Volume 6 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Lourdes M. Orejuela-Escobar, Andrea C. Landázuri, Barry Goodell. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 83-107. doi: 10.1016/j.jobab.2021.01.004
Citation: Lourdes M. Orejuela-Escobar, Andrea C. Landázuri, Barry Goodell. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 83-107. doi: 10.1016/j.jobab.2021.01.004

Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus

doi: 10.1016/j.jobab.2021.01.004
More Information
  • Corresponding author: E-mail address: lorejuela@usfq.edu.ec (Lourdes M. Orejuela-Escobar); E-mail address: alandazuri@usfq.edu.ec (Andrea C. Landázuri); E-mail address: bgoodell@umass.edu (Barry Goodell)
  • Received Date: 2020-08-12
  • Accepted Date: 2020-11-01
  • Rev Recd Date: 2020-10-25
  • Available Online: 2021-02-01
  • Publish Date: 2021-05-01
  • The projection of world population growth with concurrent generation of large volumes of agro-industrial waste that negatively affect the environment is of great concern. Therefore, this review article describes the nexus between concepts of Circular Bioeconomy, Zero Waste Technology, Sustainable Development, Biorefineries, and alternatives and research efforts to generate less environmental impact. A brief analysis of the Ecuadorian industry and exports is described, emphasizing the fact that, to improve the Ecuadorian trade balance, it is necessary to increase industrial competitiveness. It is important to have emerging technologies and innovation in order to promote the replacement of fossil-derived raw materials with renewable raw materials and develop more environmentally friendly processes and industries. This paper analyses the state of biomass research and its transformation in Ecuador, together with current pretreatment research on biomass to obtain bioproducts and biofuels in a biorefinery that promotes clean production for the extraction of phytochemicals using green solvents, such as deep eutectic solvents; and technologies to recover high-value added materials with enhanced properties. In conclusion, the need to develop technologies and markets to commercialize high value-added products coming from biorefineries is highlighted, as this will increase the income both in rural and urban areas and will strengthen the productivity and profitability of the Ecuadorian agroindustry. Our goal through this analysis is to improve Ecuador's trade balance while also contributing to the circular bioeconomy that promotes sustainable development.

     

  • * Corresponding author at: Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías; Engineering, Applied Sciences & Simulation Group (GICAS), Chemical Engineering Department, Diego de Robles y Vía Interoceánica, P.O. Box 17-0901, Quito, Ecuador.
  • loading
  • Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R., 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids. J. Am. Chem. Soc. 126, 9142-9147. doi: 10.1021/ja048266j
    Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K., 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142-9147. doi: 10.1021/ja048266j
    Abbott, A.P., Capper, G., Davies, D.L., McKenzie, K.J., Obi, S.U., 2006. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data 51, 1280-1282. doi: 10.1021/je060038c
    Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V., 2003. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70-71. http://www.ncbi.nlm.nih.gov/pubmed/12610970
    Abolore Idris, M., 2016. Moringa oleifera seed extract: a review on its environmental applications. Int. J. Appl. Environ. Sci. 11, 1469-1486. http://www.researchgate.net/publication/312069731_Moringa_Oleifera_Seed_Extract_A_Review_on_Its_Environmental_Applications
    Abougor, H., 2014. Utilization of Deep Eutectic Solvent as a Pretreatment Option for Lignocellulosic Biomass. Cookeville: Tennessee Technological University. http://search.proquest.com/docview/1627186715
    Abubakar, A.N.F., Achmadi, S.S., Suparto, I.H., 2017. Triterpenoid of avocado (Persea americana) seed and its cytotoxic activity toward breast MCF-7 and liver HepG2 cancer cells. Asian Pac. J. Trop. Biomed. 7, 397-400. doi: 10.1016/j.apjtb.2017.01.010
    Acosta, R., Alcida Nabarlatz, D., Ranzi, E., Costa, M., Sanabria, J., Nabarlatz, D., 2018. Biomass from Colombian agroindustrial activities: characterization and potential for oligosaccharides production valorisation of sewage sludge. View project production of xylooligosaccharides from residual biomass of Colombian agroindustry view project Bi. Chem. Eng. Trans. 65, 667-672. http://www.researchgate.net/publication/326112037_Biomass_from_Colombian_Agroindustrial_Activities_Characterization_and_Potential_for_Oligosaccharides_Production/download
    Ademosun, A.O., Oboh, G., Olupona, A.J., Oyeleye, S.I., Adewuni, T.M., Nwanna, E.E., 2016. Comparative study of chemical composition, in vitro inhibition of cholinergic and monoaminergic enzymes, and antioxidant potentials of essential oil from peels and seeds of sweet orange (Citrus sinensis[L. ] osbeck) fruits. J. Food Biochem. 40, 53-60. doi: 10.1111/jfbc.12187
    Ahmed, G., Hamrick, D., Fajardo, G.A., 2015. Review of Ecuador's Agri-Industries Global Value Chains Bottlenecks and Roadmap for Implementation. Washington, DC World Bank, p. 54.
    Akalazu, J.N., Uchegbu, R.I., 2020. Biochemical composition and antimicrobial activities of seed extracts of avocado (Persea americana). FASEB J. 34, 1. doi: 10.1096/fsb2.21134
    Alfarra, R.S., Ali, N.E., Yusoff, M.M., 2014. Removal of heavy metals by natural adsorbent: review. Int. J. Biosci. 6655, 130-139. doi: 10.1007/s11157-013-9330-2
    Almeida Streitwieser, D., 2017. Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness. Bioresour. Technol. 241, 985-992. doi: 10.1016/j.biortech.2017.06.006
    Almeida Streitwieser, D., Cadena Cabezas, I., 2018. Preliminary study of biomethane production of organic waste based on their content of sugar, starch, lipid, protein and fibre. Chem. Eng. Trans. 65, 661-666. http://www.researchgate.net/publication/340132869_Preliminary_Study_of_Biomethane_Production_of_Organic_Waste
    Almeida Streitwieser, D., Regalado, D.A., Ampudia, M.J., 2010. Estudio de la co-digestión anaeróbica de desechos orgánicos agroindustriales. Av. Cienc. Ing. (Quito) 2, 2. http://www.researchgate.net/publication/291955317_Estudio_de_la_co-digestion_anaerobica_de_desechos_organicos_agroindustriales
    Andrade W.X., Pisco, I., Quinde, L., Coronel, C., 2020. Informacion Técnica y Económica. Revista Industrias, ¿Cómo lograr una debida reactivación económica? 10-21. Available at: https://revistaindustrias.com/como-lograr-una-debida-reactivacion-de-la-economia-2/.
    Angel Siles López, J., Li, Q., Thompson, I.P., 2010. Biorefinery of waste orange peel. Crit. Rev. Biotechnol. 30, 63-69. doi: 10.3109/07388550903425201
    Antia, B., Okokon, J., Okon, P., 2005. Hypoglycemic activity of aqueous leaf extract of Persea americana Mill. Indian J. Pharmacol. 37, 325. doi: 10.4103/0253-7613.16858
    Anvoh, K.Y.B., Bi, A.Z., Gnakri, D., 2009. Production and characterization of juice from mucilage of cocoa beans and its transformation into marmalade. Pak. J. Nutr. 8, 129-133. doi: 10.3923/pjn.2009.129.133
    Araújo, R.G., Rodriguez-Jasso, R.M., Ruiz, H.A., Pintado, M.M.E., Aguilar, C.N., 2018. Avocado by-products: nutritional and functional properties. Trends Food Sci. Technol. 80, 51-60. doi: 10.1016/j.tifs.2018.07.027
    Arlene, A.A., Prima, K.A., Utama, L., Anggraini, S.A., 2015. The preliminary study of the dye extraction from the avocado seed using ultrasonic assisted extraction. Procedia Chem. 16, 334-340. doi: 10.1016/j.proche.2015.12.061
    Attard, T.M., Bukhanko, N., Eriksson, D., Arshadi, M., Geladi, P., Bergsten, U., Budarin, V.L., Clark, J.H., Hunt, A.J., 2018. Supercritical extraction of waxes and lipids from biomass: a valuable first step towards an integrated biorefinery. J. Clean. Prod. 177, 684-698. doi: 10.1016/j.jclepro.2017.12.155
    Aydeniz Güneşer, B., Yilmaz, E., 2019. Comparing the effects of conventional and microwave roasting methods for bioactive composition and the sensory quality of cold-pressed orange seed oil. J. Food Sci. Technol. 56, 634-642. doi: 10.1007/s13197-018-3518-y
    Aydin, F., Yilmaz, E., Soylak, M., 2017. A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem. J. 132, 280-285. doi: 10.1016/j.microc.2017.02.014
    Ayu, D.F., Andarwulan, N., Hariyadi, P., Purnomo, E.H., 2016. Effect of tocopherols, tocotrienols, β-carotene, and chlorophyll on the photo-oxidative stability of red palm oil. Food Sci. Biotechnol. 25, 401-407. doi: 10.1007/s10068-016-0055-1
    Bahar, M., Deng, Y., Fletcher, J.N., Kinghorn, A.D., 2007. Plant-Derived Natural Products in Drug Discovery and Development: an Overview. Selected Topics in the Chemistry of Natural Products. World Scientific, pp. 11–48. http://www.researchgate.net/publication/289182637_Plant-Derived_natural_products_in_drug_discovery_and_development_An_overview
    Bakri, M., Yi, Y., Chen, L.D., Aisa, H.A., Mong-Heng, W., 2014. Alkaloids of Nitraria sibirica Pall. decrease hypertension and albuminuria in angiotensin Ⅱ-salt hypertension. Chin. J. Nat. Med. 12, 266-272. http://www.cqvip.com/QK/86968X/20144/49230425.html
    Balasundram, N., Sundram, K., Samman, S., 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191-203. doi: 10.1016/j.foodchem.2005.07.042
    Ballesteros, L.F., Cerqueira, M.A., Teixeira, J.A., Mussatto, S.I., 2015. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydr. Polym. 127, 347-354. doi: 10.1016/j.carbpol.2015.03.047
    Ballesteros, L.F., Ramirez, M.J., Orrego, C.E., Teixeira, J.A., Mussatto, S.I., 2017. Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. J. Food Eng. 199, 1-8. doi: 10.1016/j.jfoodeng.2016.11.014
    Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A., 2017. Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10-22. doi: 10.1016/j.foodchem.2016.12.093
    Bankar, A., Joshi, B., Kumar, A.R., Zinjarde, S., 2010. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surfaces A: Physicochem. Eng. Aspects 368, 58-63. doi: 10.1016/j.colsurfa.2010.07.024
    Baquero, M., Lucio Paredes, A., 2010. Ecuadorian Agro-Industry: an important sector that requires a law to promote its development. La Granja Rev. Ciencias la Vida 11, 44-46.
