Citation: | Jingwen Shao, Yong Ni, Lifeng Yan. Oxidation of Furfural to Maleic Acid and Fumaric Acid in Deep Eutectic Solvent (DES) under Vanadium Pentoxide Catalysis[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 39-44. doi: 10.1016/j.jobab.2021.02.005 |
Furfural is an alternative feedstock and has been used for the production of maleic acid (MA) and fumaric acid (FA) by an oxidation process. Deep eutectic solvents (DESs) were used as the green solvents while sodium chlorate was used as an oxidant and vanadium pentoxide was used as the catalyst at 70–90 ℃ under atmospheric pressure. It was found that several acidic DESs are valid, such as acetic acid/choline chloride (AA/ChCl) and propionic acid/choline chloride (PA/ChCl), and AA/ChCl DES was selected as the solvent for the conversion. The optimal DES is AA/ChCl, and the effect of the amount of oxidant, time, and temperature on the yield of the MA and FA has been systematically studied, and the conversion of furfural can reach 100% while the yield of the MA and FA reached 66.5% under reaction temperature of 80 ℃ for 12 h, which provides a new green route to synthesis valuable monomers from furfural.
Abbott, A. P. , Boothby, D. , Capper, G. , Davies, D. L. , Rasheed, R. K. , 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142-9147. doi: 10.1021/ja048266j
|
Abbott, A. P. , Capper, G. , Davies, D. L. , Rasheed, R. K. , Tambyrajah, V. , 2003. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70-71.
|
Alonso-Fagúndez, N. , Agirrezabal-Telleria, I. , Arias, P. L. , Fierro, J. L. G. , Mariscal, R. , Granados, M. L. , 2014. Aqueous-phase catalytic oxidation of furfural with H2O2: high yield of maleic acid by using titanium silicalite-1. RSC Adv. 4, 54960-54972. doi: 10.1039/C4RA11563E
|
Araji, N. , Madjinza, D. D. , Chatel, G. , Moores, A. , Jérôme, F. , de Oliveira Vigier, K. , 2017. Synthesis of maleic and fumaric acids from furfural in the presence of betaine hydrochloride and hydrogen peroxide. Green Chem. 19, 98-101. doi: 10.1039/C6GC02620F
|
Badovskaya, L. A. , Povarova, L. V. , 2009. Oxidation of furans (Review). Chem. Heterocycl. Compd. 45, 1023-1034. doi: 10.1007/s10593-009-0390-8
|
Li, X. D. , Jia, P. , Wang, T. F. , 2016a. Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 6, 7621-7640. doi: 10.1021/acscatal.6b01838
|
Li, X. K. , Ho, B. , Lim, D. S. W. , Zhang, Y. G. , 2017. Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2. Green Chem. 19, 914-918. doi: 10.1039/C6GC03020C
|
Li, X. K. , Ho, B. , Zhang, Y. G. , 2016b. Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo-V-O catalysts. Green Chem. 18, 2976-2980. doi: 10.1039/C6GC00508J
|
Mao, L. Y. , Zhang, L. , Gao, N. B. , Li, A. M. , 2012. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour. Technol. 123, 324-331. doi: 10.1016/j.biortech.2012.07.058
|
Milas, N. A. , 1928. Catalytic oxidations in aqueous solutions. ii. The oxidation of primary alcohols. J. Am. Chem. Soc. 50, 493-499. doi: 10.1021/ja01389a037
|
Murthy, M. S. , Rajamani, K. , 1974. Kinetics of vapour phase oxidation of furfural on vanadium catalyst. Chem. Eng. Sci. 29, 601-609. doi: 10.1016/0009-2509(74)80071-0
|
Ni, Y. , Bi, Z. H. , Su, H. , Yan, L. F. , 2019. Deep eutectic solvent (DES) as both solvent and catalyst for oxidation of furfural to maleic acid and fumaric acid. Green Chem. 21, 1075-1079. doi: 10.1039/C8GC04022B
|
Ruß, C. , König, B. , 2012. Low melting mixtures in organic synthesis—An alternative to ionic liquids? Green Chem. 14, 2969. doi: 10.1039/c2gc36005e
|
Tachibana, Y. , Kimura, S. , Kasuya, K. I. , 2015. Synthesis and verification of biobased terephthalic acid from furfural. Sci. Rep. 5, 8249. doi: 10.1038/srep08249
|
Tang, X. , Zuo, M. , Li, Z. , Liu, H. , Xiong, C. , Zeng, X. , Sun, Y. , Hu, L. , Liu, S. , Lei, T. , Lin, L. , 2017. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSusChem 10, 2696-2706. doi: 10.1002/cssc.201700457
|
Zhang, Q. H. , de Oliveira Vigier, K. , Royer, S. , Jérôme, F. , 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108-7146. doi: 10.1039/c2cs35178a
|
Zhou, Z. X. , Du, G. C. , Hua, Z. Z. , Zhou, J. W. , Chen, J. , 2011. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour. Technol. 102, 9345-9349. doi: 10.1016/j.biortech.2011.07.120
|