Volume 6 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Bricard Mbituyimana, Lin Mao, Sanming Hu, Muhammad Wajid Ullah, Kun Chen, Lina Fu, Weiwei Zhao, Zhijun Shi, Guang Yang. Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 129-141. doi: 10.1016/j.jobab.2021.02.003
Citation: Bricard Mbituyimana, Lin Mao, Sanming Hu, Muhammad Wajid Ullah, Kun Chen, Lina Fu, Weiwei Zhao, Zhijun Shi, Guang Yang. Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment[J]. Journal of Bioresources and Bioproducts, 2021, 6(2): 129-141. doi: 10.1016/j.jobab.2021.02.003

Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment

doi: 10.1016/j.jobab.2021.02.003
More Information
  • Corresponding author: E-mail address: shizhijun@hust.edu.cn (Zhijun Shi); E-mail address: yang_sunny@yahoo.com (Guang Yang)
  • Received Date: 2020-08-19
  • Accepted Date: 2020-10-19
  • Rev Recd Date: 2020-10-12
  • Available Online: 2021-02-04
  • Publish Date: 2021-05-01
  • Glycolic acid (GA), as an anti-aging skincare ingredient, plays a pivotal role in anti-aging treatment. However, its benefits could be overshadowed due to its side effects including skin burning and irritation when overused. Bacterial cellulose (BC) is a highly pure form of cellulose, biosynthesized in the form of a swollen membrane by several kinds of bacteria that was demonstrated to modulate the release of model drugs owing to its porous and 3D fibrous network structure, and glycerol (GL), as a plasticizer, could enhance the controlled drug delivery. Herein, we report a topical controlled drug delivery system based on BC membrane, GA and GL for controlling sustainable release of GA to reduce its side effects on the skin, while maintaining its prolonged and maximum therapeutic effect. The results showed that the incorporation of GL increased the malleability and flexibility of BC/GA/GL membrane, as compared with BC/GA membrane. In addition, the GL enhanced the control of the GA delivery, as evidenced by a higher swelling capacity and thereby a slower release of the GA from BC/GA/GL membrane. More importantly, in vitro study indicated that both BC/GA and BC/GA/GL membranes could effectively stimulate endogenous collagen synthesis in NIH3T3 cells owing to the release of GA, and that BC/GA/GL membrane is more conducive to a long-term cell adhesion, spreading, and proliferation of NIH3T3 and HaCaT cells due to its lower and sustainable release of GA than BC/GA membrane. This study suggests the BC/GL/GA composite membrane holds great promise as an appealing platform to control the release of GA to greatly promote renewal of skin cells for effective anti-aging treatment.

     

  • 1 These authors contributed equally to this work.
  • loading
  • Abdel-Daim, M., Funasaka, Y., Kamo, T., Ooe, M., Matsunaka, H., Yanagita, E., Itoh, T., Nishigori, C., 2010. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation. J. Dermatol. Sci. 60, 21–28. doi: 10.1016/j.jdermsci.2010.08.002
    Almeida, I.F., Pereira, T., Silva, N.H.C.S., Gomes, F.P., Silvestre, A.J.D., Freire, C.S.R., Sousa Lobo, J.M., Costa, P.C., 2014. Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 86, 332–336. doi: 10.1016/j.ejpb.2013.08.008
    Augimeri, R.V., Varley, A.J., Strap, J.L., 2015. Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing proteobacteria. Front. Microbiol. 6, 1282. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646962/
    Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P., 2006. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149. doi: 10.1016/j.biomaterials.2005.10.026
    Badshah, M., Ullah, H., Khan, A.R., Khan, S., Park, J.K., Khan, T., 2018. Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol. 113, 526–533. doi: 10.1016/j.ijbiomac.2018.02.135
    Bernstein, E.F., Lee, J., Brown, D.B., Yu, R., van Scott, E., 2001. Glycolic acid treatment increases type I collagen mRNA and hyaluronic acid content of human skin. Dermatol. Surg. 27, 429–433. http://europepmc.org/abstract/MED/11359487
    Chawla, P.R., Bajaj, I.B., Survase, S.A., Singhal, R.S., 2009. Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47, 107–124. http://www.cabdirect.org/abstracts/20093164893.html
    Cheng, H.Y., Mao, L., Xu, X., Zeng, Y., Lan, D.N., Hu, H., Wu, X., You, H.H., Yang, X., Li, R., Zhu, Z.H., 2015. The bifunctional regulation of interconnected Zn-incorporated ZrO2 nanoarrays in antibiosis and osteogenesis. Biomater. Sci. 3, 665–680. doi: 10.1039/C4BM00263F
    Cielecka, I., Szustak, M., Kalinowska, H., Gendaszewska-Darmach, E., Ryngajłło, M., Maniukiewicz, W., Bielecki, S., 2019. Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 26, 5409–5426. doi: 10.1007/s10570-019-02501-1
    Du, R.P., Zhao, F.K., Peng, Q., Zhou, Z.J., Han, Y., 2018. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 194, 200–207. doi: 10.1016/j.carbpol.2018.04.041
    Fu, L.N., Zhang, J., Yang, G., 2013. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 92, 1432–1442. doi: 10.1016/j.carbpol.2012.10.071
    Gao, C., Wan, Y.Z., Yang, C.X., Dai, K.R., Tang, T.T., Luo, H.L., Wang, J.H., 2011. Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J. Porous Mater. 18, 139–145. doi: 10.1007/s10934-010-9364-6
    Green, B.A., Yu, R.J., van Scott, E.J., 2009. Clinical and cosmeceutical uses of hydroxyacids. Clin. Dermatol. 27, 495–501. doi: 10.1016/j.clindermatol.2009.06.023
    Hashim, P., 2014. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast. Pak. J. Pharm. Sci. 27, 233–237. http://europepmc.org/abstract/MED/24577907?source=rss
    Huang, L., Chen, X.L., Nguyen, T.X., Tang, H.R., Zhang, L.M., Yang, G., 2013. Nano-cellulose 3D-networks as controlled-release drug carriers. J. Mater. Chem. B1, 2976. doi: 10.1039/c3tb20149j
    Hung, S.J., Tang, S.C., Liao, P.Y., Ge, J.S., Hsiao, Y.P., Yang, J.H., 2017. Photoprotective potential of glycolic acid by reducing NLRC4 and AIM2 inflammasome complex proteins in UVB radiation-induced normal human epidermal keratinocytes and mice. DNA Cell Biol. 36, 177–187. doi: 10.1089/dna.2016.3471
    Hwang, E., Lee, T.H., Park, S.Y., Yi, T.H., Kim, S.Y., 2014. Enzyme-modified Panax ginseng inhibits UVB-induced skin aging through the regulation of procollagen type I and MMP-1 expression. Food Funct. 5, 265–274. doi: 10.1039/C3FO60418G
    Jasim, A., Ullah, M.W., Shi, Z.J., Lin, X., Yang, G., 2017. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr. Polym. 163, 62–69. doi: 10.1016/j.carbpol.2017.01.056
    Jipa, I.M., Stoica-Guzun, A., Stroescu, M., 2012. Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT47, 400–406. doi: 10.1016/j.lwt.2012.01.039
    Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., Saravanakumar, S.S., 2019. Isolation and characterization of cellulose fibers from Thespesia populnea barks: a study on physicochemical and structural properties. Int. J. Biol. Macromol. 129, 396–406. doi: 10.1016/j.ijbiomac.2019.02.044
    Khunger, N., Sarkar, R., Jain, R.K., 2004. Tretinoin peels versus glycolic acid peels in the treatment of Melasma in dark-skinned patients. Dermatol. Surg. 30, 756–760. doi: 10.1111/j.1524-4725.2004.30212.x
    Kim, M.S., Song, H.J., Lee, S.H., Lee, C.K., 2014. Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J. Cosmet. Dermatol. 13, 44–51. doi: 10.1111/jocd.12073
    Kim, S.J., Won, Y.H., 1998. The effect of glycolic acid on cultured human skin fibroblasts: cell proliferative effect and increased collagen synthesis. J. Dermatol. 25, 85–89. doi: 10.1111/j.1346-8138.1998.tb02355.x/abstract
    Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T., 2012. Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm. 82, 308–315. doi: 10.1016/j.ejpb.2012.06.011
    Kontochristopoulos, G., Platsidaki, E., 2017. Chemical peels in active acne and acne scars. Clin. Dermatol. 35, 179–182. doi: 10.1016/j.clindermatol.2016.10.011
    Kristjansson, R.P., Oddsson, A., Helgason, H., Sveinbjornsson, G., Arnadottir, G.A., Jensson, B.O., Jonasdottir, A., Jonasdottir, A., Bragi Walters, G., Sulem, G., Oskarsdottir, A., Benonisdottir, S., Davidsson, O.B., Masson, G., Th Magnusson, O., Holm, H., Sigurdardottir, O., Jonsdottir, I., Eyjolfsson, G.I., Olafsson, I., Gudbjartsson, D.F., Thorsteinsdottir, U., Sulem, P., Stefansson, K., 2016. Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase. Nat. Commun. 7, 1–8. http://www.nature.com/articles/ncomms10572
    Lamboni, L., Li, Y., Liu, J., Yang, G., 2016. Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromolecules 17, 3076–3084. doi: 10.1021/acs.biomac.6b00995
    Li, Y., Tian, Y., Zheng, W., Feng, Y., Huang, R., Shao, J., Tang, R., Wang, P., Jia, Y., Zhang, J., Zheng, W., Yang, G., Jiang, X., 2017. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small 13, 1700130. doi: 10.1002/smll.201700130
    Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M., Mohamad, R., 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7, 257–283. doi: 10.3390/nano7090257
    Moreira, S., Silva, N.B., Almeida-Lima, J., Rocha, H.A.O., Medeiros, S.R.B., Alves Jr., C., Gama Jr., F.M., 2009. BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol. Lett. 189, 235–241. doi: 10.1016/j.toxlet.2009.06.849
    Moritz, S., Wiegand, C., Wesarg, F., Hessler, N., Müller, F.A., Kralisch, D., Hipler, U.C., Fischer, D., 2014. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm. 471, 45–55. doi: 10.1016/j.ijpharm.2014.04.062
    Newman, N., Newman, A., Moy, L.S., Babapour, R., Harris, A.G., Moy, R.L., 1996. Clinical improvement of photoaged skin with 50% glycolic acid A double-blind vehicle-controlled study. Dermatol. Surg. 22, 455–460. http://europepmc.org/abstract/MED/8634809
    Okano, Y., Abe, Y., Masaki, H., Santhanam, U., Ichihashi, M., Funasaka, Y., 2003. Biological effects of glycolic acid on dermal matrix metabolism mediated by dermal fibroblasts and epidermal keratinocytes. Exp. Dermatol. 12, 57–63. doi: 10.1034/j.1600-0625.12.s2.9.x
    Okuda, M., Donahue, D.A., Kaufman, L.E., Avalos, J., Simion, F.A., Story, D.C., Sakaguchi, H., Fautz, R., Fuchs, A., 2011. Negligible penetration of incidental amounts of alpha-hydroxy acid from rinse-off personal care products in human skin using an in vitro static diffusion cell model. Toxicol. Vitro 25, 2041–2047. doi: 10.1016/j.tiv.2011.08.005
    Park, K.S., Kim, H.J., Kim, E.J., Nam, K.T., Oh, J.H., Song, C.W., Jung, H.K., Kim, D.J., Yun, Y.W., Kim, H.S., Chung, S.Y., Cho, D.H., Kim, B.Y., Hong, J.T., 2002. Effect of glycolic acid on UVB-induced skin damage and inflammation in Guinea pigs. Ski. Pharmacol. Physiol. 15, 236–245. doi: 10.1159/000065970
    Pértile, R.A.N., Moreira, S., Costa, R.M.G., Correia, A., Guardao, L., Gartner, F., Vilanova, M., Gama, M., 2012. Bacterial cellulose: long-term biocompatibility studies. J. Biomater. Sci. Polym. Ed. 23, 1339–1354. doi: 10.1163/092050611x581516
    Perugini, P., Genta, I., Pavanetto, F., Conti, B., Scalia, S., Baruffini, A., 2000. Study on glycolic acid delivery by liposomes and microspheres. Int. J. Pharm. 196, 51–61. doi: 10.1016/S0378-5173(99)00439-1
    Silva, N.H.C.S., Rodrigues, A.F., Almeida, I.F., Costa, P.C., Rosado, C., Neto, C.P., Silvestre, A.J.D., Freire, C.S.R., 2014. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr. Polym. 106, 264–269. doi: 10.1016/j.carbpol.2014.02.014
    Song, K.C., Chang, T.S., Lee, H., Kim, J., Park, J.H., Hwang, G.S., 2012. Processed Panax ginseng, Sun ginseng increases type I collagen by regulating MMP-1 and TIMP-1 expression in human dermal fibroblasts. J. Ginseng Res. 36, 61–67. doi: 10.5142/jgr.2012.36.1.61
    Susilowati, E., Kartini, I., Santosa, S.J., 2016. Effect of glycerol on mechanical and physical properties of silver-chitosan nanocomposite films. IOP Conf. Ser. 107, 012041. http://adsabs.harvard.edu/abs/2016MS%26E..107a2041S
    Tobin, D.J., 2016. Introduction to skin aging. J. Tissue Viability 26, 37–46.
    Trovatti, E., Freire, C.S.R., Pinto, P.C., Almeida, I.F., Costa, P., Silvestre, A.J.D., Neto, C.P., Rosado, C., 2012. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int. J. Pharm. 435, 83–87. doi: 10.1016/j.ijpharm.2012.01.002
    Trovatti, E., Silva, N.H., Duarte, I.F., Rosado, C.F., Almeida, I.F., Costa, P., Freire, C.S., Silvestre, A.J., Neto, C.P., 2011. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12, 4162–4168. doi: 10.1021/bm201303r
    Trüeb, R.M., 2007. Hair aging and anti-aging. Expert Rev. Dermatol. 2, 607–617. doi: 10.1586/17469872.2.5.607
    Verma, A., Pandey, J., Patel, R., Srivastava, S., 2018. Mechanistic aspect of iridium(Ⅲ) catalyzed oxidation of ethylene glycol by chloramine-T in aqueous acidic medium: a kinetic model. Int. J. Chem. Phys. Sci. 7, 62. doi: 10.33913/ss.v06i02a10
    Wan, Y.Z., Zhang, F.S., Li, C.Z., Xiong, G.Y., Zhu, Y., Luo, H.L., 2015. Facile and scalable production of three-dimensional spherical carbonized bacterial cellulose/graphene nanocomposites with a honeycomb-like surface pattern as potential superior absorbents. J. Mater. Chem. A3, 24389–24396. doi: 10.1039/C5TA07464A
    Yan, H.Q., Chen, X.Q., Feng, M.X., Shi, Z.F., Zhang, W., Wang, Y., Ke, C.R., Lin, Q., 2019. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloids Surf. B177, 112–120. doi: 10.1016/j.colsurfb.2019.01.057
    Ye, S., Jiang, L., Wu, J.M., Su, C., Huang, C.B., Liu, X.F., Shao, W., 2018. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 10, 5862–5870. doi: 10.1021/acsami.7b16680
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (914) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return