selected Topics in the Chemistry of Natural Products. World Scientific, pp. 11-48.
    [27]
    Bakri, M., Yi, Y., Chen, L.D., Aisa, H.A., Mong-Heng, W., 2014. Alkaloids of Nitraria sibirica Pall. decrease hypertension and albuminuria in angiotensin II-salt hypertension. Chin. J. Nat. Med. 12, 266-272.
    [28]
    Balasundram, N., Sundram, K., Samman, S., 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191-203.
    [29]
    Ballesteros, L.F., Cerqueira, M.A., Teixeira, J.A., Mussatto, S.I., 2015. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydr. Polym. 127, 347-354.
    [30]
    Ballesteros, L.F., Ramirez, M.J., Orrego, C.E., Teixeira, J.A., Mussatto, S.I., 2017. Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. J. Food Eng. 199, 1-8.
    [31]
    Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A., 2017. Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10-22.
    [32]
    Bankar, A., Joshi, B., Kumar, A.R., Zinjarde, S., 2010. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surfaces A: Physic-ochem. Eng. Aspects 368, 58-63.
    [33]
    Baquero, M., Lucio Paredes, A., 2010. Ecuadorian Agro-Industry: an important sector that requires a law to promote its development. La Granja Rev. Ciencias la Vida 11, 44-46.
    [34]
    Barhoi, D., Upadhaya, P., Barbhuiya, S.N., Giri, A., Giri, S., 2020. Aqueous extract of Moringa oleifera exhibit potential anticancer activity and can be used as a possible cancer therapeutic agent: a study involving in vitro and in vivo approach. J. Am. Coll. Nutr. 1-16.
    [35]
    Barros, H.D.F.Q., Grimaldi, R., Cabral, F.A., 2017. Lycopene-rich avocado oil obtained by simultaneous supercritical extraction from avocado pulp and tomato pomace. J. Supercrit. Fluids 120, 1-6.
    [36]
    Baskar, R., Shrisakthi, S., Sathyapriya, B., Shyampriya, R., Nithya, R., Poongodi, P., 2011. Antioxidant potential of peel extracts of banana varieties (Musa sapientum). Food Nutr. Sci. 2, 1128-1133.
    [37]
    Beltrán-Heredia, J., Sánchez-Martín, J., 2009. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent. Environ. Technol. 30, 525-534.
    [38]
    Belwal, T., Ezzat, S.M., Rastrelli, L., Bhatt, I.D., Daglia, M., Baldi, A., Devkota, H.P., Orhan, I.E., Patra, J.K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S.F., Nabavi, S.M., Atanasov, A.G., 2018. A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. Trac. Trends Anal. Chem. 100, 82-102.
    [39]
    Benítez, M.B., Champagne, P., Ramos, A., Torres, A.F., Ochoa-Herrera, V., 2019. Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environ. Technol. 40, 2977-2985.
    [40]
    Bhattacharya, S., Pramanik, S.K., Gehlot, P.S., Patel, H., Gajaria, T., Mishra, S., Kumar, A., 2017. Process for preparing value-added products from microalgae using textile effluent through a biorefinery approach. ACS Sustain. Chem. Eng. 5, 10019-10028.
    [41]
    Billah, M., Susilowati, T., Susilowati, Suryaningrum, D.H., 2016. The benefit of cacao peel's lignin as an adhesive using multi function extractor. In: MATEC Web Conf., 58, p. 01024.
    [42]
    Blinová, L., Sirotiak, M., Bartošová, A., Soldán, M., 2017. Review: utilization of waste from coffee production. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 25, 91-101.
    [43]
    Blowman, K., Magalhã es, M., Lemos, M.F.L., Cabral, C., Pires, I.M., 2018. Anticancer properties of essential oils and other natural products. Evid. Based Complement Alternat. Med., 3149362 2018.
    [44]
    Briguglio, M., Dell'Osso, B., Panzica, G., Malgaroli, A., Banfi, G., Zanaboni Dina, C., Galentino, R., Porta, M., 2018. Dietary neurotransmitters: a narrative review on current knowledge. Nutrients 10, 1-15.
    [45]
    Buxton, D.R., Fales, S.L., 1994. Plant environment and quality. In: George, C., Fahey, J. (Eds. ), Forage Quality, Evaluation and Utilization. American Society of Agronomy, Madison, USA, pp. 115-154.
    [46]
    Cabardo Jr, D.E., Portugaliza Jr, H.P., 2017. Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. Int. J. Vet. Sci. Med. 5, 30-34.
    [47]
    Campos-Vega, R., Nieto-Figueroa, K.H., Oomah, B.D., 2018. Cocoa (Theobroma cacao L. ) pod husk: renewable source of bioactive compounds. Trends Food Sci. Technol. 81, 172-184.
    [48]
    Carrera, A., 2017. Encapsulación de Trichoderma asperellum en partículas biopoliméricas con quitosanos de diferentes pesos moleculares para el control biológico de Moniliophthora roreri. Universidad San Francisco de Quito. Available at: http://repositorio.usfq.edu.ec/handle/23000/6805.
    [49]
    Carvajal Barriga, E.J., Guamn-Burneo, C., Portero, P., Salas, E., Tufio, C., Bastidas, B., 2013. Second Generation Ethanol from Residual Biomass: Research and Per-spectives in Ecuador. Biomass Now—Sustainable Growth and Use. London: InTech.
    [50]
    Chen, X.M., Tait, A.R., Kitts, D.D., 2017. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 218, 15-21.
    [51]
    Chiesa, S., Gnansounou, E., 2011. Protein extraction from biomass in a bioethanol refinery—Possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour. Technol. 102, 427-436.
    [52]
    Choi, Y.H., Dai, Y., Kim, H.K., Verpoorte, R., 2014. Metabolomics and natural deep eutectic solvents: Discovering a natural secret using an unbiased tool. Planta Med. 80, 16.
    [53]
    Choo, Y.M., Yap, S.C., Ooi, C.K., Ma, A.N., Goh, S.H., Ong, A.S.H., 1996. Recovered oil from palm-pressed fiber: a good source of natural carotenoids, vitamin E, and sterols. J. Am. Oil Chem. Soc. 73, 599-602.
    [54]
    Cobo, S., Dominguez-Ramos, A., Irabien, A., 2018. From linear to circular integrated waste management systems: a review of methodological approaches. Resour. Conserv. Recycl. 135, 279-295.
    [55]
    Conidi, C., Cassano, A., Drioli, E., 2012. Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867-874.
    [56]
    Curran, T., Williams, I.D., 2012. A zero waste vision for industrial networks in Europe. J. Hazard. Mater. 3-7 207/208.
    [57]
    da Silva, C.R.U., Franco, H.C.J., Junqueira, T.L., van Oers, L., van der Voet, E., Seabra, J.E.A., 2014. Long-term prospects for the environmental profile of advanced sugar cane ethanol. Environ. Sci. Technol. 48, 12394-12402.
    [58]
    Dai, Y.T., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H., 2013. Natural deep eutectic solvents as new potential media for green technology. Anal. Chimica Acta 766, 61-68.
    [59]
    Dai, Y.T., Verpoorte, R., Choi, Y.H., 2014. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 159, 116-121.
    [60]
    de Mello Andrade, J.M., de Jong, E.V., Henriques, A.T., 2014. Byproducts of orange extraction: influence of different treatments in fiber composition and physical and chemical parameters. Braz. J. Pharm. Sci. 50, 473-482.
    [61]
    de Oliveira Vigier, K., Chatel, G., Jerome, F., 2015. ChemInform abstract: contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemInform 46, 1.
    [62]
    Deblonde, T., Cossu-Leguille, C., Hartemann, P., 2011. Emerging pollutants in wastewater: a review of the literature. Int. J. Hyg. Environ. Health 214, 442-448. http://www.sciencedirect.com/science/article/pii/S1438463911001325
    [63]
    Degam, G., 2017. Deep Eutectic Solvents Synthesis, Characterization and Applications in Pretreatment of Lignocellulosic Biomass. South Dakota State University, Vermillion, p. 1156.
    [64]
    del Río, J.A., Arcas, M.C., Benavente-García, O., Ortuño, A., 1998. Citrus polymethoxylated flavones can confer resistance againstphytophthora citrophthora, Penicil-lium digitatum, and geotrichum species. J. Agric. Food Chem. 46, 4423-4428.
    [65]
    Di Mauro, A., Fallico, B., Passerini, A., Rapisarda, P., Maccarone, E., 1999. Recovery of hesperidin from orange peel by concentration of extracts on styrene-divinyl-benzene resin. J. Agric. Food Chem. 47, 4391-4397.
    [66]
    Domínguez de María, P., 2014. Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J. Chem. Technol. Biotechnol. 89, 11-18.
    [67]
    Duarte, J., 2015. Bioenergy Atlas of Ecuador. Available at: http://biblioteca.olade.org/cgi-bin/koha/opac-detail.pl?biblionumber=5720.
    [68]
    Duarte, P.F., Chaves, M.A., Borges, C.D., Mendonça, C.R.B., 2016. Avocado: characteristics, health benefits and uses. Cienc. Rural 46, 747-754.
    [69]
    Durand, E., Lecomte, J., Villeneuve, P., 2016. From green chemistry to nature: the versatile role of low transition temperature mixtures. Biochimie 120, 119-123.
    [70]
    Düsterhöft, E.M., Voragen, A.G.J., Engels, F.M., 1991. Non-starch polysaccharides from sunflower (Helianthus annuus) meal and palm kernel (Elaeis guineenis) meal—Preparation of cell wall material and extraction of polysaccharide fractions. J. Sci. Food Agric. 55, 411-422.
    [71]
    Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., Kulma, A., 2016. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 17, 160.
    [72]
    Edmund, C.O., Christopher, M.S., Pascal, D.K., 2014. Characterization of palm kernel shell for materials reinforcement and water treatment. J. Chem. Eng. Mater. Sci. 5, 1-6.
    [73]
    Comercio, El, 2018. Ecuador Participates in Biodiversity Action Meeting. Available at.
    [74]
    Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J.A., Welti-Chanes, J., 2014. Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Foods 6, 470-481.
    [75]
    Fan, G.Z., Wang, Y.X., Song, G.S., Yan, J.T., Li, J.F., 2017. Preparation of microcrystalline cellulose from rice straw under microwave irradiation. J. Appl. Polym. Sci. 134, 44901.
    [76]
    Fathi, M., Karim, M., Ahmadi, N., 2019. Nanostructures of cellulose for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes. Elsevier, Amsterdam, pp. 493-519.
    [77]
    Fernández, M.D.L.Á., Espino, M., Gomez, F.J.V., Silva, M.F., 2018. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 239, 671-678.
    [78]
    Fernandez-Gomez, B., Lezama, A., Amigo-Benavent, M., Ullate, M., Herrero, M., Martín, M. Á., Mesa, M.D., del Castillo, M.D., 2016. Insights on the health benefits of the bioactive compounds of coffee silverskin extract. J. Funct. Foods 25, 197-207.
    [79]
    Fiedor, J., Burda, K., 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6, 466-488.
    [80]
    Fierascu, R.C., Fierascu, I., Avramescu, S.M., Sieniawska, E., 2019. Recovery of natural antioxidants from agro-industrial side streams through advanced extraction techniques. Molecules 24, 1-29.
    [81]
    Francisco, M., van den Bruinhorst, A., Kroon, M.C., 2012. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for ligno-cellulosic biomass processing. Green Chem. 14, 2153-2157.
    [82]
    Francisco, M., Van den Bruinhorst, A., Kroon, M.C., 2013. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angewandte Chemie Int. Ed. 52, 3074-3085.
    [83]
    Future Markets Inc., 2020. Nanotechnology and Nanomaterials Solutions for COVID-19: Diagnostic Testing. Antiviral and Antimicrobial Coatings and Surfaces, Air-Borne Filtration, Facemasks, PPE, Drug Delivery and Therapeutics.
    [84]
    Gao, S., Tang, G., Hua, D., Xiong, R., Han, J., Jiang, S., Zhang, Q., Huang, C., 2019. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 7, 709-729.
    [85]
    García, A.A.M., 2014. Efectos del uso de la tecnología sobre la naturaleza. Gestiopolis. Available: https://www.gestiopolis.com/efectos-del-uso-de-la-tecnologia-sobre-la-naturaleza/.
    [86]
    García, A., Labidi, J., Belgacem, M.N., Bras, J., 2017. The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production. Cellulose 24, 693-704.
    [87]
    García-Gutiérrez, N., Maldonado-Celis, M.E., Rojas-López, M., Loarca-Piña, G.F., Campos-Vega, R., 2017. The fermented non-digestible fraction of spent coffee grounds induces apoptosis in human colon cancer cells (SW480). J. Funct. Foods 30, 237-246.
    [88]
    Goodell, B., Zhu, Y., Kim, S., Kafle, K., Eastwood, D., Daniel, G., Jellison, J., Yoshida, M., Groom, L., Pingali, S.V., O'Neill, H., 2017. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol. Biofuels 10, 179. doi: 10.1186/s13068-017-0865-2
    [89]
    Gosslau, A., Chen, K.Y., Ho, C.T., Li, S.M., 2014. Anti-inflammatory effects of characterized orange peel extracts enriched with bioactive polymethoxyflavones. Food Sci. Hum. Wellness 3, 26-35.
    [90]
    Goula, A.M., Ververi, M., Adamopoulou, A., Kaderides, K., 2017. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason. Sonochem. 34, 821-830.
    [91]
    Guerrero Páez, J.B., 2019. Lignocellulose Cell Wall Fractionation of Brewer's Spent Grains with a Deep eutectic Solvent for Cellulose and Xylan Isolation and Charac-terization. Universidad San Francisco de Quito, Quito, Ecuador.
    [92]
    Guerrero, V.H., Asimbaya, C., Rosas, N., Endara, D., 2015. Obtención de carbón activado a partir de residuos lignocelulósicos de canelo, laurel y eucalipto. Revista Politécnica 36, 24-29.
    [93]
    Hassan, S.S., Williams, G.A., Jaiswal, A.K., 2018. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 262, 310-318.
