Turn off MathJax
Article Contents
Joseph Jjagwe, Peter Wilberforce Olupot, Emmanuel Menya, Herbert Mpagi Kalibbala. Synthesis and application of Granular activated carbon from biomass waste materials for water treatment: A review[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.03.003
Citation: Joseph Jjagwe, Peter Wilberforce Olupot, Emmanuel Menya, Herbert Mpagi Kalibbala. Synthesis and application of Granular activated carbon from biomass waste materials for water treatment: A review[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.03.003

Synthesis and application of Granular activated carbon from biomass waste materials for water treatment: A review

doi: 10.1016/j.jobab.2021.03.003
More Information
  • Corresponding author: Corresponding author. Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala-Uganda
    Email address: polupot@cedat.mak.ac.ug (Peter Wilberforce Olupot)
  • Received Date: 2020-12-29
  • Accepted Date: 2021-02-22
  • Rev Recd Date: 2021-02-15
  • Available Online: 2021-03-19
  • There is an increased global demand for activated carbon (AC) in application of water treatment and purification. Water pollutants that have exhibited a greater removal efficiency by AC included but not limited to heavy metals, pharmaceuticals, pesticides, natural organic matter, disinfection by-products, and microplastics. Granular activated carbon (GAC) is mostly used in aqueous solutions and adsorption columns for water treatment. Commercial AC is not only costly, but also obtained from non-renewable sources. This has prompted the search for alternative renewable materials for AC production. Biomass wastes present a great potential of such materials because of their availability and carbonaceous nature. This in turn can reduce on the adverse environmental effects caused by poor disposal of these wastes. The challenges associated with biomass waste based GAC are their low strength and attrition resistance which make them easily disintegrate under aqueous phase. This paper provides a comprehensive review on recent advances in production of biomass waste based GAC for water treatment and highlights future research directions. Production parameters such as granulation conditions, use of binders, carbonization, activation methods, and their effect on textural properties are discussed. Factors influencing the adsorption capacities of the derived GACs, adsorption models, adsorption mechanisms, and their regeneration potentials are reviewed. The literature reveals that biomass waste materials can produce GAC for use in water treatment with possibilities of being regenerated. Nonetheless, there is a need to explore 1) the effect of preparation pathways on the adsorptive properties of biomass derived GAC, 2) sustainable production of biomass derived GAC based on life cycle assessment and techno-economic analysis, and 3) adsorption mechanisms of GAC for removal of contaminants of emerging concerns such as microplastics and unregulated disinfection by-products.

     

  • loading
  • [1]
    Abatal, M., Anastopoulos, I., Giannakoudakis, D.A., Olguin, M.T., 2020. Carbonaceous material obtained from bark biomass as adsorbent of phenolic compounds from aqueous solutions. J. Environ. Chem. Eng. 8, 103784. doi: 10.1016/j.jece.2020.103784
    [2]
    Abo El Naga, A.O., El Saied, M., Shaban, S.A., El Kady, F.Y., 2019. Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. J. Mol. Liq. 285, 9-19. doi: 10.1016/j.molliq.2019.04.062
    [3]