    Barhoi, D., Upadhaya, P., Barbhuiya, S.N., Giri, A., Giri, S., 2020. Aqueous extract of Moringa oleifera exhibit potential anticancer activity and can be used as a possible cancer therapeutic agent: a study involving in vitro and in vivo approach. J. Am. Coll. Nutr. 1-16.
    Barros, H.D.F.Q., Grimaldi, R., Cabral, F.A., 2017. Lycopene-rich avocado oil obtained by simultaneous supercritical extraction from avocado pulp and tomato pomace. J. Supercrit. Fluids 120, 1-6. doi: 10.1016/j.supflu.2016.09.021
    Baskar, R., Shrisakthi, S., Sathyapriya, B., Shyampriya, R., Nithya, R., Poongodi, P., 2011. Antioxidant potential of peel extracts of banana varieties (Musa sapientum). Food Nutr. Sci. 2, 1128-1133. http://www.oalib.com/paper/8047
    Beltrán-Heredia, J., Sánchez-Martín, J., 2009. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent. Environ. Technol. 30, 525-534. doi: 10.1080/09593330902831176
    Belwal, T., Ezzat, S.M., Rastrelli, L., Bhatt, I.D., Daglia, M., Baldi, A., Devkota, H.P., Orhan, I.E., Patra, J.K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S.F., Nabavi, S.M., Atanasov, A.G., 2018. A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. Trac. Trends Anal. Chem. 100, 82-102. doi: 10.1016/j.trac.2017.12.018
    Benítez, M.B., Champagne, P., Ramos, A., Torres, A.F., Ochoa-Herrera, V., 2019. Wastewater treatment for nutrient removal with Ecuadorian native microalgae. Environ. Technol. 40, 2977-2985. doi: 10.1080/09593330.2018.1459874
    Bhattacharya, S., Pramanik, S.K., Gehlot, P.S., Patel, H., Gajaria, T., Mishra, S., Kumar, A., 2017. Process for preparing value-added products from microalgae using textile effluent through a biorefinery approach. ACS Sustain. Chem. Eng. 5, 10019-10028. doi: 10.1021/acssuschemeng.7b01961
    Billah, M., Susilowati, T., Susilowati, Suryaningrum, D.H., 2016. The benefit of cacao peel's lignin as an adhesive using multi function extractor. MATEC Web Conf. 58, 01024.
    Blinová, L., Sirotiak, M., Bartošová, A., Soldán, M., 2017. Review: utilization of waste from coffee production. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 25, 91-101. http://adsabs.harvard.edu/abs/2017RPFSU..25...91B
    Blowman, K., Magalhães, M., Lemos, M.F.L., Cabral, C., Pires, I.M., 2018. Anticancer properties of essential oils and other natural products. Evid. Based Complement Alternat. Med. 2018, 3149362. http://www.ncbi.nlm.nih.gov/pubmed/29765461
    Briguglio, M., Dell'Osso, B., Panzica, G., Malgaroli, A., Banfi, G., Zanaboni Dina, C., Galentino, R., Porta, M., 2018. Dietary neurotransmitters: a narrative review on current knowledge. Nutrients 10, 1-15. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986471/
    Buxton, D.R., Fales, S.L., 1994. Plant environment and quality. In: George, C., Fahey, J. (Eds. ), Forage Quality, Evaluation and Utilization. American Society of Agronomy, Madison, USA, pp. 115–154.
    Cabardo, D.E. Jr, Portugaliza, H.P. Jr, 2017. Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. Int. J. Vet. Sci. Med. 5, 30-34. doi: 10.1016/j.ijvsm.2017.02.001
    Campos-Vega, R., Nieto-Figueroa, K.H., Oomah, B.D., 2018. Cocoa (Theobroma cacao L. ) pod husk: renewable source of bioactive compounds. Trends Food Sci. Technol. 81, 172–184. doi: 10.1016/j.tifs.2018.09.022
    Carrera, A., 2017. Encapsulación de Trichoderma asperellum en partículas biopoliméricas con quitosanos de diferentes pesos moleculares para el control biológico de Moniliophthora roreri. Universidad San Francisco de Quito. Available at: http://repositorio.usfq.edu.ec/handle/23000/6805.
    Carvajal Barriga, E.J., Guamn-Burneo, C., Portero, P., Salas, E., Tufio, C., Bastidas, B., 2013. Second Generation Ethanol from Residual Biomass: Research and Perspectives in Ecuador. Biomass Now-Sustainable Growth and Use. London: InTech. http://ideas.repec.org/h/ito/pchaps/76468.html
    Chen, X.M., Tait, A.R., Kitts, D.D., 2017. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 218, 15-21. doi: 10.1016/j.foodchem.2016.09.016
    Chiesa, S., Gnansounou, E., 2011. Protein extraction from biomass in a bioethanol refinery-possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour. Technol. 102, 427-436. doi: 10.1016/j.biortech.2010.07.125
    Choi, Y.H., Dai, Y., Kim, H.K., Verpoorte, R., 2014. Metabolomics and natural deep eutectic solvents: Discovering a natural secret using an unbiased tool. Planta Med. 80: 16. http://www.researchgate.net/publication/287425929_Metabolomics_and_natural_deep_eutectic_solvents_Discovering_a_natural_secret_using_an_unbiased_tool
    Choo, Y.M., Yap, S.C., Ooi, C.K., Ma, A.N., Goh, S.H., Ong, A.S.H., 1996. Recovered oil from palm-pressed fiber: a good source of natural carotenoids, vitamin E, and sterols. J. Am. Oil Chem. Soc. 73, 599-602. doi: 10.1007/BF02518114
    Cobo, S., Dominguez-Ramos, A., Irabien, A., 2018. From linear to circular integrated waste management systems: a review of methodological approaches. Resour. Conserv. Recycl. 135, 279-295. doi: 10.1016/j.resconrec.2017.08.003
    Conidi, C., Cassano, A., Drioli, E., 2012. Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867-874. doi: 10.1016/j.fbp.2012.07.005
    Curran, T., Williams, I.D., 2012. A zero waste vision for industrial networks in Europe. J. Hazard. Mater. 207/208, 3-7. doi: 10.1016/j.jhazmat.2011.07.122
    da Silva, C.R.U., Franco, H.C.J., Junqueira, T.L., van Oers, L., van der Voet, E., Seabra, J.E.A., 2014. Long-term prospects for the environmental profile of advanced sugar cane ethanol. Environ. Sci. Technol. 48, 12394-12402. doi: 10.1021/es502552f
    Dai, Y.T., van Spronsen, J., Witkamp, G.J., Verpoorte, R., Choi, Y.H., 2013. Natural deep eutectic solvents as new potential media for green technology. Anal. Chimica Acta 766, 61-68. doi: 10.1016/j.aca.2012.12.019
    Dai, Y.T., Verpoorte, R., Choi, Y.H., 2014. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 159, 116-121. doi: 10.1016/j.foodchem.2014.02.155
    de Mello Andrade, J.M., de Jong, E.V., Henriques, A.T., 2014. Byproducts of orange extraction: influence of different treatments in fiber composition and physical and chemical parameters. Braz. J. Pharm. Sci. 50, 473-482. doi: 10.1590/S1984-82502014000300005
    de Oliveira Vigier, K., Chatel, G., Jerome, F., 2015. ChemInform abstract: contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemInform 46, 1. doi: 10.1002/chin.201526315
    Deblonde, T., Cossu-Leguille, C., Hartemann, P., 2011. Emerging pollutants in wastewater: a review of the literature. Int. J. Hyg. Environ. Health. 214, 442-448. doi: 10.1016/j.ijheh.2011.08.002
    Degam, G., 2017. Deep Eutectic Solvents Synthesis, Characterization and Applications in Pretreatment of Lignocellulosic Biomass. Vermillion: South Dakota State University, 1156. http://www.researchgate.net/publication/317670734_Deep_Eutectic_Solvents_Synthesis_Characterization_and_Applications_in_Pretreatment_of_Lignocellulosic_Biomass
    del Río, J.A., Arcas, M.C., Benavente-García, O., Ortuño, A., 1998. Citrus polymethoxylated flavones can confer resistance againstphytophthora citrophthora, Penicillium digitatum, and geotrichum species. J. Agric. Food Chem. 46, 4423-4428. doi: 10.1021/jf980229m
    Di Mauro, A., Fallico, B., Passerini, A., Rapisarda, P., Maccarone, E., 1999. Recovery of hesperidin from orange peel by concentration of extracts on styrene-divinylbenzene resin. J. Agric. Food Chem. 47, 4391-4397. doi: 10.1021/jf990038z
    Domínguez de María, P., 2014. Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J. Chem. Technol. Biotechnol. 89, 11-18. doi: 10.1002/jctb.4201
    Duarte, J., 2015. Bioenergy Atlas of Ecuador. Available at: http://biblioteca.olade.org/cgi-bin/koha/opac-detail.pl?biblionumber=5720.
    Duarte, P.F., Chaves, M.A., Borges, C.D., Mendonça, C.R.B., 2016. Avocado: characteristics, health benefits and uses. Cienc. Rural 46, 747-754. doi: 10.1590/0103-8478cr20141516
    Durand, E., Lecomte, J., Villeneuve, P., 2016. From green chemistry to nature: the versatile role of low transition temperature mixtures. Biochimie 120, 119-123. doi: 10.1016/j.biochi.2015.09.019
    Düsterhöft, E.M., Voragen, A.G.J., Engels, F.M., 1991. Non-starch polysaccharides from sunflower (Helianthus annuus) meal and palm kernel (Elaeis guineenis) meal-preparation of cell wall material and extraction of polysaccharide fractions. J. Sci. Food Agric. 55, 411-422. doi: 10.1002/jsfa.2740550309
    Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., Kulma, A., 2016. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 17, 160. doi: 10.3390/ijms17020160
    Edmund, C.O., Christopher, M.S., Pascal, D.K., 2014. Characterization of palm kernel shell for materials reinforcement and water treatment. J. Chem. Eng. Mater. Sci. 5, 1-6. doi: 10.5897/JCEMS2014.0172
    El Comercio, 2018. Ecuador Participates in Biodiversity Action Meeting. Available at: https://www.elcomercio.com/tendencias/ecuador-encuentro-acciones-biodiversidad-ambiente.html
    Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J.A., Welti-Chanes, J., 2014. Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Foods 6, 470-481. doi: 10.1016/j.jff.2013.11.013
    Fan, G.Z., Wang, Y.X., Song, G.S., Yan, J.T., Li, J.F., 2017. Preparation of microcrystalline cellulose from rice straw under microwave irradiation. J. Appl. Polym. Sci. 134, 44901. doi: 10.1002/app.44901
    Fathi, M., Karim, M., Ahmadi, N., 2019. Nanostructures of cellulose for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes. Elsevier, Amsterdam, pp. 493–519. http://www.sciencedirect.com/science/article/pii/B978012815663600001X
    Fernández, M.D.L. Á., Espino, M., Gomez, F.J.V., Silva, M.F., 2018. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 239, 671-678. doi: 10.1016/j.foodchem.2017.06.150
    Fernandez-Gomez, B., Lezama, A., Amigo-Benavent, M., Ullate, M., Herrero, M., Martín, M. Á., Mesa, M.D., del Castillo, M.D., 2016. Insights on the health benefits of the bioactive compounds of coffee silverskin extract. J. Funct. Foods 25, 197-207. doi: 10.1016/j.jff.2016.06.001
    Fiedor, J., Burda, K., 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6, 466-488. doi: 10.3390/nu6020466
    Fierascu, R.C., Fierascu, I., Avramescu, S.M., Sieniawska, E., 2019. Recovery of natural antioxidants from agro-industrial side streams through advanced extraction techniques. Molecules 24, 1-29. http://www.ncbi.nlm.nih.gov/pubmed/31757027
    Francisco, M., van den Bruinhorst, A., Kroon, M.C., 2012. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14, 2153-2157. doi: 10.1039/c2gc35660k
    Francisco, M., Van den Bruinhorst, A., Kroon, M.C., 2013. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angewandte Chemie Int. Ed. 52, 3074-3085. doi: 10.1002/anie.201207548
    Future Markets Inc., 2020. Nanotechnology and Nanomaterials Solutions for COVID-19: Diagnostic Testing, Antiviral and Antimicrobial Coatings and Surfaces, Air-Borne Filtration, Facemasks, PPE, Drug Delivery and Therapeutics.
    Gao, S., Tang. G., Hua, D., Xiong, R., Han, J., Jiang, S., Zhang, Q., Huang, C., 2019. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B7, 709-729. doi: 10.1039/C8TB02491J
    García, A.A.M., 2014. Efectos del uso de la tecnología sobre la naturaleza. Gestiopolis. Available: https://www.gestiopolis.com/efectos-del-uso-de-la-tecnologia-sobre-la-naturaleza/.
    García, A., Labidi, J., Belgacem, M.N., Bras, J., 2017. The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production. Cellulose 24, 693-704. doi: 10.1007/s10570-016-1144-2
    García-Gutiérrez, N., Maldonado-Celis, M.E., Rojas-López, M., Loarca-Piña, G.F., Campos-Vega, R., 2017. The fermented non-digestible fraction of spent coffee grounds induces apoptosis in human colon cancer cells (SW480). J. Funct. Foods 30, 237-246. doi: 10.1016/j.jff.2017.01.014
    Goodell, B., Zhu, Y., Kim, S., Kafle, K., Eastwood, D., Daniel, G., Jellison, J., Yoshida, M., Groom, L., Pingali, S.V., O'Neill, H., 2017. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol. Biofuels 10, 179. doi: 10.1186/s13068-017-0865-2
    Gosslau, A., Chen, K.Y., Ho, C.T., Li, S.M., 2014. Anti-inflammatory effects of characterized orange peel extracts enriched with bioactive polymethoxyflavones. Food Sci. Hum. Wellness 3, 26-35. doi: 10.1016/j.fshw.2014.02.002
    Goula, A.M., Ververi, M., Adamopoulou, A., Kaderides, K., 2017. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason. Sonochem. 34, 821-830. doi: 10.1016/j.ultsonch.2016.07.022
    Guerrero Páez, J.B., 2019. Lignocellulose Cell Wall Fractionation of Brewer's Spent Grains with a Deep eutectic Solvent for Cellulose and Xylan Isolation and Characterization. Universidad San Francisco de Quito, Quito, Ecuador.
    Guerrero, V.H., Asimbaya, C., Rosas, N., Endara, D., 2015. Obtención de carbón activado a partir de residuos lignocelulósicos de canelo, laurel y eucalipto. Revista Politécnica 36, 24-29. http://www.researchgate.net/publication/283272710_Obtencion_de_Carbon_Activado_a_Partir_de_Residuos_Lignocelulosicos_de_Canelo_Laurel_y_Eucalipto
    Hassan, S.S., Williams, G.A., Jaiswal, A.K., 2018. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 262, 310-318. doi: 10.1016/j.biortech.2018.04.099
    Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., AlNashef, I.M., Mirghani, M.E.S., Saheed, O.K., 2013. Are deep eutectic solvents benign or toxic?Chemosphere 90, 2193-2195. doi: 10.1016/j.chemosphere.2012.11.004
    Hegnar, O.A., Goodell, B., Felby, C., Johansson, L., Labbé, N., Kim, K., Eijsink, V.G.H., Alfredsen, G., Várnai, A., 2019. Challenges and opportunities in mimicking non-enzymatic brown-rot decay mechanisms for pretreatment of Norway spruce. Wood Sci. Technol. 53, 291-311. doi: 10.1007/s00226-019-01076-1
    Hem, S., Toure, S., Sagbla, C., Legendre, M., 2008. Bioconversion of palm kernel meal for aquaculture: experiences from the forest region (Republic of Guinea). Afr. J. Biotechnol. 7, 1192-1198. http://www.oalib.com/paper/1323500
    Herman, Z., Fong, C.H., Hasegawa, S., 1991. Biosynthesis of limonoid glucosides in navel orange. Phytochemistry 30, 1487-1488. doi: 10.1016/0031-9422(91)84193-V
    Herrero, M., Ibañez, E., 2018. Green extraction processes, biorefineries and sustainability: recovery of high added-value products from natural sources. J. Supercrit. Fluids 134, 252-259. doi: 10.1016/j.supflu.2017.12.002
    Hetemäki, L., 2017. Leading the way to a European circular bioeconomy strategy. Conference: Forest Bioeconomy, Business and Sustainability, lecture course, University of Helsinki.
    Hilbert, J., 2015. Socio-economic impacts on bioenergy production. INTA 2015, 2017. Available at: https://inta.gob.ar/sites/default/files/script-tmp-inta-_impactos_socioeconomicos_en_produccion_de_bioen.pdf.
    Hong, H.J., Lim, J.S., Hwang, J.Y., Kim, M., Jeong, H.S., Park, M.S., 2018. Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydr. Polym. 195, 136-142. doi: 10.1016/j.carbpol.2018.04.081
    Huang, C.Y., Kuo, C.H., Wu, C.H., Kuan, A.W., Guo, H.R., Lin, Y.H., Wang, P.K., 2018. Free radical-scavenging, anti-inflammatory, and antibacterial activities of water and ethanol extracts prepared from compressional-puffing pretreated mango (Mangifera indica L. ) peels. J. Food Qual. 2018, 1-13. http://www.researchgate.net/publication/323341778_Free_Radical-Scavenging_Anti-Inflammatory_and_Antibacterial_Activities_of_Water_and_Ethanol_Extracts_Prepared_from_Compressional-Puffing_Pretreated_Mango_Mangifera_indica_L_Peels
    Hughes, S.R., López-Núñez, J.C., Jones, M.A., Moser, B.R., Cox, E.J., Lindquist, M., Galindo-Leva, L. Á., Riaño-Herrera, N.M., Rodriguez-Valencia, N., Gast, F., Cedeño, D.L., Tasaki, K., Brown, R.C., Darzins, A., Brunner, L., 2014. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl. Microbiol. Biotechnol. 98, 8413-8431. doi: 10.1007/s00253-014-5991-1
    ⅡCA, 2018. Sustainable management of organic agricultural and urban waste through biodigestor technological innovation. Available at: https://www.iica.int/en/node/20818.
    Iranshahi, M., Rezaee, R., Parhiz, H., Roohbakhsh, A., Soltani, F., 2015. Protective effects of flavonoids against microbes and toxins: the cases of hesperidin and hesperetin. Life Sci. 137, 125-132. doi: 10.1016/j.lfs.2015.07.014
    Jablonský, M., Škulcová, A., Kamenská, L., Vrška, M., Šíma, J., 2015. Deep eutectic solvents: fractionation of wheat straw. BioResources 10, 8039-8047.
    Jablonský, M., Škulcová, A., Šima, J., 2019. Use of deep eutectic solvents in polymer chemistry-a review. Molecules 24, 3978. doi: 10.3390/molecules24213978
    Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60-72. doi: 10.2478/intox-2014-0009
    Jawad, A.H., Mamat, N.F.H., Abdullah, M.F., Ismail, K., 2017. Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study. Desalination Water Treat. 59, 210-219. doi: 10.5004/dwt.2017.0097
    Jawaid, M., Mohammad, F., 2017. Nanocellulose and Nanohydrogel Matrices. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017.
    Ji, A.Q., Zhang, S.Y., Bhagia, S., Yoo, C.G., Ragauskas, A.J., 2020. 3D printing of biomass-derived composites: application and characterization approaches. RSC Adv. 10, 21698-21723. doi: 10.1039/D0RA03620J
    Jimat, D.N., Putra, F.A., Sulaiman, S., Nor, Y.A., Putra, S.S.S., 2019. Physicochemical characteristics of bionanocomposites, polycaprolactone/starch/cocoa pod husk microfibrillated cellulose. J. Adv. Res. Fluid Mech. Therm. Sci. 55, 199-208. http://www.researchgate.net/publication/332540337_Physicochemical_characteristics_of_bionanocomposites_polycaprolactonestarchcocoa_pod_husk_microfibrillated_cellulose/download
    June, R., 1996. Carotenoids and their esters in banana the color change in fruit is closely associated with its quality, along with texture (1). Such a phenomenon also occurs in bananas where the color of the peel changes from green to yellow during ripening. Methods, 553-566. http://europepmc.org/abstract/MED/9089481
    Juneidi, I., Hayyan, M., Hashim, M.A., 2015. Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Adv. 5, 83636-83647. doi: 10.1039/C5RA12425E
    Junqueira, T.L., Chagas, M.F., Gouveia, V.L.R., Rezende, M.C.A.F., Watanabe, M.D.B., Jesus, C.D.F., Cavalett, O., Milanez, A.Y., Bonomi, A., 2017. Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons. Biotechnol. Biofuels 10, 50. doi: 10.1186/s13068-017-0722-3
    Jusufi, K., Berisha, A., Halili, J., Ferataj, F., Hasanaj, J., Korça, B., Thaçi, V., 2016. Potential application of orange peels as bio sorbents in the removal of organic molecules from wastewater. RAD Conference Proceedings. RAD Association, 176-178.
    Kebaili, M., Djellali, S., Radjai, M., Drouiche, N., Lounici, H., 2018. Valorization of orange industry residues to form a natural coagulant and adsorbent. J. Ind. Eng. Chem. 64, 292-299. doi: 10.1016/j.jiec.2018.03.027
    Keegstra, K., 2010. Plant cell walls. Futur. Perspect. Plant Biol. 154, 483-486.
    Kent, M.S., Zeng, J.J., Rader, N., Avina, I.C., Simoes, C.T., Brenden, C.K., Busse, M.L., Watt, J., Giron, N.H., Alam, T.M., Allendorf, M.D., Simmons, B.A., Bell, N.S., Sale, K.L., 2018. Efficient conversion of lignin into a water-soluble polymer by a Chelator-mediated Fenton reaction: optimization of H2O2 use and performance as a dispersant. Green Chem. 20, 3024-3037. doi: 10.1039/C7GC03459H
    Khezeli, T., Daneshfar, A., Sahraei, R., 2016. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 150, 577-585. doi: 10.1016/j.talanta.2015.12.077
    Kieu Tran, T.M., Kirkman, T., Nguyen, M., van Vuong, Q., 2020. Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon 6, e04498. doi: 10.1016/j.heliyon.2020.e04498
    Killadi, B., Chaurasia, R., Shukla, D.K., Dikshit, A., 2018. Physio-chemical properties and pigment changes in the pericarp of mango cultivars during storage and ripening. J. Environ. Biol. 39, 373-378. doi: 10.22438/jeb/39/3/MRN-348
    Kircher, M., 2014. The emerging bioeconomy: industrial drivers, global impact, and international strategies. Ind. Biotechnol. 10, 11-18. doi: 10.1089/ind.2014.1500
    Korhonen, J., Honkasalo, A., Seppälä, J., 2018. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37-46. doi: 10.1016/j.ecolecon.2017.06.041
    Köse, M.D., Bayraktar, O., 2018. Valorization of citrus peel waste. Natural Volatiles Essential Oils 5, 10-18.
    Kosińska, A., Karamać, M., Estrella, I., Hernández, T., Bartolomé, B., Dykes, G.A., 2012. Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties. J. Agric. Food Chem. 60, 4613-4619. doi: 10.1021/jf300090p
    Krumreich, F.D., Borges, C.D., Mendonça, C.R.B., Jansen-Alves, C., Zambiazi, R.C., 2018. Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chem. 257, 376-381. doi: 10.1016/j.foodchem.2018.03.048
    Kumar, A.K., Parikh, B.S., Pravakar, M., 2016. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 23, 9265-9275. doi: 10.1007/s11356-015-4780-4
    Kumar, B., Kumar Gupta, S., Singhal, P., Singh, A., Chauhan, R., 2018. Nutritional and pharmceutical benifits of avocado plant. Artic. J. Adv. Res. 9, 4-11. http://www.researchgate.net/publication/329388661_NUTRITIONAL_AND_PHARMCEUTICAL_BENIFITS_OF_AVOCADO_PLANT
    Kumar, K., Yadav, A.N., Kumar, V., Vyas, P., Dhaliwal, H.S., 2017. Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 4, 18. doi: 10.1186/s40643-017-0148-6
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713-3729. doi: 10.1021/ie801542g
    Kuutti, L., Hiltunen, J., Rovio, S., Puhakka, E., Vuoti, S., 2015. Conversion of wood biomass into valuable components using a novel deep eutectic solvent mixture. Nord. Wood Biorefinery Conf. 2015, 161.
    Landázuri, A.C., Arroyo, E., Lagos, A.S., Gualle, A., Andino, C., Orejuela- Escobar, L., 2020. Mango (Mangifera indica L. ) by-products for food, cosmetics and water treatment applications: a zero-waste and biorefinery approach with classic and new generation solvents. Conference Proceedings of the AIChE 2020 Annual Meeting. Available at: https://www.aiche.org/academy/conferences/aiche-annual-meeting/2020/proceeding/paper/71f-mango-mangifera-indica-l-products-food-cosmetics-and-water-treatment-applications-zero-waste.
    Landázuri, A.C., Cahuasquí Segura, J.D., Lagos Estrella, A.S., 2019b. Metal adsorption in aqueous media using Moringa oleifera Lam. seeds produced in Ecuador as an alternative method for water treatment. Av. Cienc. Ing. (Quito)11: 190-205. http://www.researchgate.net/publication/331936475_Metal_adsorption_in_aqueous_media_using_Moringa_oleifera_Lam_seeds_produced_in_Ecuador_as_an_alternative_method_for_water_treatment
    Landázuri, A.C., Lagos, A.S., Pico, M.M., Nuñez, E.R., Trávez, A.L., Troya, M.F., Sornoza, I., Villarreal, J.S., Andrade, J.C., Cunalata, A.J., Bastidas, F.D., Vargas, M., Caviedes, M., 2017. Ewb-Ecuador/Usfq project: contaminant removal from effluents through the use of Moringa oleifera seeds for application in ecuadorian rural communities. 2017 AIChE Annual Meeting Conference Proceedings.
    Landázuri, A.C., Orejuela- Escobar, L.M., 2019. GICAS (Grupo de Ingeniería, Ciencias Aplicadas & Simulación). Available: https://www.instituto-biosfera.org/gicas.
    Landázuri, A.C., Villarreal, J.S., Andrade, J.C., Sornoza, I., Lagos, A.S., 2019a. Bulk balance filtration model (BBFM) for lead and iron physisorption through Moringa oleifera Lam. seed husks. J. Environ. Chem. Eng. 7, 103302. doi: 10.1016/j.jece.2019.103302
    Landázuri, A.C., Villarreal, J.S., Núñez, E.R., Pico, M.M., Lagos, A.S., Caviedes, M., Espinosa, E., 2018. Experimental evaluation of crushed Moringa oleifera Lam. seeds and powder waste during coagulation-flocculation processes. J. Environ. Chem. Eng. 6, 5443-5451. doi: 10.1016/j.jece.2018.08.021
    Lea, M., 2014. Bioremediation of turbid surface water using seed extract from the Moringa oleifera lam. (drumstick) tree. Curr. Protoc. Microbiol. 33, 1G. 2.1-1G. 2.8. http://europepmc.org/abstract/med/24789599
    Lee, K.Y., 2015. Nanocellulose and Sustainability. Boca Raton: CRC Press, 2015.
    Leite, J.J.G., Brito, É. H.S., Cordeiro, R.A., Brilhante, R.S.N., Sidrim, J.J.C., Bertini, L.M., de Morais, S.M., Rocha, M.F.G., 2009. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev. Soc. Bras. Med. Trop. 42, 110-113. doi: 10.1590/S0037-86822009000200003
    León, G.R., Aldás, M.B., Guerrero, V.H., Landázuri, A.C., Almeida-Naranjo, C.E., 2019. Caffeine and irgasan removal from water using bamboo, laurel and Moringa residues impregnated with commercial TiO2 nanoparticles. MRS Adv. 4, 3553-3567. doi: 10.1557/adv.2020.33
    Li, A.L., Hou, X.D., Lin, K.P., Zhang, X., Fu, M.H., 2018. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J. Biosci. Bioeng. 126, 346-354. doi: 10.1016/j.jbiosc.2018.03.011
    Lin, T.K., Zhong, L., Santiago, J., 2017. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci. 19, 70. doi: 10.3390/ijms19010070
    Liu, J.Z., Zhu, Y., Wang, C., Goodell, B., Esker, A.R., 2020. Chelator-mediated biomimetic degradation of cellulose and chitin. Int. J. Biol. Macromol. 153, 433-440. doi: 10.1016/j.ijbiomac.2020.02.262
    Loizzo, M.R., Leporini, M., Sicari, V., Falco, T., Pellicano, T.M., Tundis, R., 2018. Investigating the in vitro hypoglycaemic and antioxidant properties of Citrus exttimes clementina Hort. juice. Eur. Food Res. Technol. 244, 523-534. doi: 10.1007/s00217-017-2978-z
    Loow, Y.L., Wu, T.Y., Yang, G.H., Ang, L.Y., New, E.K., Siow, L.F., Md Jahim, J., Mohammad, A.W., Teoh, W.H., 2018. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresour. Technol. 249, 818-825. doi: 10.1016/j.biortech.2017.07.165
    Lu, W.J., Lin, K.C., Liu, C.P., Lin, C.Y., Wu, H.C., Chou, D.S., Geraldine, P., Huang, S.Y., Hsieh, C.Y., Sheu, J.R., 2016. Prevention of arterial thrombosis by nobiletin: in vitro and in vivo studies. J. Nutr. Biochem. 28, 1-8. doi: 10.1016/j.jnutbio.2015.09.024
    Lynam, J.G., Kumar, N., Wong, M.J., 2017. Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 238, 684-689. doi: 10.1016/j.biortech.2017.04.079
    Macas, G., 2017. El agro no se detuvo en 26 años. Rev. El Agro, 7-10.
    Mahardika, M., Abral, H., Kasim, A., Arief, S., Asrofi, M., 2018. Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6, 28. doi: 10.3390/fib6020028
    Mahato, N., Sharma, K., Sinha, M., Cho, M.H., 2018. Citrus waste derived nutra-/pharmaceuticals for health benefits: current trends and future perspectives. J. Funct. Foods 40, 307-316. doi: 10.1016/j.jff.2017.11.015
    Mahizan, N.A., Yang, S.K., Moo, C.L., Song, A.A., Chong, C.M., Chong, C.W., Abushelaibi, A., Lim, S.E., Lai, K.S., 2019. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24, 2631. doi: 10.3390/molecules24142631
    Maina, S., Kachrimanidou, V., Koutinas, A., 2017. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 8, 18-23. doi: 10.1016/j.cogsc.2017.07.007
    Maiti, S., Gallastegui, G., Suresh, G., Sarma, S.J., Brar, S.K., Drogui, P., LeBihan, Y., Buelna, G., Verma, M., Soccol, C.R., 2018. Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes. Bioresour. Technol. 249, 673-683. doi: 10.1016/j.biortech.2017.09.132
    Maity, S.K., 2015. Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew. Sustain. Energy Rev. 43, 1427-1445. doi: 10.1016/j.rser.2014.11.092
    Malacrida, C.R., Kimura, M., Jorge, N., 2012. Phytochemicals and antioxidant activity of Citrus seed oils. Food Sci. Technol. Res. 18, 399-404. doi: 10.3136/fstr.18.399
    Malaeke, H., Housaindokht, M.R., Monhemi, H., Izadyar, M., 2018. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J. Mol. Liq. 263, 193-199. doi: 10.1016/j.molliq.2018.05.001
    Mallampati, R., Li, X.J., Adin, A., Valiyaveettil, S., 2015. Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water. ACS Sustain. Chem. Eng. 3, 1117-1124. doi: 10.1021/acssuschemeng.5b00207
    Malleshappa, P., Kumaran, R.C., Venkatarangaiah, K., Parveen, S., 2018. Peels of Citrus fruits: a potential source of anti-inflammatory and anti-nociceptive agents. Pharmacogn. J. 10, s172-s178. doi: 10.5530/pj.2018.6s.30
    Mamun, K.R., Saha, N.K., Chakrabarty, S., 2019. A comparative study of the adsorption capacity of tea leaves and orange peel for the removal of Fe (Ⅲ) ion from wastewater.
    Manguro, L.O., Lemmen, P., 2007. Phenolics of Moringa oleifera leaves. Nat. Prod. Res. 21, 56-68. doi: 10.1080/14786410601035811
    Manousaki, A., Jancheva, M., Grigorakis, S., Makris, D., 2016. Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: a comparison with conventional eco-friendly solvents. Recycling 1, 194-204. doi: 10.3390/recycling1010194
    Manthey, J.A., Grohmann, K., Guthrie, N., 2001. Biological properties of Citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8, 135-153. doi: 10.2174/0929867013373723
    Manzano, P., Hernández, J., Quijano-avilés, M., Barragán, A., Chóez-guaranda, I., 2017. Polyphenols extracted from Theobroma cacao waste and its utility as antioxidant. doi: 10.9755/ejfa.2016-04-388.
    Marrero-Faz, E., Sánchez-Calero, J., Young, L., Harvey, A., 2014. Inhibitory effect of Persea americana Mill leaf aqueous extract and its fractions on PTP1B as therapeutic target for type 2 diabetes. Boletin Latinoamericano Y Del Caribe De Plantas Med. Y Aromat. 13, 144-151. http://www.redalyc.org/articulo.oa?id=85631009003
    Martínez, R., Torres, P., Meneses, M.A., Figueroa, J.G., Pérez-Álvarez, J.A., Viuda-Martos, M., 2012. Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L. ) co-products. Food Res. Int. 49, 39-45. doi: 10.1016/j.foodres.2012.08.005
    Martins, P.F., de Melo, M.M.R., Silva, C.M., 2016. Techno-economic optimization of the subcritical fluid extraction of oil from Moringa oleifera seeds and subsequent production of a purified sterols fraction. J. Supercrit. Fluids 107, 682-689. doi: 10.1016/j.supflu.2015.07.031
    Mata, T.M., Martins, A.A., Caetano, N.S., 2018. Bio-refinery approach for spent coffee grounds valorization. Bioresour. Technol. 247, 1077-1084. doi: 10.1016/j.biortech.2017.09.106
    Mataka, L.M., Sajidu, S.M.I., Masamba, W.R.L., Mwatseteza, J.F., 2010. Cadmium sorption by Moringa stenopetala and Moringa oleifera seed powders: Batch, Time, tEmperature, pH and Adsorption Isotherm Studies.
    Melgar, B., Dias, M.I., Ciric, A., Sokovic, M., Garcia-Castello, E.M., Rodriguez-Lopez, A.D., Barros, L., Ferreira, I.C.R.F., 2018. Bioactive characterization of Persea americana Mill. by-products: a rich source of inherent antioxidants. Ind. Crop. Prod. 111, 212-218. doi: 10.1016/j.indcrop.2017.10.024
    Mishra, R.K., Sabu, A., Tiwari, S.K., 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J. Saudi Chem. Soc. 22, 949-978. doi: 10.1016/j.jscs.2018.02.005
    Mohamed, R., Pineda, M., Aguilar, M., 2007. Antioxidant capacity of extracts from wild and crop plants of the Mediterranean region. J. Food Sci. 72, S059-S063.
    Mohiuddin, A., Saha, M.K., Hossian, M.S., Ferdoushi, A., 2014. Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: a review. Agric. 12, 148-158. http://www.cabdirect.org/abstracts/20143294035.html
    Mondal, S., 2017. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 163, 301-316. doi: 10.1016/j.carbpol.2016.12.050
    Montipó, S., Ballesteros, I., Fontana, R.C., Liu, S., Martins, A.F., Ballesteros, M., Camassola, M., 2018. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass. Bioresour. Technol. 249, 1017-1024. doi: 10.1016/j.biortech.2017.11.001
    Morais, D.R., Rotta, E.M., Sargi, S.C., Bonafe, E.G., Suzuki, R.M., Souza, N.E., Matsushita, M., Visentainer, J.V., 2016. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 28, 308-318. http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0103-50532017000200308&lng=pt&nrm=iso&tlng=en
    Moss, J.W.E., Williams, J.O., Ramji, D.P., 2018. Nutraceuticals as therapeutic agents for atherosclerosis. Biochim. et Biophys. Acta BBA-Mol. Basis Dis. 1864, 1562-1572. doi: 10.1016/j.bbadis.2018.02.006
    Mouratoglou, E., Malliou, V., Makris, D.P., 2016. Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valorization 7, 1377-1387. doi: 10.1007/s12649-016-9539-8
    Mukunzi, D., Nsor-Atindana, J., Zhang, X.M., Gahungu, A., Mukamurezi, G., 2011. Comparison of volatile profile of Moringa oleifera leaves from Rwanda and China using HS-SPME. Pak. J. Nutr. 10, 602-608. doi: 10.3923/pjn.2011.602.608
    Muñoz-Almagro, N., Valadez-Carmona, L., Mendiola, J.A., Ibáñez, E., Villamiel, M., 2019. Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydr. Polym. 217, 69-78. doi: 10.1016/j.carbpol.2019.04.040
    Navghare, V.V., Dhawale, S.C., 2017. In vitro antioxidant, hypoglycemic and oral glucose tolerance test of banana peels. Alex. J. Med. 53, 237-243. http://www.sciencedirect.com/science/article/pii/S2090506816300586
    Ng, H.S., Kee, P.E., Yim, H.S., Chen, P.T., Wei, Y.H., Chi-Wei Lan, J., 2020. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour. Technol. 302, 122889. doi: 10.1016/j.biortech.2020.122889
    Niogret, J., Epsky, N.D., Schnell, R.J., Boza, E.J., Kendra, P.E., Heath, R.R., 2013. Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae). PLoS One 8, e73601. doi: 10.1371/journal.pone.0073601
    Nor, N.A.M., Mustapha, W.A.W., Hassan, O., 2016. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production. Procedia Chem. 18, 147-154. doi: 10.1016/j.proche.2016.01.023
    Nora, F.M.D., Borges, C.D., 2017. Ultrasound pretreatment as an alternative to improve essential oils extraction. Cienc. Rura l47, 21. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782017000900753&lng=en&nrm=iso/
    Nouhi, S., Kwaambwa, H.M., Gutfreund, P., Rennie, A.R., 2019. Comparative study of flocculation and adsorption behaviour of water treatment proteins from Moringa peregrina and Moringa oleifera seeds. Sci. Rep. 9, 17945. doi: 10.1038/s41598-019-54069-2
    Obahiagbon, F.I., 2014. Total carotenoids, tocopherols and free fatty acids levels of palm oils produced from small scale Mills in Ovia-north east local government area of Edo state-Nigeria. Bayero J. Pure App. Sci. 6, 132. http://www.cabdirect.org/abstracts/20143117484.html
    Obst, J.R., 1997. Special (Secondary) Metabolites from Wood. Forest Products Biotechnology. CRC Press, Boca Raton, pp. 161–176.
    Oikeh, E.I., Oviasogie, F.E., Omoregie, E.S., 2020. Evaluation of antimicrobial efficacy of ethanol extracts of fresh Citrus sinensis (sweet orange) seeds against selected bacterial strains. J. Appl. Sci. Environ. Manag. 24, 249-252. http://www.researchgate.net/publication/342445639_Evaluation_of_Antimicrobial_Efficacy_of_Ethanol_Extracts_of_Fresh_Citrus_sinensis_Sweet_Orange_Seeds_against_Selected_Bacterial_Strains
    Orejuela-Escobar, L., 2017. Lignocellulose deconstruction using glyceline deep eutectic solvent and a chelator-mediated fenton system disertation Virginia tech. Available at: https://vtechworks.lib.vt.edu/handle/10919/81255.
    Orejuela-Escobar, L.M., 2018. Biorefinería: un modelo de negocios de productos de alto valor agregado a partir de desechos agrícolas e industriales y promotora de desarrollo sustentable en el contexto de la bioeconomía. Memorias XIV Foro Int. del Emprend. Univ. del Azuay, 199-214. Available at: http://revistas.uazuay.edu.ec/index.php/memorias/article/view/187.
    Ozturk, B., Esteban, J., Gonzalez-Miquel, M., 2018. Deterpenation of Citrus essential oils using glycerol-based deep eutectic solvents. J. Chem. Eng. Data 63, 2384-2393. doi: 10.1021/acs.jced.7b00944
    Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C., 2014. Natural deep eutectic solvents-solvents for the 21st century. ACS Sustainable Chem. Eng. 2, 1063-1071. doi: 10.1021/sc500096j
    Palović, N., Jakovljević, M., Jokić, S., Ačkar, Đ., Molar, M., Miškulin, M., 2019. Green extraction techniques of bioactive components from cocoa shell. Croat. J. Food Sci. Technol. 11, 11-20. doi: 10.17508/CJFST.2019.11.1.02
    Pandey, V.N., Chauhan, V., Pandey, V.S., Upadhyaya, P.P., Kopp, O.R., 2019. Moringa oleifera lam. : a biofunctional edible plant from India, phytochemistry and medicinal properties. J. Plant Stud. 8, 10. doi: 10.5539/jps.v8n1p10
    Passo Tsamo, C.V., Herent, M.F., Tomekpe, K., Happi Emaga, T., Quetin-Leclercq, J., Rogez, H., Larondelle, Y., Andre, C., 2015. Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp. ). Food Chem. 167, 197-204. doi: 10.1016/j.foodchem.2014.06.095
    Paz, R.D., Landázuri, A.C., Vernaza, M.G., 2020. Development of a cereal-based product using residual Moringa oleifera Lam. seed powder biomass and pseudo-plastic behavior of the dough mixtures. Nutr. Food Sci. ahead-of-print. DOI: 10.1108/nfs-05-2020-0161.
    Pereira, A., Maraschin, M., 2015. Banana (Musa spp. ) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. J. Ethnopharmacol. 160, 149-163. doi: 10.1016/j.jep.2014.11.008
    Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3-27. doi: 10.1016/j.watres.2014.08.053
    Phuaklee, P., Ruangnoo, S., Itharat, A., 2012. Anti-inflammatory and antioxidant activities of extracts from Musa sapientum peel. J. Med. Assoc. Thai. 95, S142-S146. http://www.ncbi.nlm.nih.gov/pubmed/23964457
    Posso, F., Siguencia, J., Narváez, R., 2020. Residual biomass-based hydrogen production: potential and possible uses in Ecuador. Int. J. Hydrog. Energy 45, 13717-13725. doi: 10.1016/j.ijhydene.2019.09.235
    Prabasari, I., Pettolino, F., Liao, M.L., Bacic, A., 2011. Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls: sequential extraction and chemical characterization. Carbohydr. Polym. 84, 484-494. doi: 10.1016/j.carbpol.2010.12.012
    Procentese, A., Johnson, E., Orr, V., Garruto Campanile, A., Wood, J.A., Marzocchella, A., Rehmann, L., 2015. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour. Technol. 192, 31-36. doi: 10.1016/j.biortech.2015.05.053
    Putnik, P., Bursać Kovačević, D., Režek Jambrak, A., Barba, F.J., Cravotto, G., Binello, A., Lorenzo, J.M., Shpigelman, A., 2017. Innovative "green" and novel strategies for the extraction of bioactive added value compounds from Citrus wastes-a review. Molecules 22, 2017. http://www.ncbi.nlm.nih.gov/pubmed/28448474
    Quesada, H.B., Cusioli, L.F., de O Bezerra, C., Baptista, A.T., Nishi, L., Gomes, R.G., Bergamasco, R., 2019. Acetaminophen adsorption using a low-cost adsorbent prepared from modified residues of Moringa oleifera Lam. seed husks. J. Chem. Technol. Biotechnol. 94, 3147-3157. doi: 10.1002/jctb.6121
    Ramírez-Pelayo, C., Martínez-Quiñones, J., Gil, J., Durango, D., 2019. Coumarins from the peel of Citrus grown in Colombia: composition, elicitation and antifungal activity. Heliyon 5, e01937. doi: 10.1016/j.heliyon.2019.e01937
    Rao S.R., Ravishankar G.A., 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv. 20, 101-153. doi: 10.1016/S0734-9750(02)00007-1
    Rebollo-Hernanz, M., Zhang, Q.Z., Aguilera, Y., Martín-Cabrejas, M.A., Gonzalez de Mejia, E., 2019. Relationship of the phytochemicals from coffee and cocoa by-products with their potential to modulate biomarkers of metabolic syndrome in vitro. Antioxidants 8, 279. doi: 10.3390/antiox8080279
    Remarks, I.I., Terpenoids, A.C., Terpeniods, B.N., Polyphenolics, A.F., Acids, B.P., Polyphenolics, C.O.N., 2014. Phytochemicals as Nutraceuticals Contents. Links to Sections by Topic, pp. 1–20.