    [94]
    Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., AlNashef, I.M., Mirghani, M.E.S., Saheed, O.K., 2013. Are deep eutectic solvents benign or toxic? Chemosphere, 90: 2193-2195. http://europepmc.org/abstract/med/23200570
    [95]
    Hegnar, O.A., Goodell, B., Felby, C., Johansson, L., Labbé, N., Kim, K., Eijsink, V.G.H., Alfredsen, G., Várnai, A., 2019. Challenges and opportunities in mimicking non-enzymatic brown-rot decay mechanisms for pretreatment of Norway spruce. Wood Sci. Technol. 53, 291-311.
    [96]
    Hem, S., Toure, S., Sagbla, C., Legendre, M., 2008. Bioconversion of palm kernel meal for aquaculture: experiences from the forest region (Republic of Guinea). Afr. J. Biotechnol. 7: 1192-1198.
    [97]
    Herman, Z., Fong, C.H., Hasegawa, S., 1991. Biosynthesis of limonoid glucosides in navel orange. Phytochemistry 30, 1487-1488. http://www.sciencedirect.com/science/article/pii/003194229184193V
    [98]
    Herrero, M., Ibañez, E., 2018. Green extraction processes, biorefineries and sustainability: recovery of high added-value products from natural sources. J. Supercrit. Fluids 134, 252-259.
    [99]
    Hetemäki, L., 2017. Leading the way to a European circular bioeconomy strategy. In: Conference: Forest Bioeconomy, Business and Sustainability, lecture course. University of Helsinki.
    [100]
    Hilbert, J., 2015. Socio-economic impacts on bioenergy production. INTA 2015, 2017. Available at: https://inta.gob.ar/sites/default/files/script-tmp-inta-_impactos_socioeconomicos_en_produccion_de_bioen.pdf.
    [101]
    Hong, H.J., Lim, J.S., Hwang, J.Y., Kim, M., Jeong, H.S., Park, M.S., 2018. Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydr. Polym. 195, 136-142.
    [102]
    Huang, C.Y., Kuo, C.H., Wu, C.H., Kuan, A.W., Guo, H.R., Lin, Y.H., Wang, P.K., 2018. Free radical-scavenging, anti-inflammatory, and antibacterial activities of water and ethanol extracts prepared from compressional-puffng pretreated mango (Mangifera indica L. ) peels. J. Food Qual. 1-13 2018.
    [103]
    Hughes, S.R., López-Núñez, J.C., Jones, M.A., Moser, B.R., Cox, E.J., Lindquist, M., Galindo-Leva, L. Á., Riaño-Herrera, N.M., Rodriguez-Valencia, N., Gast, F., Cedeño, D.L., Tasaki, K., Brown, R.C., Darzins, A., Brunner, L., 2014. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts us-ing coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl. Microbiol. Biotechnol. 98, 8413-8431.
    [104]
    IICA, 2018. Sustainable management of organic agricultural and urban waste through biodigestor technological innovation. Available at: https://www.iica.int/en/node/20818.
    [105]
    Iranshahi, M., Rezaee, R., Parhiz, H., Roohbakhsh, A., Soltani, F., 2015. Protective effects of flavonoids against microbes and toxins: the cases of hesperidin and hesperetin. Life Sci. 137, 125-132.
    [106]
    Jablonský, M., Škulcová, A., Kamenská, L., Vrška, M., Šíma, J., 2015. Deep eutectic solvents: fractionation of wheat straw. BioResources 10, 8039-8047. http://www.researchgate.net/publication/282861945_Deep_Eutectic_Solvents_Fractionation_of_Wheat_Straw
    [107]
    Jablonský, M., Škulcová, A., Šima, J., 2019. Use of deep eutectic solvents in polymer chemistry-A review. Molecules 24, 3978. http://www.ncbi.nlm.nih.gov/pubmed/31684174
    [108]
    Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60-72. http://europepmc.org/articles/PMC4427717
    [109]
    Jawad, A.H., Mamat, N.F.H., Abdullah, M.F., Ismail, K., 2017. Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study. Desalination Water Treatment 59, 210-219.
    [110]
    Jawaid, M., Mohammad, F., 2017. Nanocellulose and Nanohydrogel Matrices. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2017.
    [111]
    Ji, A.Q., Zhang, S.Y., Bhagia, S., Yoo, C.G., Ragauskas, A.J., 2020. 3D printing of biomass-derived composites: application and characterization approaches. RSC Adv. 10, 21698-21723.
    [112]
    Jimat, D.N., Putra, F.A., Sulaiman, S., Nor, Y.A., Putra, S.S.S., 2019. Physicochemical characteristics of bionanocomposites, polycaprolactone/starch/cocoa pod husk microfibrillated cellulose. J. Adv. Res. Fluid Mech. Therm. Sci. 55, 199-208.
    [113]
    June, R., 1996. Carotenoids and their esters in banana the color change in fruit is closely associated with its quality, along with texture (1). Such a phenomenon also occurs in bananas where the color of the peel changes from green to yellow during ripening. Methods 553-566.
    [114]
    Juneidi, I., Hayyan, M., Hashim, M.A., 2015. Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Adv. 5, 83636-83647.
    [115]
    Junqueira, T.L., Chagas, M.F., Gouveia, V.L.R., Rezende, M.C.A.F., Watanabe, M.D.B., Jesus, C.D.F., Cavalett, O., Milanez, A.Y., Bonomi, A., 2017. Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons. Biotechnol. Biofuels 10, 50.
    [116]
    Jusufi, K., Berisha, A., Halili, J., Ferataj, F., Hasanaj, J., Korça, B., Thaçi, V., 2016. Potential application of orange peels as bio sorbents in the removal of organic molecules from wastewater. RAD Conference Proceedings. RAD Association, 176-178.
    [117]
    Kebaili, M., Djellali, S., Radjai, M., Drouiche, N., Lounici, H., 2018. Valorization of orange industry residues to form a natural coagulant and adsorbent. J. Ind. Eng. Chem. 64, 292-299.
    [118]
    Keegstra, K., 2010. Plant cell walls. Futur. Perspect. Plant Biol. 154, 483-486.
    [119]
    Kent, M.S., Zeng, J.J., Rader, N., Avina, I.C., Simoes, C.T., Brenden, C.K., Busse, M.L., Watt, J., Giron, N.H., Alam, T.M., Allendorf, M.D., Simmons, B.A., Bell, N.S., Sale, K.L., 2018. Effcient conversion of lignin into a water-soluble polymer by a Chelator-mediated Fenton reaction: optimization of H2O2 use and performance as a dispersant. Green Chem. 20, 3024-3037.
    [120]
    Khezeli, T., Daneshfar, A., Sahraei, R., 2016. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 150, 577-585.
    [121]
    Kieu Tran, T.M., Kirkman, T., Nguyen, M., van Vuong, Q., 2020. Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon 6, e04498.
    [122]
    Killadi, B., Chaurasia, R., Shukla, D.K., Dikshit, A., 2018. Physio-chemical properties and pigment changes in the pericarp of mango cultivars during storage and ripening. J. Environ. Biol. 39, 373-378.
    [123]
    Kircher, M., 2014. The emerging bioeconomy: industrial drivers, global impact, and international strategies. Ind. Biotechnol. 10, 11-18.
    [124]
    Korhonen, J., Honkasalo, A., Seppälä, J., 2018. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37-46. http://www.sciencedirect.com/science/article/pii/S0921800916300325
    [125]
    Köse, M.D., Bayraktar, O., 2018. Valorization of citrus peel waste. Natural Volatiles and Essential Oils 5, 10-18. http://www.researchgate.net/publication/331811526_Valorization_of_Citrus_Peel_Waste/download
    [126]
    Kosińska, A., Karamać, M., Estrella, I., Hernández, T., Bartolomé, B., Dykes, G.A., 2012. Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties. J. Agric. Food Chem. 60, 4613-4619.