    Acevedo-Páez, J.C., Durán, J.M., Posso, F., Arenas, E., 2020. Hydrogen production from palm kernel shell: kinetic modeling and simulation. Int. J. Hydrog. Energy45, 25689-25697. doi: 10.1016/j.ijhydene.2019.10.146
    [4]
    Aguayo-Villarreal, I.A., Bonilla-Petriciolet, A., Muñiz-Valencia, R., 2017. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Liq. 230, 686-695. doi: 10.1016/j.molliq.2017.01.039
    [5]
    Ahmad, F., Daud, W.M.A.W., Ahmad, M.A., Radzi, R., Azmi, A.A., 2013. The effects of CO2 activation, on porosity and surface functional groups of cocoa (Theobroma cacao)-Shell based activated carbon. J. Environ. Chem. Eng. 1, 378-388. doi: 10.1016/j.jece.2013.06.004
    [6]
    Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W.S., Thomaidis, N.S., Xu, J., 2017. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J. Hazard. Mater. 323, 274-298. doi: 10.1016/j.jhazmat.2016.04.045
    [7]
    Ahmed, M.J., Theydan, S.K., 2012. Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics. Powder Technol. 229, 237-245. doi: 10.1016/j.powtec.2012.06.043
    [8]
    Alharbi, N.S., Hu, B.W., Hayat, T., Rabah, S.O., Alsaedi, A., Zhuang, L., Wang, X.K., 2020. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front. Chem. Sci. Eng. 14, 1124-1135. doi: 10.1007/s11705-020-1923-z
    [9]
    Ali, P.A., Reza, M.M., Hossein, S.M., 2010. Removal of dissolved organic carbon by multi-walled carbon nanotubes, powdered activated carbon and granular activated carbon. Res. J. Chem. Environ. 14, 59-66. http://www.researchgate.net/publication/274952573_Removal_of_dissolved_organic_carbon_by_multi-walled_carbon_nanotubes_powdered_activated_carbon_and_granular_activated_carbon
    [10]
    Alslaibi, T.M., Abustan, I., Ahmad, M.A., Foul, A.A., 2013. A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. J. Chem. Technol. Biotechnol. 88, 1183-1190. doi: 10.1002/jctb.4028
    [11]
    Alves, A.A.D.A., Ruiz, G.L.D.O., Nonato, T.C.M., Müller, L.C., Sens, M.L., 2019. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply. Environ. Technol. 40, 1977-1987. doi: 10.1080/09593330.2018.1435731
    [12]
    Alves, J.L.F., da Silva, J.C.G., Mumbach, G.D., Domenico, M.D., da Silva Filho, V.F., de Sena, R.F., Machado, R.A.F., Marangoni, C., 2020. Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics. Renew. Energy 155, 1328-1338. doi: 10.1016/j.renene.2020.04.025
    [13]
    Amarasekara, A., Tanzim, F.S., Asmatulu, E., 2017. Briquetting and carbonization of naturally grown algae biomass for low-cost fuel and activated carbon production. Fuel 208, 612-617. doi: 10.1016/j.fuel.2017.07.034
    [14]
    An, Y., Fu, Q., Zhang, D., Wang, Y., Tang, Z., 2019. Performance evaluation of activated carbon with different pore sizes and functional groups for VOC adsorption by molecular simulation. Chemosphere 227, 9-16. doi: 10.1016/j.chemosphere.2019.04.011
    [15]
    An, Y., Tahmasebi, A., Zhao, X.H., Matamba, T., Yu, J.L., 2020. Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: enhanced production of phenol and hydrogen. Bioresour. Technol. 306, 123111. doi: 10.1016/j.biortech.2020.123111
    [16]
    Ao, W.Y., Fu, J., Mao, X., Kang, Q.H., Ran, C.M., Liu, Y., Zhang, H.D., Gao, Z.P., Li, J., Liu, G.Q., Dai, J.J., 2018. Microwave assisted preparation of activated carbon from biomass: a review. Renew. Sustain. Energy Rev. 92, 958-979. doi: 10.1016/j.rser.2018.04.051
    [17]
    Araga, R., Soni, S., Sharma, C.S., 2017. Fluoride adsorption from aqueous solution using activated carbon obtained from KOH-treated jamun (Syzygium cumini) seed. J. Environ. Chem. Eng. 5, 5608-5616. doi: 10.1016/j.jece.2017.10.023
    [18]
    Arami-Niya, A., Wan Daud, W.M.A., Mjalli, F.S., Abnisa, F., Shafeeyan, M.S., 2012. Production of microporous palm shell based activated carbon for methane adsorption: modeling and optimization using response surface methodology. Chem. Eng. Res. Des. 90, 776-784. doi: 10.1016/j.cherd.2011.10.001
    [19]
    Aransiola, E.F., Oyewusi, T.F., Osunbitan, J.A., Ogunjimi, L.A.O., 2019. Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Rep. 5, 909-918. doi: 10.1016/j.egyr.2019.07.011
    [20]
    Aworn, A., Thiravetyan, P., Nakbanpote, W., 2008. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores. J. Anal. Appl. Pyrolysis 82, 279-285. doi: 10.1016/j.jaap.2008.04.007
    [21]
    Aygün, A., Yenisoy-Karakaş, S., Duman, I., 2003. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 66, 189-195. doi: 10.1016/j.micromeso.2003.08.028
    [22]
    Baccar, R., Blánquez, P., Bouzid, J., Feki, M., Sarrà, M., 2010. Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chem. Eng. J. 165, 457-464. doi: 10.1016/j.cej.2010.09.033
    [23]
    Bae, W., Kim, J., Chung, J., 2014. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties. J. Air Waste Manag. Assoc. 64, 879-886. doi: 10.1080/10962247.2014.897272
    [24]
    Bandara, Y.W., Gamage, P., Gunarathne, D.S., 2020. Hot water washing of rice husk for ash removal: the effect of washing temperature, washing time and particle size. Renew. Energy 153, 646-652. doi: 10.1016/j.renene.2020.02.038
    [25]
    Başakçılardan Kabakcı, S., Baran, S.S., 2019. Hydrothermal carbonization of various lignocellulosics: fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Manag. 100, 259-268. doi: 10.1016/j.wasman.2019.09.021
    [26]
    Beltrame, K.K., Cazetta, A.L., de Souza, P.S.C., Spessato, L., Silva, T.L., Almeida, V.C., 2018. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf. 147, 64-71. doi: 10.1016/j.ecoenv.2017.08.034
    [27]
    Benabid, S., Streit, A.F.M., Benguerba, Y., Dotto, G.L., Erto, A., Ernst, B., 2019. Molecular modeling of anionic and cationic dyes adsorption on sludge derived activated carbon. J. Mol. Liq. 289, 111119. http://www.sciencedirect.com/science/article/pii/S0167732219321154
    [28]
    Benstoem, F., Becker, G., Firk, J., Kaless, M., Wuest, D., Pinnekamp, J., Kruse, A., 2018. Elimination of micropollutants by activated carbon produced from fibers taken from wastewater screenings using hydrothermal carbonization. J. Environ. Manag. 211, 278-286. doi: 10.1016/j.jenvman.2018.01.065
    [29]
    Bergna, D., Hu, T., Prokkola, H., Romar, H., Lassi, U., 2020. Effect of some process parameters on the main properties of activated carbon produced from peat in a lab-scale process. Waste Biomass Valorization 11, 2837-2848. doi: 10.1007/s12649-019-00584-2
    [30]
    Bhatnagar, A., Kaczala, F., Hogland, W., Marques, M., Paraskeva, C.A., Papadakis, V.G., Sillanpää, M., 2014. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control: a review. Environ. Sci. Pollut. Res. Int. 21, 268-298. doi: 10.1007/s11356-013-2135-6
    [31]
    Bhatnagar, A., Sillanpää, M., 2017. Removal of natural organic matter (NOM) and its constituents from water by adsorption: a review. Chemosphere 166, 497-510. doi: 10.1016/j.chemosphere.2016.09.098
    [32]
    Bhatnagar, A., Tolvanen, H., Konttinen, J., 2020. Potential of stepwise pyrolysis for on-site treatment of agro-residues and enrichment of value-added chemicals. Waste Manag. 118, 667-676. doi: 10.1016/j.wasman.2020.09.022