    Rico, A., Rencoret, J., del Rio, J.C., Martinez, A.T., Gutierrez, A., 2014. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol. Biofuels 7, 6. doi: 10.1186/1754-6834-7-6
    Rocchetti, G., Pagnossa, J.P., Blasi, F., Cossignani, L., Hilsdorf Piccoli, R., Zengin, G., Montesano, D., Cocconcelli, P.S., Lucini, L., 2020. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents. Food Res. Int. 127, 108712. doi: 10.1016/j.foodres.2019.108712
    Roda, A., Matias, A., Paiva, A., Duarte, A., 2019. Polymer science and engineering using deep eutectic solvents. Polymers 11, 912. doi: 10.3390/polym11050912
    Rodríguez-Carpena, J.G., Morcuende, D., Andrade, M.J., Kylli, P., Estévez, M., 2011. Avocado (Persea americana Mill. ) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 59, 5625-5635. doi: 10.1021/jf1048832
    Rosales-Calderon, O., Arantes, V., 2019. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 12, 1-58. doi: 10.1186/s13068-018-1346-y
    Rotta, E.M., de Morais, D.R., Biondo, P.B.F., dos Santos, V.J., Matsushita, M., Visentainer, J.V., 2016. Uso da casca do abacate (Persea americana) na formulação de chá: Um produto funcional contendo compostos fenólicos e atividade antioxidante. Acta Sci. -Technol. 38, 23-29. http://repositorio.ul.pt/handle/10451/25123
    Ruales, J., Baenas, N., Moreno, D.A., Stinco, C.M., Meléndez-Martínez, A.J., García-Ruiz, A., 2018. Biological active Ecuadorian mango 'tommy atkins' ingredients-an opportunity to reduce agrowaste. Nutrients 10, 1138. doi: 10.3390/nu10091138
    Ruangtong, J., T-Thienprasert, J., T-Thienprasert, N.P., 2020. Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Mater. Today Commun. 24, 101224. doi: 10.1016/j.mtcomm.2020.101224
    Saavedra, J., Córdova, A., Navarro, R., Díaz-Calderón, P., Fuentealba, C., Astudillo-Castro, C., Toledo, L., Enrione, J., Galvez, L., 2017. Industrial avocado waste: functional compounds preservation by convective drying process. J. Food Eng. 198, 81-90. doi: 10.1016/j.jfoodeng.2016.11.018
    Safdar, M.N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., Saddozai, A.A., 2017. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L. ) peel using ultrasound and maceration techniques. J. Food Drug Anal. 25, 488-500. doi: 10.1016/j.jfda.2016.07.010
    Saini, A., Panesar, P.S., Bera, M.B., 2019. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 6, 26. doi: 10.1186/s40643-019-0261-9
    Santos, A.F., Matos, M., Sousa, Â., Costa, C., Nogueira, R., Teixeira, J.A., Paiva, P.M., Parpot, P., Coelho, L.C., Brito, A.G., 2016. Removal of tetracycline from contaminated water by Moringa oleifera seed preparations. Environ. Technol. 37, 744-751. doi: 10.1080/09593330.2015.1080309
    Santos, R.M.D., Flauzino Neto, W.P., Silvério, H.A., Martins, D.F., Dantas, N.O., Pasquini, D., 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Crop. Prod. 50, 707-714. doi: 10.1016/j.indcrop.2013.08.049
    Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., Ragauskas, A.J., 2018. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol. Adv. 36, 2032-2050. doi: 10.1016/j.biotechadv.2018.08.009
    Scoma, A., Rebecchi, S., Bertin, L., Fava, F., 2016. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit. Rev. Biotechnol. 36, 175-189. doi: 10.3109/07388551.2014.947238
    Secretar, 2017. National development plan 2017-2021 a lifetime. Available at: https://www.planificacion.gob.ec/plan-nacional-de-desarrollo-2017-2021-toda-una-vida/.
    Sekaran, S.D., 2010. Effects of oil palm phenolics on tumor cells in vitro and in vivo. African J. Food Sci. 4, 495-502. http://www.cabdirect.org/abstracts/20103360501.html;jsessionid=7A24264747E94E635B1193A8968CF482
    Selmi, S., Rtibi, K., Grami, D., Sebai, H., Marzouki, L., 2017. Protective effects of orange (Citrus sinensis L. ) peel aqueous extract and hesperidin on oxidative stress and peptic ulcer induced by alcohol in rat. Lipids Heal. Dis. 16, 152. doi: 10.1186/s12944-017-0546-y
    Shak, K.P.Y., Pang, Y.L., Mah, S.K., 2018. Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein. J. Nanotechnol. 9, 2479-2498. doi: 10.3762/bjnano.9.232
    Shan, T.C., Matar, M.A., Makky, E.A., Ali, E.N., 2017. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Appl. Water Sci. 7, 1369-1376. doi: 10.1007/s13201-016-0499-8
    Shang, X., Tan, J.N., Du, Y., Liu, X., Zhang, Z., 2018. Environmentally-friendly extraction of flavonoids from cyclocarya paliurus (batal. ) iljinskaja leaves with deep eutectic solvents and evaluation of their antioxidant activities. Molecules 23, 9.
    Shija, A.E., Rumisha, S.F., Oriyo, N.M., Kilima, S.P., Massaga, J.J., 2019. Effect of Moringa oleifera leaf powder supplementation on reducing anemia in children below two years in Kisarawe District, Tanzania. Food Sci. Nutr. 7, 2584-2594. doi: 10.1002/fsn3.1110
    Shikinaka, K., Nakamura, M., Navarro, R.R., Otsuka, Y., 2020. Functional materials from plant biomass obtained by simultaneous enzymatic saccharification and communition. Trends Glycosci. Glycotechnol. 32, E63-E76. doi: 10.4052/tigg.1967.7E
    Si, C., 2019. The development of lignocellulosic biomass in medicinal applications. Curr. Med. Chem. 26, 2408-2409. doi: 10.2174/092986732614190724160641
    Singh, G.P., Garg, R., Bhardwaj, S., Sharma, S.K., 2012. Anti-inflammatory evaluation of leaf extract of Moringa oleifera. J. Pharm. Sci. Innov. 1, 22-24. http://www.oalib.com/paper/2875142
    Soldera-Silva, A., Seyfried, M., Campestrini, L.H., Zawadzki-Baggio, S.F., Minho, A.P., Molento, M.B., Maurer, J.B.B., 2018. Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Vet. Parasitol. 251, 34-43. doi: 10.1016/j.vetpar.2017.12.019
    Taiwo, A.S., Adenike, K., Aderonke, O., 2020. Efficacy of a natural coagulant protein from Moringa oleifera (Lam. ) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon 6, e03335. doi: 10.1016/j.heliyon.2020.e03335
    Tan, T., Zhang, M., Wan, Y., Qiu, H., 2016. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta 149, 85-90. doi: 10.1016/j.talanta.2015.11.041
    Tavares, F.O., Pinto, L.A.M., Bassetti, F.J., Vieira, M.F., Bergamasco, R., Vieira, A.M.S., 2017. Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(Ⅱ) removal from contaminated water. Environ. Technol. 38, 3145-3155. doi: 10.1080/09593330.2017.1290150
    Tesfaye, T., Gibril, M., Sithole, B., Ramjugernath, D., Chavan, R., Chunilall, V., Gounden, N., 2018. Valorisation of avocado seeds: extraction and characterisation of starch for textile applications. Clean Technol. Environ. Policy 20, 2135-2154. doi: 10.1007/s10098-018-1597-0
    Thakur, A., 2018. Health promoting phytochemicals in vegetables: a mini review. Int. J. Food Ferment. Technol. 8: 107-117. http://www.researchgate.net/publication/333816963_Health_Promoting_Phytochemicals_in_Vegetables_A_Mini_Review
    Tibolla, H., Pelissari, F.M., Menegalli, F.C., 2014. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci. Technol. 59, 1311-1318. doi: 10.1016/j.lwt.2014.04.011
    Tituaña Puente, A.C., 2019. Evaluación del uso potencial del colorante extraído de la semilla del aguacate (Persea americana) como producto funcional alimenticio. Universidad San Francisco de Quito, Quito, Ecuador.
    Tommasi, E., Cravotto, G., Galletti, P., Grillo, G., Mazzotti, M., Sacchetti, G., Samorì, C., Tabasso, S., Tacchini, M., Tagliavini, E., 2017. Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain. Chem. Eng. 5, 8316-8322.
    Tonoli, G.H.D., Teixeira, E.M., Corrêa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-Da-silva, M.A., Mattoso, L.H.C., 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr. Polym. 89, 80-88. doi: 10.1016/j.carbpol.2012.02.052
    Torres-Valenzuela, L.S., Ballesteros-Gomez, A., Rubio, S., 2020. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 12, 83-100. doi: 10.1007/s12393-019-09206-y
    Trache, D., Hussin, M.H., Hui Chuin, C.T., Sabar, S., Fazita, M.R., Taiwo, O.F., Hassan, T.M., Haafiz, M.K., 2016. Microcrystalline cellulose: isolation, characterization and bio-composites application-a review. Int. J. Biol. Macromol. 93, 789-804. doi: 10.1016/j.ijbiomac.2016.09.056
    Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., 2019. Microbial Genomics in Sustainable Agroecosystems. Singapore: Springer Singapore. http://www.researchgate.net/publication/333161345_Microbial_Genomics_in_Sustainable_Agroecosystems
    Tripoli, E., Guardia, M.L., Giammanco, S., Majo, D.D., Giammanco, M., 2007. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem. 104, 466-479. doi: 10.1016/j.foodchem.2006.11.054
    Tursi, A., 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6, 962-979. doi: 10.18331/BRJ2019.6.2.3
    Tuyen, P.T., Xuan, T.D., Khan, g D.T., Ahmad, A., Quan, N.V., Tu Anh, T.T., Anh, H., Minh, T.N., 2017. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata sieb. et zucc. Antioxidants 6, 31. doi: 10.3390/antiox6020031
    van Osch, D., Dietz, C.H.J.T., van Spronsen, J., Kroon, M.C., Gallucci, F., van Sint Annaland, M., Tuinier, R., 2019. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain. Chem. Eng. 7, 2933-2942. doi: 10.1021/acssuschemeng.8b03520
    van Osch, D.J., Parmentier, D., Dietz, C.H., van den Bruinhorst, A., Tuinier, R., Kroon, M.C., 2016. Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem. Commun. 52, 11987-11990. doi: 10.1039/C6CC06105B
    Vargas, D.C., Alvarez, M.B., Hidrobo Portilla, A., van Geem, K.M., Almeida Streitwieser, D., 2016. Kinetic study of the thermal and catalytic cracking of waste motor oil to diesel-like fuels. Energy Fuels 30, 9712-9720. doi: 10.1021/acs.energyfuels.6b01868
    Vázquez-Sánchez, K., Martinez-Saez, N., Rebollo-Hernanz, M., del Castillo, M.D., Gaytán-Martínez, M., Campos-Vega, R., 2018. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee Arabica L. ) grounds. Food Chem. 261, 253-259. doi: 10.1016/j.foodchem.2018.04.064
    Verma, H., Kapoor, A., 2020. Agronanotechnology: an Agricultural Paradigm. Mauritius: Springer. http://www.researchgate.net/publication/342004026_Agronanotechnology_an_agricultural_paradigm
    Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D.G., Santas, P., Santas, R., Corleti, V., 2007. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98, 296-301. doi: 10.1016/j.biortech.2006.01.007
    Vicepresidencia de la República del Ecuador, 2016. Políticas Industriales del Ecuador 2016-2025. Quito, Ecuador. Available at: http://servicios.produccion.gob.ec/siipro/downloads/temporales/1_Pol%C3%ADtica%20Industrial_MIPRO%202016-2025.pdf.
    Victor, M.M., David, J.M., Cortez, M.V.M., Leite, J.L., Silva, G.S.B., 2020. A high-yield process for extraction of hesperidin from orange (Citrus sinensis L. osbeck) peels waste, and its transformation to diosmetin, a valuable and bioactive flavonoid. Waste Biomass Valorization, 1-8. http://www.researchgate.net/publication/339538564_A_High-Yield_Process_for_Extraction_of_Hesperidin_from_Orange_Citrus_sinensis_L_osbeck_Peels_Waste_and_Its_Transformation_to_Diosmetin_A_Valuable_and_Bioactive_Flavonoid
    Voisin, H., Bergström, L., Liu, P., Mathew, A., 2017. Nanocellulose-based materials for water purification. Nanomaterials 7, 57. doi: 10.3390/nano7030057
    Vriesmann, L.C., de Mello Castanho Amboni, R.D., de Oliveira Petkowicz, C.L., 2011. Cacao pod husks (Theobroma cacao L. ): composition and hot-water-soluble pectins. Ind. Crop. Prod. 34, 1173-1181. doi: 10.1016/j.indcrop.2011.04.004
    Vriesmann, L.C., Teófilo, R.F., Lúcia de Oliveira Petkowicz, C., 2012. Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L. ) with citric acid. LWT49, 108-116. doi: 10.1016/j.lwt.2012.04.018
    Walsh, P., de Jong, E., Higson, A., Wellisch, M., 2012. Bio-based chemicals: value added products from biorefineries. IEA Bioenergy, 1-28. http://www.researchgate.net/publication/262048753_Biobased_chemicals__Value_added_products_from_biorefineries
    Wang, W., Bostic, T.R., Gu, L.W., 2010. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 122, 1193-1198. doi: 10.1016/j.foodchem.2010.03.114
    Wei, Y., Zhang, Y.S., Gao, X.L., Ma, Z., Wang, X.J., Gao, C.J., 2018. Multilayered graphene oxide membranes for water treatment: a review. Carbon 139, 964-981. doi: 10.1016/j.carbon.2018.07.040
    Wertz, J.L., Deleu, M., Coppée, S., Richel, A., 2017. Hemicelluloses and Lignin in Biorefineries. Boca Raton: CRC Press.
    Wientarsih, I., Madyastuti, R., Prasetyo, B.F., Aldobrata, A., 2012. Anti lithiasis activity of avocado (Persea americana Mill) leaves extract in white male rats. HAYATI J. Biosci. 19, 49-52. doi: 10.4308/hjb.19.1.49
    Williamson, E.M., Liu, X.M., Izzo, A.A., 2020. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 177, 1227-1240. doi: 10.1111/bph.14943
    Witzler, M., Alzagameem, A., Bergs, M., Khaldi-Hansen, B.E., Klein, S.E., Hielscher, D., Kamm, B., Kreyenschmidt, J., Tobiasch, E., Schulze, M., 2018. Lignin-derived biomaterials for drug release and tissue engineering. Molecules 23, 1885. doi: 10.3390/molecules23081885
    Wu, L.L., Manukyan, L., Mantas, A., Mihranyan, A., 2019. Nanocellulose-based nanoporous filter paper for virus removal filtration of human intravenous immunoglobulin. ACS Appl. Nano Mater. 2, 6352-6359. doi: 10.1021/acsanm.9b01351
    Wuana, R.A., Sha'Ato, R., Iorhen, S., 2016. Preparation, characterization, and evaluation of Moringa oleifera pod husk adsorbents for aqueous phase removal of norfloxacin. Desalination Water Treat. 57, 11904-11916. doi: 10.1080/19443994.2015.1046150
    Xu, G.C., Ding, J.C., Han, R.Z., Dong, J.J., Ni, Y., 2016. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 203, 364-369. doi: 10.1016/j.biortech.2015.11.002
    Yang, J.B., Ren, J., Wang, A.G., 2018. Isolation, characterization, and hepatoprotective activities of terpenes from the gum resin of Boswellia carterii Birdw. Phytochem. Lett. 23, 73-77. doi: 10.1016/j.phytol.2017.10.005
    Yapo, B.M., Besson, V., Koubala, B.B., Koffi, K.L., 2013. Adding value to cacao pod husks as a potential antioxidant-dietary fiber source. Am. J. Food Nutr. 1, 38-46. http://www.researchgate.net/publication/259978479_Adding_Value_to_Cacao_Pod_Husks_as_a_Potential_Antioxidant-Dietary_Fiber_Source
    Yoo, D.E., Jeong, K.M., Han, S.Y., Kim, E.M., Jin, Y., Lee, J., 2018. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 255, 357-364. doi: 10.1016/j.foodchem.2018.02.096
    Zailuddin, N.L.I., Husseinsyah, S., Hahary, F.N., Ismail, H., 2017. Characterization and properties of treated oil palm empty fruit bunch regenerated cellulose biocomposite films with butyl methacrylate using ionic liquid. Polym. - Plast. Technol. Eng. 56, 109-116. doi: 10.1080/03602559.2016.1146902
    Zainal-Abidin, M.H., Hayyan, M., Hayyan, A., Jayakumar, N.S., 2017. New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal. Chimica Acta 979, 1-23. doi: 10.1016/j.aca.2017.05.012
    Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F., 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108-7146. doi: 10.1039/c2cs35178a
    Zhang, Q., Li, Q., Young, T.M., Harper, D.P., Wang, S., 2019. A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter. ACS Sustain. Chem. Eng. 7, 8706-8714. doi: 10.1021/acssuschemeng.9b00605
    Zhao, X.B., Liu, D.H., 2019. Multi-products co-production improves the economic feasibility of cellulosic ethanol: a case of Formiline pretreatment-based biorefining. Appl. Energy 250, 229-244. doi: 10.1016/j.apenergy.2019.05.045
    Zhao, X.B., Zhang, L.H., Liu, D.H., 2012. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod. Bioref. 6, 465-482. doi: 10.1002/bbb.1331
    Zhu, Y., Plaza, N., Kojima, Y., Yoshida, M., Zhang, J.W., Jellison, J., Pingali, S.V., O'Neill, H., Goodell, B., 2020. Nanostructural analysis of enzymatic and non-enzymatic brown rot fungal deconstruction of the lignocellulose cell wall. Front. Microbiol. 11, 1389. doi: 10.3389/fmicb.2020.01389
    Živković, J., Šavikin, K., Janković, T., Ćujić, N., Menković, N., 2018. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 194, 40-47. doi: 10.1016/j.seppur.2017.11.032
    Zulkefli, S., Abdulmalek, E., Abdul Rahman, M.B., 2017. Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew. Energy 107, 36-41. doi: 10.1016/j.renene.2017.01.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (1125) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return