    [127]
    Krumreich, F.D., Borges, C.D., Mendonça, C.R.B., Jansen-Alves, C., Zambiazi, R.C., 2018. Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chem 257, 376-381.
    [128]
    Kumar, A.K., Parikh, B.S., Pravakar, M., 2016. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 23, 9265-9275.
    [129]
    Kumar, B., Kumar Gupta, S., Singhal, P., Singh, A., Chauhan, R., 2018. Nutritional and pharmceutical benifits of avocado plant. Artic. J. Adv. Res 9, 4-11. http://www.researchgate.net/publication/329388661_NUTRITIONAL_AND_PHARMCEUTICAL_BENIFITS_OF_AVOCADO_PLANT
    [130]
    Kumar, K., Yadav, A.N., Kumar, V., Vyas, P., Dhaliwal, H.S., 2017. Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 4, 18.
    [131]
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for effcient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713-3729.
    [132]
    Kuutti, L., Hiltunen, J., Rovio, S., Puhakka, E., Vuoti, S., 2015. Conversion of wood biomass into valuable components using a novel deep eutectic solvent mixture. In: Nord. Wood Biorefinery Conf. 2015, p. 161.
    [133]
    Landázuri, A.C., Arroyo, E., Lagos, A.S., Gualle, A., Andino, C., Orejuela- Escobar, L., 2020. Mango (Mangifera indica L. ) by-products for food, cosmetics and water treatment applications: a zero-waste and biorefinery approach with classic and new generation solvents. Conference Pro-ceedings of the AIChE 2020 Annual Meeting. Available at: https://www.aiche.org/academy/conferences/aiche-annual-meeting/2020/proceeding/paper/71f-mango-mangifera-indica-l-products-food-cosmetics-and-water-treatment-applications-zero-waste.
    [134]
    Landázuri, A.C., Cahuasquí Segura, J.D., Lagos Estrella, A.S., 2019b. Metal adsorption in aqueous media using Moringa oleifera Lam. seeds produced in Ecuador as an alternative method for water treatment. Av. Cienc. Ing. (Quito) 11, 190-205.
    [135]
    Landázuri, A.C., Lagos, A.S., Pico, M.M., Nuñez, E.R., Trávez, A.L., Troya, M.F., Sornoza, I., Villarreal, J.S., Andrade, J.C., Cunalata, A.J., Bastidas, F.D., Vargas, M., Caviedes, M., 2017. Ewb-Ecuador/Usfq project: contaminant removal from effluents through the use of Moringa oleifera seeds for application in ecuadorian rural communities. In: 2017 AIChE Annual Meeting Conference Proceedings.
    [136]
    Landázuri, A.C., Orejuela- Escobar, L.M., 2019. GICAS (Grupo de Ingeniería, Ciencias Aplicadas & Simulación). Available: https://www.instituto-biosfera.org/gicas.
    [137]
    Landázuri, A.C., Villarreal, J.S., Andrade, J.C., Sornoza, I., Lagos, A.S., 2019a. Bulk balance filtration model (BBFM) for lead and iron physisorption through Moringa oleifera Lam. seed husks. J. Environ. Chem. Eng. 7, 103302.
    [138]
    Landázuri, A.C., Villarreal, J.S., Núñez, E.R., Pico, M.M., Lagos, A.S., Caviedes, M., Espinosa, E., 2018. Experimental evaluation of crushed Moringa oleifera Lam. seeds and powder waste during coagulation-flocculation processes. J. Environ. Chem. Eng. 6, 5443-5451.
    [139]
    Lea, M., 2014. Bioremediation of turbid surface water using seed extract from the Moringa oleifera lam. (drumstick) tree. Curr. Protoc. Microbiol. 33 1G. 2.1-1G. 2.8.
    [140]
    Lee, K.Y., 2015. Nanocellulose and Sustainability. CRC Press, Boca Raton 2015.
    [141]
    Leite, J.J.G., Brito, É . H.S., Cordeiro, R.A., Brilhante, R.S.N., Sidrim, J.J.C., Bertini, L.M., de Morais, S.M., Rocha, M.F.G., 2009. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev. Soc. Bras. Med. Trop. 42, 110-113.
    [142]
    León, G.R., Aldás, M.B., Guerrero, V.H., Landázuri, A.C., Almeida-Naranjo, C.E., 2019. Caffeine and irgasan removal from water using bamboo, laurel and Moringa residues impregnated with commercial TiO2 nanoparticles. MRS Adv. 4, 3553-3567.
    [143]
    Li, A.L., Hou, X.D., Lin, K.P., Zhang, X., Fu, M.H., 2018. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J. Biosci. Bioeng. 126, 346-354.
    [144]
    Lin, T.K., Zhong, L., Santiago, J., 2017. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci. 19, 70.
    [145]
    Liu, J.Z., Zhu, Y., Wang, C., Goodell, B., Esker, A.R., 2020. Chelator-mediated biomimetic degradation of cellulose and chitin. Int. J. Biol. Macromol. 153, 433-440. http://www.sciencedirect.com/science/article/pii/S0141813019402316
    [146]
    Loizzo, M.R., Leporini, M., Sicari, V., Falco, T., Pellicano, T.M., Tundis, R., 2018. Investigating the in vitro hypoglycaemic and antioxidant properties of Citrus exttimes clementina Hort. juice. Eur. Food Res. Technol. 244, 523-534.
    [147]
    Loow, Y.L., Wu, T.Y., Yang, G.H., Ang, L.Y., New, E.K., Siow, L.F., Md Jahim, J., Mohammad, A.W., Teoh, W.H., 2018. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresour. Technol. 249, 818-825.
    [148]
    Lu, W.J., Lin, K.C., Liu, C.P., Lin, C.Y., Wu, H.C., Chou, D.S., Geraldine, P., Huang, S.Y., Hsieh, C.Y., Sheu, J.R., 2016. Prevention of arterial thrombosis by nobiletin: in vitro and in vivo studies. J. Nutr. Biochem. 28, 1-8.
    [149]
    Lynam, J.G., Kumar, N., Wong, M.J., 2017. Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 238, 684-689.
    [150]
    Macas, G., 2017. El agro no se detuvo en 26 años. Rev. El Agro 7-10.
    [151]
    Mahardika, M., Abral, H., Kasim, A., Arief, S., Asrofi, M., 2018. Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasoni-cation. Fibers 6, 28.
    [152]
    Mahato, N., Sharma, K., Sinha, M., Cho, M.H., 2018. Citrus waste derived nutra-/pharmaceuticals for health benefits: current trends and future perspectives. J. Funct. Foods 40, 307-316.
    [153]
    Mahizan, N.A., Yang, S.K., Moo, C.L., Song, A.A., Chong, C.M., Chong, C.W., Abushelaibi, A., Lim, S.E., Lai, K.S., 2019. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24, 2631.
    [154]
    Maina, S., Kachrimanidou, V., Koutinas, A., 2017. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 8, 18-23.
    [155]
    Maiti, S., Gallastegui, G., Suresh, G., Sarma, S.J., Brar, S.K., Drogui, P., LeBihan, Y., Buelna, G., Verma, M., Soccol, C.R., 2018. Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes. Bioresour. Technol. 249, 673-683.
    [156]
    Maity, S.K., 2015. Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew. Sustain. Energy Rev. 43, 1427-1445.
    [157]
    Malacrida, C.R., Kimura, M., Jorge, N., 2012. Phytochemicals and antioxidant activity of Citrus seed oils. Food Sci. Technol. Res. 18, 399-404. http://ci.nii.ac.jp/naid/10030922935
    [158]
    Malaeke, H., Housaindokht, M.R., Monhemi, H., Izadyar, M., 2018. Deep eutectic solvent as an effcient molecular liquid for lignin solubilization and wood delignifi-cation. J. Mol. Liq. 263, 193-199.
    [159]
    Mallampati, R., Li, X.J., Adin, A., Valiyaveettil, S., 2015. Fruit peels as effcient renewable adsorbents for removal of dissolved heavy metals and dyes from water. ACS Sustain. Chem. Eng. 3, 1117-1124.
    [160]
    Malleshappa, P., Kumaran, R.C., Venkatarangaiah, K., Parveen, S., 2018. Peels of Citrus fruits: a potential source of anti-inflammatory and anti-nociceptive agents. Pharmacogn. J. 10 s172-s178.
    [161]
    Mamun, K.R., Saha, N.K., Chakrabarty, S., 2019. A comparative study of the adsorption capacity of tea leaves and orange peel for the removal of Fe (III) ion from wastewater.
    [162]
    Manguro, L.O., Lemmen, P., 2007. Phenolics of Moringa oleifera leaves. Nat. Prod. Res. 21, 56-68.
    [163]
    Manousaki, A., Jancheva, M., Grigorakis, S., Makris, D., 2016. Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: a comparison with conventional eco-friendly solvents. Recycling 1, 194-204.
    [164]
    Manthey, J.A., Grohmann, K., Guthrie, N., 2001. Biological properties of Citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8, 135-153.
    [165]
    Manzano, P., Hernández, J., Quijano-avilés, M., Barragán, A., Chóez-guaranda, I., 2017. Polyphenols extracted from Theobroma cacao waste and its utility as antiox-idant. doi: 10.9755/ejfa.2016-04-388.
    [166]
    Marrero-Faz, E., Sánchez-Calero, J., Young, L., Harvey, A., 2014. Inhibitory effect of Persea americana Mill leaf aqueous extract and its fractions on PTP1B as therapeutic target for type 2 diabetes. Boletin Latinoamericano Y Del Caribe De Plantas Med. Y Aromat. 13, 144-151.
    [167]
    Martínez, R., Torres, P., Meneses, M.A., Figueroa, J.G., Pérez-Álvarez, J.A., Viuda-Martos, M., 2012. Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L. ) co-products. Food Res. Int. 49, 39-45.
    [168]
    Martins, P.F., de Melo, M.M.R., Silva, C.M., 2016. Techno-economic optimization of the subcritical fluid extraction of oil from Moringa oleifera seeds and subsequent production of a purified sterols fraction. J. Supercrit. Fluids 107, 682-689.
    [169]
    Mata, T.M., Martins, A.A., Caetano, N.S., 2018. Bio-refinery approach for spent coffee grounds valorization. Bioresour. Technol. 247, 1077-1084.
    [170]
    Mataka, L.M., Sajidu, S.M.I., Masamba, W.R.L., Mwatseteza, J.F., 2010. Cadmium sorption by Moringa stenopetala and Moringa oleifera seed powders: Batch, Time, tEmperature, pH and Adsorption Isotherm Studies.
    [171]
    Melgar, B., Dias, M.I., Ciric, A., Sokovic, M., Garcia-Castello, E.M., Rodriguez-Lopez, A.D., Barros, L., Ferreira, I.C.R.F., 2018. Bioactive characterization of Persea americana Mill. by-products: a rich source of inherent antioxidants. Ind. Crop. Prod. 111, 212-218.
    [172]
    Mishra, R.K., Sabu, A., Tiwari, S.K., 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J. Saudi Chem. Soc. 22, 949-978.
    [173]
    Mohamed, R., Pineda, M., Aguilar, M., 2007. Antioxidant capacity of extracts from wild and crop plants of the Mediterranean region. J. Food Sci. 72 S059-S063.
    [174]
    Mohiuddin, A., Saha, M.K., Hossian, M.S., Ferdoushi, A., 2014. Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: a review. Agric 12, 148-158.
    [175]
    Mondal, S., 2017. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 163, 301-316.
    [176]
    Montipó, S., Ballesteros, I., Fontana, R.C., Liu, S., Martins, A.F., Ballesteros, M., Camassola, M., 2018. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass. Bioresour. Technol. 249, 1017-1024.
    [177]
    Morais, D.R., Rotta, E.M., Sargi, S.C., Bonafe, E.G., Suzuki, R.M., Souza, N.E., Matsushita, M., Visentainer, J.V., 2016. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 28, 308-318.
    [178]
    Moss, J.W.E., Williams, J.O., Ramji, D.P., 2018. Nutraceuticals as therapeutic agents for atherosclerosis. Biochim. et Biophys. Acta BBA-Mol. Basis Dis. 1864, 1562-1572. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d1310c66629d50cdd50a07a6378f4dbc
    [179]
    Mouratoglou, E., Malliou, V., Makris, D.P., 2016. Novel glycerol-based natural eutectic mixtures and their effciency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valorization 7, 1377-1387.
    [180]
    Mukunzi, D., Nsor-Atindana, J., Zhang, X.M., Gahungu, A., Mukamurezi, G., 2011. Comparison of volatile profile of Moringa oleifera leaves from Rwanda and China using HS-SPME. Pak. J. Nutr. 10, 602-608.
    [181]
    Muñoz-Almagro, N., Valadez-Carmona, L., Mendiola, J.A., Ibáñez, E., Villamiel, M., 2019. Structural characterisation of pectin obtained from cacao pod husk. Com-parison of conventional and subcritical water extraction. Carbohydr. Polym. 217, 69-78.
    [182]
    Navghare, V.V., Dhawale, S.C., 2017. In vitro antioxidant, hypoglycemic and oral glucose tolerance test of banana peels. Alex. J. Med. 53, 237-243.
    [183]
    Ng, H.S., Kee, P.E., Yim, H.S., Chen, P.T., Wei, Y.H., Chi-Wei Lan, J., 2020. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour. Technol. 302, 122889.
    [184]
    Niogret, J., Epsky, N.D., Schnell, R.J., Boza, E.J., Kendra, P.E., Heath, R.R., 2013. Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae). PLoS One 8 e73601.
    [185]
    Nor, N.A.M., Mustapha, W.A.W., Hassan, O., 2016. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production. Procedia Chem. 18, 147-154.
    [186]
    Nora, F.M.D., Borges, C.D., 2017. Ultrasound pretreatment as an alternative to improve essential oils extraction. Cienc. Rural 47, 21.
    [187]
    Nouhi, S., Kwaambwa, H.M., Gutfreund, P., Rennie, A.R., 2019. Comparative study of flocculation and adsorption behaviour of water treatment proteins from Moringa peregrina and Moringa oleifera seeds. Sci. Rep. 9, 17945.
    [188]
    Obahiagbon, F.I., 2014. Total carotenoids, tocopherols and free fatty acids levels of palm oils produced from small scale Mills in Ovia-north east local government area of Edo state-Nigeria. Bayero J. Pure App. Sci. 6, 132.
    [189]
    Obst, J.R., 1997. Special (Secondary) Metabolites from Wood. Forest Products Biotechnology. CRC Press, Boca Raton, pp. 161-176.
    [190]
    Oikeh, E.I., Oviasogie, F.E., Omoregie, E.S., 2020. Evaluation of antimicrobial effcacy of ethanol extracts of fresh Citrus sinensis (sweet orange) seeds against selected bacterial strains. J. Appl. Sci. Environ. Manag. 24, 249-252.
    [191]
    Orejuela-Escobar, L., 2017. Lignocellulose deconstruction using glyceline deep eutectic solvent and a chelator-mediated fenton system disertation Virginia tech. Available at: https://vtechworks.lib.vt.edu/handle/10919/81255.
    [192]
    Orejuela-Escobar, L.M., 2018. Biorefinería: un modelo de negocios de productos de alto valor agregado a partir de desechos agrícolas e industriales y pro-motora de desarrollo sustentable en el contexto de la bioeconomía. Memorias XIV Foro Int. del Emprend. Univ. del Azuay, 199-214. Available at: http://revistas.uazuay.edu.ec/index.php/memorias/article/view/187.
    [193]
    Ozturk, B., Esteban, J., Gonzalez-Miquel, M., 2018. Deterpenation of Citrus essential oils using glycerol-based deep eutectic solvents. J. Chem. Eng. Data 63, 2384-2393.
    [194]
    Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C., 2014. Natural deep eutectic solvents—Solvents for the 21st century. ACS Sustainable Chem. Eng. 2, 1063-1071.
    [195]
    Palović, N., Jakovljević, M., Jokić, S., Ačkar, Đ., Molar, M., Miškulin, M., 2019. Green extraction techniques of bioactive components from cocoa shell. Croat. J. Food Sci. Technol. 11, 11-20.
    [196]
    Pandey, V.N., Chauhan, V., Pandey, V.S., Upadhyaya, P.P., Kopp, O.R., 2019. Moringa oleifera lam. : a biofunctional edible plant from India, phytochemistry and medicinal properties. J. Plant Stud. 8, 10.
    [197]
    Passo Tsamo, C.V., Herent, M.F., Tomekpe, K., Happi Emaga, T., Quetin-Leclercq, J., Rogez, H., Larondelle, Y., Andre, C., 2015. Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp. ). Food Chem. 167, 197-204.
    [198]
    Paz, R.D., Landázuri, A.C., Vernaza, M.G., 2020. Development of a cereal-based product using residual Moringa oleifera Lam. seed powder biomass and pseudo-plastic behavior of the dough mixtures. Nutr. Food Sci. doi: 10.1108/nfs-05-2020-0161,ahead-of-print.
    [199]
    Pereira, A., Maraschin, M., 2015. Banana (Musa spp. ) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. J. Ethnopharmacol. 160, 149-163.
    [200]
    Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3-27.
    [201]
    Phuaklee, P., Ruangnoo, S., Itharat, A., 2012. Anti-inflammatory and antioxidant activities of extracts from Musa sapientum peel. J. Med. Assoc. Thai 95 S142-S146.
    [202]
    Posso, F., Siguencia, J., Narváez, R., 2020. Residual biomass-based hydrogen production: potential and possible uses in Ecuador. Int. J. Hydrog. Energy 45, 13717-13725.
    [203]
    Prabasari, I., Pettolino, F., Liao, M.L., Bacic, A., 2011. Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls: Sequential extraction and chemical characterization. Carbohydr. Polym. 84, 484-494.
    [204]
    Procentese, A., Johnson, E., Orr, V., Garruto Campanile, A., Wood, J.A., Marzocchella, A., Rehmann, L., 2015. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour. Technol. 192, 31-36.
    [205]
    Putnik, P., Bursać Kovačević, D., Režek Jambrak, A., Barba, F.J., Cravotto, G., Binello, A., Lorenzo, J.M., Shpigelman, A., 2017. Innovative "green" and novel strategies for the extraction of bioactive added value compounds from Citrus wastes—A review. Molecules 22, 2017.
    [206]
    Quesada, H.B., Cusioli, L.F., de O Bezerra, C., Baptista, A.T., Nishi, L., Gomes, R.G., Bergamasco, R., 2019. Acetaminophen adsorption using a low-cost adsorbent prepared from modified residues of Moringa oleifera Lam. seed husks. J. Chem. Technol. Biotechnol. 94, 3147-3157.
    [207]
    Ramírez-Pelayo, C., Martínez-Quiñones, J., Gil, J., Durango, D., 2019. Coumarins from the peel of Citrus grown in Colombia: composition, elicitation and antifungal activity. Heliyon 5, e01937.
    [208]
    Rao, S.R., Ravishankar, G.A., 2002. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol. Adv. 20, 101-153.
    [209]
    Rebollo-Hernanz, M., Zhang, Q.Z., Aguilera, Y., Martín-Cabrejas, M.A., Gonzalez de Mejia, E., 2019. Relationship of the phytochemicals from coffee and cocoa by-products with their potential to modulate biomarkers of metabolic syndrome in vitro. Antioxidants 8, 279.
    [210]
    Remarks, I.I., Terpenoids, A.C., Terpeniods, B.N., Polyphenolics, A.F., Acids, B.P., Polyphenolics, C.O.N., 2014. Phytochemicals as Nutraceuticals Contents. Links to Sections by Topic, pp. 1-20.
    [211]
    Rico, A., Rencoret, J., del Rio, J.C., Martinez, A.T., Gutierrez, A., 2014. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol. Biofuels 7, 6.
    [212]
    Rocchetti, G., Pagnossa, J.P., Blasi, F., Cossignani, L., Hilsdorf Piccoli, R., Zengin, G., Montesano, D., Cocconcelli, P.S., Lucini, L., 2020. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents. Food Res. Int. 127, 108712.
    [213]
    Roda, A., Matias, A., Paiva, A., Duarte, A., 2019. Polymer science and engineering using deep eutectic solvents. Polymers 11, 912. http://www.ncbi.nlm.nih.gov/pubmed/31117221
    [214]
    Rodríguez-Carpena, J.G., Morcuende, D., Andrade, M.J., Kylli, P., Estévez, M., 2011. Avocado (Persea americana Mill. ) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 59, 5625-5635.
    [215]
    Rosales-Calderon, O., Arantes, V., 2019. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 12, 1-58.
    [216]
    Rotta, E.M., de Morais, D.R., Biondo, P.B.F., dos Santos, V.J., Matsushita, M., Visentainer, J.V., 2016. Uso da casca do abacate (Persea americana) na formulaçã o de chá: Um produto funcional contendo compostos fenólicos e atividade antioxidante. Acta Sci. -Technol 38, 23-29.
    [217]
    Ruales, J., Baenas, N., Moreno, D.A., Stinco, C.M., Meléndez-Martínez, A.J., García-Ruiz, A., 2018. Biological active Ecuadorian mango 'tommy atkins' ingredients—An opportunity to reduce agrowaste. Nutrients 10, 1138.
    [218]
    Ruangtong, J., T-Thienprasert, J., T-Thienprasert, N.P., 2020. Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Mater. Today Commun. 24, 101224.
    [219]
    Saavedra, J., Córdova, A., Navarro, R., Díaz-Calderón, P., Fuentealba, C., Astudillo-Castro, C., Toledo, L., Enrione, J., Galvez, L., 2017. Industrial avocado waste: functional compounds preservation by convective drying process. J. Food Eng. 198, 81-90.
    [220]
    Safdar, M.N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., Saddozai, A.A., 2017. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L. ) peel using ultrasound and maceration techniques. J. Food Drug Anal. 25, 488-500.
    [221]
    Saini, A., Panesar, P.S., Bera, M.B., 2019. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 6, 26.
    [222]
    Santos, A.F., Matos, M., Sousa, Â ., Costa, C., Nogueira, R., Teixeira, J.A., Paiva, P.M., Parpot, P., Coelho, L.C., Brito, A.G., 2016. Removal of tetracycline from contaminated water by Moringa oleifera seed preparations. Environ. Technol. 37, 744-751.
    [223]
    Santos, R.M.D., Flauzino Neto, W.P., Silvério, H.A., Martins, D.F., Dantas, N.O., Pasquini, D., 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Crop. Prod. 50, 707-714.
    [224]
    Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., Ragauskas, A.J., 2018. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol. Adv. 36, 2032-2050.
    [225]
    Scoma, A., Rebecchi, S., Bertin, L., Fava, F., 2016. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit. Rev. Biotechnol. 36, 175-189.
    [226]
    Secretar, 2017. National development plan 2017-2021 a lifetime. Available at: https://www.planificacion.gob.ec/plan-nacional-de-desarrollo-2017-2021-toda-una-vida/.
    [227]
    Sekaran, S.D., 2010. Effects of oil palm phenolics on tumor cells in vitro and in vivo. African J. Food Sci. 4, 495-502.
    [228]
    Selmi, S., Rtibi, K., Grami, D., Sebai, H., Marzouki, L., 2017. Protective effects of orange (Citrus sinensis L. ) peel aqueous extract and hesperidin on oxidative stress and peptic ulcer induced by alcohol in rat. Lipids Heal. Dis. 16, 152. http://europepmc.org/abstract/MED/28806973
    [229]
    Shak, K.P.Y., Pang, Y.L., Mah, S.K., 2018. Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein. J. Nanotechnol. 9, 2479-2498.
    [230]
    Shan, T.C., Matar, M.A., Makky, E.A., Ali, E.N., 2017. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Appl. Water Sci. 7, 1369-1376.
    [231]
    Shang, X., Tan, J.N., Du, Y., Liu, X., Zhang, Z., 2018. Environmentally-friendly extraction of flavonoids from cyclocarya paliurus (batal. ) iljinskaja leaves with deep eutectic solvents and evaluation of their antioxidant activities. Molecules 23, 9.
    [232]
    Shija, A.E., Rumisha, S.F., Oriyo, N.M., Kilima, S.P., Massaga, J.J., 2019. Effect of Moringa oleifera leaf powder supplementation on reducing anemia in children below two years in Kisarawe District. Tanzania. Food Sci. Nutr. 7, 2584-2594.
    [233]
    Shikinaka, K., Nakamura, M., Navarro, R.R., Otsuka, Y., 2020. Functional materials from plant biomass obtained by simultaneous enzymatic saccharification and communition. Trends Glycosci. Glycotechnol. 32 E63-E76.
    [234]
    Si, C., 2019. The development of lignocellulosic biomass in medicinal applications. Curr. Med. Chem. 26, 2408-2409.
    [235]
    Singh, G.P., Garg, R., Bhardwaj, S., Sharma, S.K., 2012. Anti-inflammatory evaluation of leaf extract of Moringa oleifera. J. Pharm. Sci. Innov. 1, 22-24.
    [236]
    Soldera-Silva, A., Seyfried, M., Campestrini, L.H., Zawadzki-Baggio, S.F., Minho, A.P., Molento, M.B., Maurer, J.B.B., 2018. Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Vet. Parasitol. 251, 34-43.
    [237]
    Taiwo, A.S., Adenike, K., Aderonke, O., 2020. Effcacy of a natural coagulant protein from Moringa oleifera (Lam. ) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon 6, e03335.
    [238]
    Tan, T., Zhang, M., Wan, Y., Qiu, H., 2016. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta 149, 85-90.
    [239]
    Tavares, F.O., Pinto, L.A.M., Bassetti, F.J., Vieira, M.F., Bergamasco, R., Vieira, A.M.S., 2017. Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water. Environ. Technol. 38, 3145-3155.
    [240]
    Tesfaye, T., Gibril, M., Sithole, B., Ramjugernath, D., Chavan, R., Chunilall, V., Gounden, N., 2018. Valorisation of avocado seeds: extraction and characterisation of starch for textile applications. Clean Technol. Environ. Policy 20, 2135-2154.
    [241]
    Thakur, A., 2018. Health promoting phytochemicals in vegetables: a mini review. Int. J. Food Ferment. Technol. 8, 107-117. http://www.researchgate.net/publication/333816963_Health_Promoting_Phytochemicals_in_Vegetables_A_Mini_Review
    [242]
    Tibolla, H., Pelissari, F.M., Menegalli, F.C., 2014. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci. Technol. 59, 1311-1318.
    [243]
    Tituaña Puente, A.C., 2019. Evaluación del uso potencial del colorante extraído de la semilla del aguacate (Persea americana) como producto funcional alimenticio. Universidad San Francisco de Quito, Quito, Ecuador.
    [244]
    Tommasi, E., Cravotto, G., Galletti, P., Grillo, G., Mazzotti, M., Sacchetti, G., Samorì, C., Tabasso, S., Tacchini, M., Tagliavini, E., 2017. Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain. Chem. Eng. 5, 8316-8322.
    [245]
    Tonoli, G.H.D., Teixeira, E.M., Corrêa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-Da-silva, M.A., Mattoso, L.H.C., 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr. Polym. 89, 80-88.
    [246]
    Torres-Valenzuela, L.S., Ballesteros-Gomez, A., Rubio, S., 2020. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 12, 83-100.
    [247]
    Trache, D., Hussin, M.H., Hui Chuin, C.T., Sabar, S., Fazita, M.R., Taiwo, O.F., Hassan, T.M., Haafiz, M.K., 2016. Microcrystalline cellulose: isolation, characterization and bio-composites application—A review. Int. J. Biol. Macromol. 93, 789-804.
    [248]
    Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., 2019. Microbial Genomics in Sustainable Agroecosystems. Singapore: Springer Singapore.
    [249]
    Tripoli, E., Guardia, M.L., Giammanco, S., Majo, D.D., Giammanco, M., 2007. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem. 104, 466-479.
    [250]
    Tursi, A., 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6, 962-979.
    [251]
    Tuyen, P.T., Xuan, T.D., Khan, gD.T., Ahmad, A., Quan, N.V., Tu Anh, T.T., Anh, H., Minh, T.N., 2017. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata sieb. et zucc. Antioxidants 6, 31.
    [252]
    van Osch, D., Dietz, C.H.J.T., van Spronsen, J., Kroon, M.C., Gallucci, F., van Sint Annaland, M., Tuinier, R., 2019. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain. Chem. Eng. 7, 2933-2942.
    [253]
    van Osch, D.J., Parmentier, D., Dietz, C.H., van den Bruinhorst, A., Tuinier, R., Kroon, M.C., 2016. Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem. Commun. 52, 11987-11990.
    [254]
    Vargas, D.C., Alvarez, M.B., Hidrobo Portilla, A., van Geem, K.M., Almeida Streitwieser, D., 2016. Kinetic study of the thermal and catalytic cracking of waste motor oil to diesel-like fuels. Energy Fuels 30, 9712-9720.
    [255]
    Vázquez-Sánchez, K., Martinez-Saez, N., Rebollo-Hernanz, M., del Castillo, M.D., Gaytán-Martínez, M., Campos-Vega, R., 2018. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee Arabica L. ) grounds. Food Chem. 261, 253-259.
    [256]
    Verma, H., Kapoor, A., 2020. Agronanotechnology: an Agricultural Paradigm. Springer, Mauritius.
    [257]
    Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D.G., Santas, P., Santas, R., Corleti, V., 2007. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98, 296-301.
    [258]
    Vicepresidencia de la República del Ecuador, 2016. Políticas Industriales del Ecuador 2016-2025. Quito, Ecuador. Available at: http://servicios.produccion.gob.ec/siipro/downloads/temporales/1_Pol%C3%ADtica%20Industrial_MIPRO%202016-2025.pdf.
    [259]
    Victor, M.M., David, J.M., Cortez, M.V.M., Leite, J.L., Silva, G.S.B., 2020. A high-yield process for extraction of hesperidin from orange (Citrus sinensis L. osbeck) peels waste, and its transformation to diosmetin, a valuable and bioactive flavonoid. Waste Biomass Valorization 1-8.
    [260]
    Voisin, H., Bergström, L., Liu, P., Mathew, A., 2017. Nanocellulose-based materials for water purification. Nanomaterials 7, 57. http://pubmedcentralcanada.ca/pmcc/articles/PMC5388159/
    [261]
    Vriesmann, L.C., de Mello Castanho Amboni, R.D., de Oliveira Petkowicz, C.L., 2011. Cacao pod husks (Theobroma cacao L. ): composition and hot-water-soluble pectins. Ind. Crop. Prod. 34, 1173-1181.
    [262]
    Vriesmann, L.C., Teófilo, R.F., Lúcia de Oliveira Petkowicz, C., 2012. Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L. ) with citric acid. LWT 49, 108-116.
    [263]
    Walsh, P., de Jong, E., Higson, A., Wellisch, M., 2012. Bio-based chemicals: value added products from biorefineries. IEA Bioenergy 1-28. http://www.researchgate.net/publication/262048753_Bio-Based_Chemicals_Value_Added_Products_From_Biorefineries
    [264]
    Wang, W., Bostic, T.R., Gu, L.W., 2010. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 122, 1193-1198.
    [265]
    Wei, Y., Zhang, Y.S., Gao, X.L., Ma, Z., Wang, X.J., Gao, C.J., 2018. Multilayered graphene oxide membranes for water treatment: a review. Carbon 139, 964-981.
    [266]
    Wertz, J.L., Deleu, M., Coppée, S., Richel, A., 2017. Hemicelluloses and Lignin in Biorefineries. CRC Press, Boca Raton.
    [267]
    Wientarsih, I., Madyastuti, R., Prasetyo, B.F., Aldobrata, A., 2012. Anti lithiasis activity of avocado (Persea americana Mill) leaves extract in white male rats. HAYATI J. Biosci. 19, 49-52.
    [268]
    Williamson, E.M., Liu, X.M., Izzo, A.A., 2020. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 177, 1227-1240.
    [269]
    Witzler, M., Alzagameem, A., Bergs, M., Khaldi-Hansen, B.E., Klein, S.E., Hielscher, D., Kamm, B., Kreyenschmidt, J., Tobiasch, E., Schulze, M., 2018. Lignin-derived biomaterials for drug release and tissue engineering. Molecules 23, 1885.
    [270]
    Wu, L.L., Manukyan, L., Mantas, A., Mihranyan, A., 2019. Nanocellulose-based nanoporous filter paper for virus removal filtration of human intravenous immunoglob-ulin. ACS Appl. Nano Mater. 2, 6352-6359.
    [271]
    Wuana, R.A., Sha'Ato, R., Iorhen, S., 2016. Preparation, characterization, and evaluation of Moringa oleifera pod husk adsorbents for aqueous phase removal of norfloxacin. Desalination Water Treat. 57, 11904-11916.
    [272]
    Xu, G.C., Ding, J.C., Han, R.Z., Dong, J.J., Ni, Y., 2016. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 203, 364-369.
    [273]
    Yang, J.B., Ren, J., Wang, A.G., 2018. Isolation, characterization, and hepatoprotective activities of terpenes from the gum resin of Boswellia carterii Birdw. Phytochem. Lett. 23, 73-77.
    [274]
    Yapo, B.M., Besson, V., Koubala, B.B., Koff, K.L., 2013. Adding value to cacao pod husks as a potential antioxidant-dietary fiber source. Am. J. Food Nutr. 1, 38-46.
    [275]
    Yoo, D.E., Jeong, K.M., Han, S.Y., Kim, E.M., Jin, Y., Lee, J., 2018. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 255, 357-364.
    [276]
    Zailuddin, N.L.I., Husseinsyah, S., Hahary, F.N., Ismail, H., 2017. Characterization and properties of treated oil palm empty fruit bunch regenerated cellulose biocom-posite films with butyl methacrylate using ionic liquid. Polym. - Plast. Technol. Eng. 56, 109-116.
    [277]
    Zainal-Abidin, M.H., Hayyan, M., Hayyan, A., Jayakumar, N.S., 2017. New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal. Chimica Acta 979, 1-23.
    [278]
    Zhang, Q., De Oliveira Vigier, K., Royer, S., Jéràme, F., 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108-7146. http://europepmc.org/abstract/MED/22806597
    [279]
    Zhang, Q., Li, Q., Young, T.M., Harper, D.P., Wang, S., 2019. A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-effciency filtration of particulate matter. ACS Sustain. Chem. Eng. 7, 8706-8714.
    [280]
    Zhao, X.B., Liu, D.H., 2019. Multi-products co-production improves the economic feasibility of cellulosic ethanol: a case of Formiline pretreatment-based biorefining. Appl. Energy 250, 229-244.
    [281]
    Zhao, X.B., Zhang, L.H., Liu, D.H., 2012. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod. Bioref. 6, 465-482.
    [282]
    Zhu, Y., Plaza, N., Kojima, Y., Yoshida, M., Zhang, J.W., Jellison, J., Pingali, S.V., O'Neill, H., Goodell, B., 2020. Nanostructural analysis of enzymatic and non-enzymatic brown rot fungal deconstruction of the lignocellulose cell wall. Front. Microbiol. 11, 1389.
    [283]
    Živković, J., Šavikin, K., Janković, T., Ćujić, N., Menković, N., 2018. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 194, 40-47.
    [284]
    Zulkefli, S., Abdulmalek, E., Abdul Rahman, M.B., 2017. Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew. Energy 107, 36-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (113) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return