    [33]
    Bhomick, P.C., Supong, A., Karmaker, R., Baruah, M., Pongener, C., Sinha, D., 2019. Activated carbon synthesized from biomass material using single-step KOH activation for adsorption of fluoride: experimental and theoretical investigation. Korean J. Chem. Eng. 36, 551-562. doi: 10.1007/s11814-019-0234-x
    [34]
    Bojić, D., Momčilović, M., Milenković, D., Mitrović, J., Banković, P., Velinov, N., Nikolić, G., 2017. Characterization of a low cost Lagenaria vulgaris based carbon for ranitidine removal from aqueous solutions. Arab. J. Chem. 10, 956-964. doi: 10.1016/j.arabjc.2014.12.018
    [35]
    Brunner, A.M., Bertelkamp, C., Dingemans, M.M.L., Kolkman, A., Wols, B., Harmsen, D., Siegers, W., Martijn, B.J., Oorthuizen, W.A., ter Laak, T.L., 2020. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci. Total Environ. 705, 135779. http://www.sciencedirect.com/science/article/pii/S0048969719357742
    [36]
    Bu, Q., Lei, H.W., Wang, L., Wei, Y., Zhu, L., Liu, Y.P., Liang, J., Tang, J.M., 2013. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts. Bioresour. Technol. 142, 546-552. doi: 10.1016/j.biortech.2013.05.073
    [37]
    Cagnon, B., Py, X., Guillot, A., Stoeckli, F., Chambat, G., 2009. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 100, 292-298. doi: 10.1016/j.biortech.2008.06.009
    [38]
    Cai, Z.H., Deng, X.C., Wang, Q., Lai, J.J., Xie, H.L., Chen, Y.D., Huang, B., Lin, G.F., 2020. Core-shell granular activated carbon and its adsorption of trypan blue. J. Clean. Prod. 242, 118496. http://www.sciencedirect.com/science/article/pii/S0959652619333669
    [39]
    Cai, Z.H., Yang, X., Lin, G.F., Chen, C.X., Chen, Y.D., Huang, B., 2018. On preparing highly abrasion resistant binderless and in situ N-doped granular activated carbon. RSC Adv. 8, 20327-20333. doi: 10.1039/C8RA03243B
    [40]
    Cao, Q., Xie, K.C., Lv, Y.K., Bao, W.R., 2006. Process effects on activated carbon with large specific surface area from corn cob. Bioresour. Technol. 97, 110-115. doi: 10.1016/j.biortech.2005.02.026
    [41]
    Cao, Y.Y., Xiao, W.H., Shen, G.H., Ji, G.Y., Zhang, Y., Gao, C.F., Han, L.J., 2019. Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: competitive effects of ion exchange and precipitation. Bioresour. Technol. 273, 70-76. doi: 10.1016/j.biortech.2018.10.065
    [42]
    Çelebi, H., 2020. Recovery of detox tea wastes: usage as a lignocellulosic adsorbent in Cr6+ adsorption. J. Environ. Chem. Eng. 8, 104310. http://www.sciencedirect.com/science/article/pii/S221334372030659X
    [43]
    Chang, G.Z., Shi, P.C., Guo, Y.N., Wang, L.Y., Wang, C.P., Guo, Q.J., 2020. Enhanced pyrolysis of palm kernel shell wastes to bio-based chemicals and syngas using red mud as an additive. J. Clean. Prod. 272, 122847. http://www.sciencedirect.com/science/article/pii/S0959652620328924
    [44]
    Chavoshani, A., Hashemi, M., Mehdi Amin, M., Ameta, S.C., 2020. Risks and Challenges of Pesticides in Aquatic environments. Micropollutants and Challenges. Amsterdam: Elsevier, 179-213.
    [45]
    Cheng, C., Liu, H., Dai, P., Shen, X.X., Zhang, J., Zhao, T.Y., Zhu, Z.R., 2016. Microwave-assisted preparation and characterization of mesoporous activated carbon from mushroom roots by phytic acid (C6H18O24P6) activation. J. Taiwan Inst. Chem. Eng. 67, 532-537. doi: 10.1016/j.jtice.2016.08.032
    [46]
    Chiang, C.H., Chen, J., Lin, J.H., 2020. Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. J. Environ. Chem. Eng. 8, 103929.
    [47]
    Chili, C.A., Westerhoff, P., Ghosh, A., 2012. GAC removal of organic nitrogen and other DBP precursors. J. Am. Water Work. Assoc. 104, E406-E415. doi: 10.5942/jawwa.2012.104.0090
    [48]
    Chou, C.S., Lin, S.H., Lu, W.C., 2009. Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Process. Technol. 90, 980-987. doi: 10.1016/j.fuproc.2009.04.012
    [49]
    Chowdhury, Z.Z., Abd Hamid, S.B., Das, R., Hasan, M.R., Zain, S.M., Khalid, K., Uddin, M.N., 2013. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. Bioresources 8, 6523-6555. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=90444358&site=ehost-live
    [50]
    Colantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D., 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew. Sustain. Energy Rev. 64, 187-194. doi: 10.1016/j.rser.2016.06.003
    [51]
    Crincoli, K.R., Jones, P.K., Huling, S.G., 2020. Fenton-driven oxidation of contaminant-spent granular activated carbon (GAC): GAC selection and implications. Sci. Total. Environ. 734, 139435. http://www.sciencedirect.com/science/article/pii/S0048969720329521
    [52]
    Da, E., Awad, A., 2017. Regeneration of spent activated carbon obtained from home filtration system and applying it for heavy metals adsorption. J. Environ. Chem. Eng. 5, 3091-3099. doi: 10.1016/j.jece.2017.06.022
    [53]
    Dai, Y.J., Liu, M., Li, J.J., Yang, S.S., Sun, Y., Sun, Q.Y., Wang, W.S., Lu, L., Zhang, K.X., Xu, J.Y., Zheng, W.L., Hu, Z.Y., Yang, Y.H., Gao, Y.W., Liu, Z.H., 2020. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep. Sci. Technol. 55, 1005-1021. doi: 10.1080/01496395.2019.1577445
    [54]
    Dalai, C., Jha, R., Desai, V.R., 2015. Rice husk and sugarcane baggase based activated carbon for iron and manganese removal. Aquat. Procedia 4, 1126-1133. doi: 10.1016/j.aqpro.2015.02.143
    [55]
    Darweesh, T.M., Ahmed, M.J., 2017. Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L. ) stones by KOH chemical activation. Environ. Toxicol. Pharmacol. 50, 159-166. doi: 10.1016/j.etap.2017.02.005
    [56]
    Das, S., Mishra, S., 2020. Insight into the isotherm modelling, kinetic and thermodynamic exploration of iron adsorption from aqueous media by activated carbon developed from Limonia acidissima shell. Mater. Chem. Phys. 245, 122751.
    [57]
    David, E., Kopac, J., 2014. Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrolysis 110, 322-332. doi: 10.1016/j.jaap.2014.09.021
    [58]
    Debnath, D., Gupta, A.K., Ghosal, P.S., 2019. Recent advances in the development of tailored functional materials for the treatment of pesticides in aqueous media: a review. J. Ind. Eng. Chem. 70, 51-69. doi: 10.1016/j.jiec.2018.10.014
    [59]
    Deng, S.B., Nie, Y., Du, Z.W., Huang, Q., Meng, P.P., Wang, B., Huang, J., Yu, G., 2015. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J. Hazard. Mater. 282, 150-157. doi: 10.1016/j.jhazmat.2014.03.045
    [60]
    Deshannavar, U.B., Hegde, P.G., Dhalayat, Z., Patil, V., Gavas, S., 2018. Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: an energy application. Mater. Sci. Energy Technol. 1, 175-181. http://www.sciencedirect.com/science/article/pii/S2589299118300454
    [61]
    Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M., 2007. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85, 833-846. doi: 10.1016/j.jenvman.2007.07.031
    [62]
    Dong, H.Y., Xu, L., Mao, Y.X., Wang, Y., Duan, S.L., Lian, J.F., Li, J., Yu, J.W., Qiang, Z.M., 2021. Effective abatement of 29 pesticides in full-scale advanced treatment processes of drinking water: from concentration to human exposure risk. J. Hazard. Mater. 403, 123986. doi: 10.1016/j.jhazmat.2020.123986
    [63]
    Dong, L.H., Hou, L.A., Wang, Z.S., Gu, P., Chen, G.Y., Jiang, R.F., 2018. A new function of spent activated carbon in BAC process: removing heavy metals by ion exchange mechanism. J. Hazard. Mater. 359, 76-84. doi: 10.1016/j.jhazmat.2018.07.030
    [64]
    Dong, L.H., Liu, W.J., Yu, Y., Hou, L.A., Gu, P., Chen, G.Y., 2019. Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process. Sci. Total Environ. 647, 1359-1367. doi: 10.1016/j.scitotenv.2018.07.280
    [65]
    Duan, X.H., Zhang, C.C., Srinivasakannan, C., Wang, X., 2017. Waste walnut shell valorization to iron loaded biochar and its application to arsenic removal. Resour. Effic. Technol. 3, 29-36. doi: 10.1016/j.reffit.2017.01.001
    [66]
    Dzigbor, A., Chimphango, A., 2019. Production and optimization of NaCl-activated carbon from mango seed using response surface methodology. Biomass Convers. Biorefinery9, 421-431. doi: 10.1007/s13399-018-0361-3
    [67]
    Eeshwarasinghe, D., Loganathan, P., Vigneswaran, S., 2019. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 223, 616-627. doi: 10.1016/j.chemosphere.2019.02.033
    [68]
    Egirani, D.E., Poyi, N.R., Shehata, N., 2020. Preparation and characterization of powdered and granular activated carbon from Palmae biomass for cadmium removal. Int. J. Environ. Sci. Technol. 17, 2443-2454. doi: 10.1007/s13762-020-02652-w
    [69]
    El Gamal, M., Mousa, H.A., El-Naas, M.H., Zacharia, R., Judd, S., 2018. Bio-regeneration of activated carbon: a comprehensive review. Sep. Purif. Technol. 197, 345-359. doi: 10.1016/j.seppur.2018.01.015
    [70]
    El Mouchtari, E.M., de Daou, C., Rafqah, S., Najjar, F., Anane, H., Piram, A., Hamade, A., Briche, S., Wong-Wah-chung, P, 2020. TiO2 and activated carbon of Argania Spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution. J. Photochem. Photobiol. A: Chem. 388, 112183.
    [71]
    Ellison, C.R., Hoff, R., Mărculescu, C., Boldor, D., 2020. Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting. Appl. Energy 259, 114217. http://www.sciencedirect.com/science/article/pii/S030626191931904X
    [72]
    Foo, K.Y., Hameed, B.H., 2010. Detoxification of pesticide waste via activated carbon adsorption process. J. Hazard. Mater. 175, 1-11. doi: 10.1016/j.jhazmat.2009.10.014
    [73]
    Foo, K.Y., Hameed, B.H., 2011. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour. Technol. 102, 9794-9799. doi: 10.1016/j.biortech.2011.08.007
    [74]
    Foo, K.Y., Hameed, B.H., 2012a. Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chem. Eng. J. 187, 53-62. doi: 10.1016/j.cej.2012.01.079
    [75]
    Foo, K.Y., Hameed, B.H., 2012b. Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation. Microporous Mesoporous Mater. 148, 191-195. doi: 10.1016/j.micromeso.2011.08.005
    [76]
    Foo, K.Y., Hameed, B.H., 2013. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Bioresour. Technol. 130, 696-702. doi: 10.1016/j.biortech.2012.11.146
    [77]
    Fortin, S., Song, B., Burbage, C., 2019. Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy. Mar. Pollut. Bull. 149, 110579. http://www.sciencedirect.com/science/article/pii/S0025326X19307271
    [78]
    Fu, J., Lee, W.N., Coleman, C., Nowack, K., Carter, J., Huang, C.H., 2017a. Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Res. 123, 224-235. doi: 10.1016/j.watres.2017.06.073
    [79]
    Fu, K.F., Yue, Q.Y., Gao, B.Y., Wang, Y., Li, Q., 2017b. Activated carbon from tomato stem by chemical activation with FeCl2. Colloids Surfaces A: Physicochem. Eng. Aspects 529, 842-849. doi: 10.1016/j.colsurfa.2017.06.064
    [80]
    Fu, Y.H., Zhang, N.Y., Shen, Y.F., Ge, X.L., Chen, M.D., 2018. Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis. Bioresour. Technol. 269, 67-73. doi: 10.1016/j.biortech.2018.08.083
    [81]
    Gajera, Z.R., Verma, K., Tekade, S.P., Sawarkar, A.N., 2020. Kinetics of co-gasification of rice husk biomass and high sulphur petroleum coke with oxygen as gasifying medium via TGA. Bioresour. Technol. Rep. 11, 100479. http://www.sciencedirect.com/science/article/pii/S2589014X20301006
    [82]
    Galvão, R.B., da Silva Moretti, A.A., Fernandes, F., Kuroda, E.K., 2020. Post-treatment of stabilized landfill leachate by upflow gravel filtration and granular activated carbon adsorption. Environ. Technol. 2020, 1-10. doi: 10.1080/09593330.2020.1746838
    [83]
    Ganguly, P., Sarkhel, R., Das, P., 2020. Synthesis of pyrolyzed biochar and its application for dye removal: batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surf. Interf. 20, 100616. doi: 10.1016/j.surfin.2020.100616
    [84]
    Ganji, M.D., Fereidoon, A., Jahanshahi, M., Ghorbanzadeh Ahangari, M., 2012. Elastic properties of SWCNTs with curved morphology: density functional tight binding based treatment. Solid State Commun. 152, 1526-1530. doi: 10.1016/j.ssc.2012.06.005
    [85]
    Garg, D., Kumar, S., Sharma, K., Majumder, C.B., 2019. Application of waste peanut shells to form activated carbon and its utilization for the removal of Acid Yellow 36 from wastewater. Groundw. Sustain. Dev. 8, 512-519. doi: 10.1016/j.gsd.2019.01.010
    [86]
    Gebresemati, M., Gabbiye, N., Sahu, O., 2017. Sorption of cyanide from aqueous medium by coffee husk: response surface methodology. J. Appl. Res. Technol. 15, 27-35. doi: 10.1016/j.jart.2016.11.002
    [87]
    Gebrewold, B.D., Kijjanapanich, P., Rene, E.R., Lens, P.N.L., Annachhatre, A.P., 2019. Fluoride removal from groundwater using chemically modified rice husk and corn cob activated carbon. Environ. Technol. 40, 2913-2927. doi: 10.1080/09593330.2018.1459871
    [88]
    Ghorbani, F., Kamari, S., Zamani, S., Akbari, S., Salehi, M., 2020. Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology. Surf. Interf. 18, 100444. doi: 10.1016/j.surfin.2020.100444
    [89]
    Giraldo, L., Moreno-Piraján, J.C., 2012. Synthesis of activated carbon mesoporous from coffee waste and its application in adsorption zinc and mercury ions from aqueous solution. E-J. Chem. 9, 938-948. doi: 10.1155/2012/120763
    [90]
    Golea, D.M., Jarvis, P., Jefferson, B., Moore, G., Sutherland, S., Parsons, S.A., Judd, S.J., 2020. Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water. Water Res. 174, 115613. doi: 10.1016/j.watres.2020.115613
    [91]
    Golea, D.M., Upton, A., Jarvis, P., Moore, G., Sutherland, S., Parsons, S.A., Judd, S.J., 2017. THM and HAA formation from NOM in raw and treated surface waters. Water Res. 112, 226-235. doi: 10.1016/j.watres.2017.01.051
    [92]
    Gonçalves, G.D.C., Nakamura, P.K., Furtado, D.F., Veit, M.T., 2017. Utilization of brewery residues to produces granular activated carbon and bio-oil. J. Clean. Prod. 168, 908-916. doi: 10.1016/j.jclepro.2017.09.089
    [93]
    Gonçalves, G.D.C., Pereira, N.C., Veit, M.T., 2016. Production of bio-oil and activated carbon from sugarcane bagasse and molasses. Biomass Bioenergy 85, 178-186. doi: 10.1016/j.biombioe.2015.12.013
    [94]
    Gonçalves, M., Castro, C.S., Boas, I.K.V., Soler, F.C., Pinto, E.D.C., Lavall, R.L., Carvalho, W.A., 2019. Glycerin waste as sustainable precursor for activated carbon production: adsorption properties and application in supercapacitors. J. Environ. Chem. Eng. 7, 103059. doi: 10.1016/j.jece.2019.103059
    [95]
    González-García, P., 2018. Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 82, 1393-1414. doi: 10.1016/j.rser.2017.04.117
    [96]
    Guo, G.F., Zhang, K., Liu, C.X., Xie, S.L., Li, X., Li, B., Shu, J.S., Niu, Y., Zhu, H.F., Ding, M.Z., Zhu, W.K., 2020. Comparative investigation on thermal decomposition of powdered and pelletized biomasses: thermal conversion characteristics and apparent kinetics. Bioresour. Technol. 301, 122732. doi: 10.1016/j.biortech.2020.122732
    [97]
    Gupta, A., Thengane, S.K., Mahajani, S., 2020. Kinetics of pyrolysis and gasification of cotton stalk in the central parts of India. Fuel 263, 116752. doi: 10.1016/j.fuel.2019.116752
    [98]
    Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L., 2017. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew. Energy 114, 697-707. doi: 10.1016/j.renene.2017.07.065
    [99]
    Hamad, B.K., 2015. Preparation and characterization of activated carbon from oil palm shell activated by KOH. J. Pure Appl. Sci. 27, 27-28. http://zancojournals.su.edu.iq/index.php/JPAS/article/view/215
    [100]
    Hamed Mashhadzadeh, A., Ghorbanzadeh Ahangari, M., Salmankhani, A., Fataliyan, M., 2018. Density functional theory study of adsorption properties of non-carbon, carbon and functionalized graphene surfaces towards the zinc and lead atoms. Phys. E: Low-Dimensional Syst. Nanostructures 104, 275-285. doi: 10.1016/j.physe.2018.08.010
    [101]
    Hao, M.J., Qiu, M.Q., Yang, H., Hu, B.W., Wang, X.X., 2021. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total. Environ. 760, 143333. doi: 10.1016/j.scitotenv.2020.143333
    [102]
    Hejazifar, M., Azizian, S., Sarikhani, H., Li, Q., Zhao, D.Y., 2011. Microwave assisted preparation of efficient activated carbon from grapevine rhytidome for the removal of methyl violet from aqueous solution. J. Anal. Appl. Pyrolysis 92, 258-266. doi: 10.1016/j.jaap.2011.06.007
    [103]
    Hernández, A.M., Labady, M., Laine, J., 2014. Granular activated carbon from wood originated from tropical virgin forest. Open J. For. 4, 208-211. http://www.cqvip.com/QK/72916X/20143/HS729162014003005.html
    [104]
    Hoseinzadeh Hesas, R., Arami-Niya, A., Wan Daud, W.M.A., Sahu, J.N., 2013. Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: optimisation using surface response methodology. Chem. Eng. Res. Des. 91, 2447-2456. doi: 10.1016/j.cherd.2013.06.004
    [105]
    Hossain, N., Bhuiyan, M.A., Pramanik, B.K., Nizamuddin, S., Griffin, G., 2020. Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: a critical review. J. Clean. Prod. 255, 120261. doi: 10.1016/j.jclepro.2020.120261
    [106]
    Hou, J.F., Xu, D.L., Li, J., Sun, J.Y., Zheng, S.R., 2020. Enhanced adsorption of o-phenylphenol on zeolites: a combing pore filling and hydrophobic effects. Microporous Mesoporous Mater. 294, 109860. doi: 10.1016/j.micromeso.2019.109860
    [107]
    Hou, L.Y., Kumar, D., Yoo, C.G., Gitsov, I., Majumder, E.L.W., 2021. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chem. Eng. J. 406, 126715. doi: 10.1016/j.cej.2020.126715
    [108]
    Hu, B.C., Gao, Z.S., Wang, H.X., Wang, J., Cheng, M.S., 2020. Computational insights into the sorption mechanism of polycyclic aromatic hydrocarbons by carbon nanotube through density functional theory calculation and molecular dynamics simulation. Comput. Mater. Sci. 179, 109677. doi: 10.1016/j.commatsci.2020.109677
    [109]
    Hu, J.L., Chu, W.H., Sui, M.H., Xu, B., Gao, N.Y., Ding, S.K., 2018. Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination. Chem. Eng. J. 335, 352-361. doi: 10.1016/j.cej.2017.10.144
    [110]
    Hu, Q., Shao, J.G., Yang, H.P., Yao, D.D., Wang, X.H., Chen, H.P., 2015. Effects of binders on the properties of bio-char pellets. Appl. Energy 157, 508-516. doi: 10.1016/j.apenergy.2015.05.019
    [111]
    Hu, Q., Yang, H.P., Yao, D.D., Zhu, D.C., