Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Lu Zhang, Zehua Chen, Haoran Dong, Shuai Fu, Lan Ma, Xiaojun Yang. Wood Plastic Composites Based Wood Wall's Structure and Thermal Insulation Performance[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 65-74. doi: 10.1016/j.jobab.2021.01.005
Citation: Lu Zhang, Zehua Chen, Haoran Dong, Shuai Fu, Lan Ma, Xiaojun Yang. Wood Plastic Composites Based Wood Wall's Structure and Thermal Insulation Performance[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 65-74. doi: 10.1016/j.jobab.2021.01.005

Wood Plastic Composites Based Wood Wall's Structure and Thermal Insulation Performance

doi: 10.1016/j.jobab.2021.01.005
More Information
  • Corresponding author: yxj5460@163.com (X. Yang)
  • Received Date: 2020-07-12
  • Accepted Date: 2020-10-13
  • Rev Recd Date: 2020-09-26
  • Available Online: 2021-02-01
  • Publish Date: 2021-01-01
  • In order to solve the problem of poor thermal insulation in the current wood-plastic building, two kinds of structural wood wall integrated with wood plastic composite (WPC) are designed, and the thermal insulation performances of the walls are studied. The results show that the WPC integrated wall with frame-shear structure has a good stability, and the excellent performance of the WPC can be fully realized. Wall studs and wall panels are important factors affecting the thermal performance of the walls. Wood plastic materials can meet the thermal performance requirements of the walls. The single-layer frame walls and double-layer frame walls integrated with the WPC both have a good thermal performance. According to 'Design Standard for Energy Efficiency of Public Buildings (GB 50189-2015)', the heat transfer coefficient of the single-layer frame wall integrated with 20 mm thick WPC wall boards and WPC wall studs is 0.414 W/(m2·K), which can meet the standard of wall thermal level Ⅱt and is suitable for cold areas. The heat transfer coefficient of the double-layer frame wall integrated with 50 mm thick WPC wall panel and WPC wall studs is 0.207 W/(m2·K), which can meet the standard of wall thermal level Ⅰt and is suitable for severe cold areas.

     

  • loading
  • Ashori, A. , 2008. Wood-plastic composites as promising green-composites for automotive industries. Bioresour. Technol. 99, 4661-4667. doi: 10.1016/j.biortech.2007.09.043
    Ashrafi, M. , Vaziri, A. , Nayeb-Hashemi, H. , 2011. Effect of processing variables and fiber reinforcement on the mechanical properties of wood plastic composites. J. Reinf. Plast. Compos. 30, 1939-1945. doi: 10.1177/0731684411431120
    Bhaskar, J. , Haq, S. , Yadaw, S. B. , 2012. Evaluation and testing of mechanical properties of wood plastic composite. J. Thermoplast. Compos. Mater. 25, 391-401. doi: 10.1177/0892705711406158
    Brandner, R. , Flatscher, G. , Ringhofer, A. , Schickhofer, G. , Thiel, A. , 2016. Cross laminated timber (CLT): overview and development. Eur. J. Wood Wood Prod. 74, 331-351. doi: 10.1007/s00107-015-0999-5
    Butylina, S. , Martikka, O. , Kärki, T. , 2011. Physical and mechanical properties of wood-polypropylene compos/ites made with virgin and/or recycled polypropylene. Polym. -Plast. Technol. Eng. 50, 1040-1046. doi: 10.1080/03602559.2011.557823
    Gardner, D. J. , Han, Y. , Wang, L. , 2015. Wood: plastic composite technology. Curr. For. Rep. 1, 139-150.
    Herrera, J. P. , Bedoya-Ruiz, D. , Hurtado, J. E. , 2018. Seismic behavior of recycled plastic lumber walls: an experimental and analytical research. Eng. Struct. 177, 566-578. doi: 10.1016/j.engstruct.2018.10.006
    Keskisaari, A. , Kärki, T. , 2018. The use of waste materials in wood-plastic composites and their impact on the profitability of the product. Resour. Conserv. Recycl. 134, 257-261. doi: 10.1016/j.resconrec.2018.03.023
    Li, Y. L. , Li, Y. Q. , Shen, Z. Y. , 2016. Investigation on flexural strength of cold-formed thin-walled steel beams with built-up box section. Thin-Walled Struct. 107, 66-79. doi: 10.1016/j.tws.2016.05.026
    Liu, B. , Liu, J. Z. , Liu, T. , Li, Y. , Ye, N. B. , Wang, Q. W. , 2019. Effect of additives with different electromagnetic spectrum responses on weather resistance of PVC wood plastic products. Synth. Mater. Aging Appl. 48, 10-14. http://en.cnki.com.cn/Article_en/CJFDTotal-HOCE201902003.htm
    Lu, Y. , Zhou, T. H. , Li, W. C. , Wu, H. H. , 2017. Experimental investigation and a novel direct strength method for cold-formed built-up I-section columns. Thin - Walled Struct. 112, 125-139. doi: 10.1016/j.tws.2016.12.011
    Machado, J. S. , Santos, S. , Pinho, F. F. S. , Luís, F. , Alves, A. , Simões, R. , Rodrigues, J. C. , 2016. Impact of high moisture conditions on the serviceability performance of wood plastic composite decks. Mater. Des. 103, 122-131. doi: 10.1016/j.matdes.2016.04.030
    Misawa, F., Hirota, K., 2008. An education program "Building Pathology for Timber Architecture". In: 10th World Conference on Timber Engineering, 1, pp. 512–519.
    Petchwattana, N. , Covavisaruch, S. , 2014. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly(lactic acid) and rubber wood sawdust (Hevea brasiliensis). J. Bionic Eng. 11, 630-637. doi: 10.1016/S1672-6529(14)60074-3
    Puettmann, M. E. , Wilson, J. B. , 2005. Life-cycle analysis of wood products: cradle-to-gate LCI of residential wood building materials. Wood Fiber Sci. 37, 18-29. http://www.researchgate.net/publication/298917851_Life-cycle_analysis_of_wood_products_Cradle-to-gate_LCI_of_residential_wood_building_materials
    Ramage, M. H. , Burridge, H. , Busse-Wicher, M. , Fereday, G. , Reynolds, T. , Shah, D. U. , Wu, G. L. , Yu, L. , Fleming, P. , Densley-Tingley, D. , Allwood, J. , Dupree, P. , Linden, P. F. , Scherman, O. , 2017. The wood from the trees: the use of timber in construction. Renew. Sustain. Energy Rev. 68, 333-359. doi: 10.1016/j.rser.2016.09.107
    Segerholm, B. K. , Ibach, R. E. , Westin, M. , 2012. Moisture sorption, biological durability, and mechanical performance of WPC containing modified wood and polylactates. BioResources 7, 4575-4585. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=88974141&site=ehost-live
    Smith, I., Snow, M., Asiz, A., 2008. Failure Analysis of Engineering Wood Products. Fracture of Nano and Engineering Materials and Structures. Dordrecht: Springer Netherlands, pp. 1193–1194.
    Takino, A. , Shimokawa, C. , Ishiyama, H. , Nakano, R. , 2018. Experimental study on lateral performance of shear wall of modern timber architecture combined with brace and plaster using wood lath. J. Struct. Constr. Eng. Trans. AIJ 83, 1477-1485. doi: 10.3130/aijs.83.1477
    Yang, X. , Ma, L. , Zhao, Q. , Yu, Y. , 2018. Enduring performance of self-tapping screw connection in wood members and WPC members. Wood Res. 63, 833-842. http://www.researchgate.net/publication/329247049_Enduring_performance_of_self-tapping_screw_connection_in_wood_members_and_WPC_members
    Yang, X. J. , Tang, X. L. , Ma, L. , Sun, Y. F. , 2019. Sound insulation performance of structural wood wall integrated with wood plastic composite. J. Bioresour. Bioprod. 4, 111-118. http://www.sciencedirect.com/science/article/pii/S2369969820300256?utm_source=TrendMD&utm_medium=cpc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (587) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return