Volume 6 Issue 4
Oct.  2021
Turn off MathJax
Article Contents
Dunchi Xiao, Xinzhu Jin, Yuanyuan Song, Yu Zhang, Xun Li, Fei Wang. Enzymatic Acylation of Proanthocyanidin Dimers from Acacia Mearnsii Bark: Effect on Lipophilic and Antioxidant Properties[J]. Journal of Bioresources and Bioproducts, 2021, 6(4): 359-366. doi: 10.1016/j.jobab.2021.03.001
Citation: Dunchi Xiao, Xinzhu Jin, Yuanyuan Song, Yu Zhang, Xun Li, Fei Wang. Enzymatic Acylation of Proanthocyanidin Dimers from Acacia Mearnsii Bark: Effect on Lipophilic and Antioxidant Properties[J]. Journal of Bioresources and Bioproducts, 2021, 6(4): 359-366. doi: 10.1016/j.jobab.2021.03.001

Enzymatic Acylation of Proanthocyanidin Dimers from Acacia Mearnsii Bark: Effect on Lipophilic and Antioxidant Properties

doi: 10.1016/j.jobab.2021.03.001
More Information
  • Corresponding author: E-mail address: hgwf@njfu.edu.cn (Fei Wang)
  • Received Date: 2020-09-15
  • Accepted Date: 2020-12-17
  • Rev Recd Date: 2020-12-09
  • Available Online: 2021-04-05
  • Publish Date: 2021-11-01
  • Proanthocyanin (PA) dimers isolated from Acacia mearnsii bark were enzymatically acylated with palmitic acid as the acyl donor by immobilized Candida antarctica lipase on acrylic resin (Novozym 435). The acylation reaction conditions were optimized by comparing the amount of enzyme, the temperature, the reaction solvents, initial water content, substrate molar ratios and reaction time. The highest acylation conversion of 96.53% was achieved under the follow conditions: PA dimers/palmitic acid at a molar ratio of 1꞉10 in tert-amyl alcohol; initial water content of 5% at 60 ℃ for 12 h with 30 g/L enzyme dosage. Introducing palmitic acid into PA dimers significantly improved both the lipophilicity and antioxidant properties. The 1-octanol/water partition coefficient of the PA dimers and their derivatives showed that the lipophilicity of the derivatives were 2.4 times higher than that of the PA dimers. The derivatives exhibited strong antioxidant scavenging capacities, approximately 1.6 times greater than the original dimers. This work is of great significance to expand the application of natural PA dimers in cosmetic and food industries and also lay a foundation for the high value-added utilization of A. mearnsii.


  • None.
    Declaration of Competing Interest
    Compliance with ethics requirements.
    This study does not contain any experiment involving human or animal subjects.
    Compliance with Ethical Standards.
  • loading
  • Azevedo, J., Fernandes, I., Faria, A., Oliveira, J., Fernandes, A., de Freitas, V., Mateus, N., 2010. Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem. 119, 518-523 doi: 10.1016/j.foodchem.2009.06.050
    Cao, S.L., Deng, X., Xu, P., Huang, Z.X., Zhou, J., Li, X.H., Zong, M.H., Lou, W.Y., 2017. Highly efficient enzymatic acylation of dihydromyricetin by the immobilized lipase with deep eutectic solvents as cosolvent. J. Agric. Food Chem. 65, 2084-2088 doi: 10.1021/acs.jafc.7b00011
    Chen, M., Yu, S., 2017. Lipophilized grape seed proanthocyanidin derivatives as novel antioxidants. J. Agric. Food Chem. 65, 1598-1605 doi: 10.1021/acs.jafc.6b05609
    Chen, X., Xiong, J., He, L.X., Zhang, Y., Li, X., Zhang, L.P., Wang, F., 2018. Effects of in vitro digestion on the content and biological activity of polyphenols from Acacia mearnsii bark. Molecules 23, 1804 doi: 10.3390/molecules23071804
    de Araújo, M.E.M.B., Franco, Y.E.M., Messias, M.C.F., Longato, G.B., Pamphile, J.A., Carvalho, P.D.O., 2017. Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Med. 83, 7-22 http://pdfs.semanticscholar.org/7428/f079456fd86e41242664cae40dd0ac561624.pdf
    Enaud, E., Humeau, C., Piffaut, B., Girardin, M., 2004. Enzymatic synthesis of new aromatic esters of phloridzin. J. Mol. Catal. B: Enzym. 27, 1-6 doi: 10.1016/j.molcatb.2003.08.002
    Gayot, S., Santarelli, X., Coulon, D., 2003. Modification of flavonoid using lipase in non-conventional media: effect of the water content. J. Biotechnol. 101, 29-36 doi: 10.1016/S0168-1656(02)00286-9
    Hong, S., Liu, S.B., 2016. Targeted acylation for all the hydroxyls of (+)-catechin and evaluation of their individual contribution to radical scavenging activity. Food Chem 197, 415-421 doi: 10.1016/j.foodchem.2015.10.134
    Laane, C., Boeren, S., Vos, K., Veeger, C., 2009. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 30, 81-87 http://eurekamag.com/pdf.php?pdf=006358345
    Liu, G.J., Zhou, M., Ye, F.X., Xiong, J., Jiang, P., Li, X., Zhang, Y., Wang, F., 2016. Study on the whitening and sunscreen effects of proanthocyanidins from Acacia mearnsii bark. J. For. Eng. 1, 42-47 http://en.cnki.com.cn/Article_en/CJFDTotal-LKKF201603008.htm
    Lu, L.C., Dong, Q.M., Yang, T., 2020. Improvement of reaction ability of mimosa tanninwith formaldehyde by photocatalysis. J. For. Eng. 5, 69-74
    Ma, X., Yan, R., Yu, S., Lu, Y., Li, Z., Lu, H., 2012. Enzymatic acylation of isoorientin and isovitexin from bamboo-leaf extracts with fatty acids and antiradical activity of the acylated derivatives. J. Agric. Food Chem. 60, 10844-10849 doi: 10.1021/jf303595e
    Oldoni, T.L., Melo, P.S., Massarioli, A.P., Moreno, I.A., Bezerra, R.M., Rosalen, P.L., da Silva, G.V., Nascimento, A.M., Alencar, S.M., 2016. Bioassay-guided isolation of proanthocyanidins with antioxidant activity from peanut (Arachis hypogaea) skin by combination of chromatography techniques. Food Chem. 192, 306-312 doi: 10.1016/j.foodchem.2015.07.004
    Omar, M.H., Mullen, W., Crozier, A., 2011. Identification of proanthocyanidin dimers and trimers, flavone C-Glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. J. Agric. Food Chem. 59, 1363-1369 doi: 10.1021/jf1032729
    Plaza, M., Pozzo, T., Liu, J., Gulshan Ara, K.Z., Turner, C., Nordberg Karlsson, E., 2014. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agric. Food Chem. 62, 3321-3333 doi: 10.1021/jf405570u
    Rauf, A., Imran, M., Abu-Izneid, T., Iahtisham, Ul-Haq, Patel, S., Pan, X., Naz, S., Sanches Silva, A., Saeed, F., Rasul Suleria, H.A., 2019. Proanthocyanidins: a comprehensive review. Biomed. Pharmacother. 116, 108999 doi: 10.1016/j.biopha.2019.108999
    Smeriglio, A., Barreca, D., Bellocco, E., Trombetta, D., 2017. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 174, 1244-1262 doi: 10.1111/bph.13630
    Viskupicova, J., Ondrejovicm, M., Sturdik, E., 2010. The potential and practical applications of acylated flavonoids. Pharmazie 64, 355-360 http://www.researchgate.net/profile/Jana_Viskupicova2/publication/26682407_The_potential_and_practical_applications_of_acylated_flavonoids/links/0046353181f8858346000000
    Xanthakis, E., Theodosiou, E., Magkouta, S., Stamatis, H., Loutrari, H., Roussos, C., Kolisis, F., 2010. Enzymatic transformation of flavonoids and terpenoids: structural and functional diversity of the novel derivatives. Pure Appl. Chem. 82, 1-16 doi: 10.1351/PAC-CON-09-01-19
    Xu, J., Qian, J.Q., Li, S.Q., 2014. Enzymatic acylation of isoorientin isolated from antioxidant of bamboo leaves with palmitic acid and antiradical activity of the acylated derivatives. Eur. Food Res. Technol. 239, 661-667 doi: 10.1007/s00217-014-2262-4
    Yang, L., Xian, D., Xiong, X., Lai, R., Song, J., Zhong, J., 2018. Proanthocyanidins against oxidative stress: from molecular mechanisms to clinical applications. Biomed. Res. Int. 3, 8584136
    Yang, T.K., Rebsdorf, M., Engelrud, U., Xu, X.B., 2005. Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system. J. Agric. Food Chem. 53, 1475-1481 doi: 10.1021/jf048405g
    Yang, W., Kortesniemi, M., Yang, B., Zheng, J., 2018. Enzymatic acylation of anthocyanins isolated from alpine bearberry (Arctostaphylos alpina) and lipophilic properties, thermostability, and antioxidant capacity of the derivatives. J. Agric. Food Chem. 66, 2909-2916 doi: 10.1021/acs.jafc.7b05924
    Zhang, L., Yang, S.M., Xu, C.D., Wang, F., Hu, X.A., 2017. Research on the mass concentration and antioxidation of proanthocyanidins in different tissues from Phyllanthus emblica Linn. J. For. Eng. 2, 57-62 http://en.cnki.com.cn/Article_en/CJFDTOTAL-LKKF201704010.htm
    Zhou, M., Liu, G.J., He, L.X., Wang, F., 2017. Preparation and antioxidant activity of proanthocyanidins dimers from Acacia mearnsii de willd. Chem. Ind. For. Prod. 37, 135-140 http://www.researchgate.net/publication/317933460_Preparation_and_Antioxidant_Activity_of_Proanthocyanidins_Dimers_from_Acacia_mearnsii_De_Willd
    Zhu, S., Li, Y., Li, Z., Ma, C.Y., Lou, Z.X., Yokoyama, W., Wang, H.X., 2014. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives. Food Res. Int. 56, 279-286 doi: 10.1016/j.foodres.2013.10.026
    Zhu, S., Li, Y., Ma, C.Y., Lou, Z.X., Chen, S.W., Dai, J., Wang, H.X., 2013. Optimization of lipase-catalyzed synthesis of acetylated EGCG by response surface methodology. J. Mol. Catal. B: Enzym. 97, 87-94 doi: 10.1016/j.molcatb.2013.08.002
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (107) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint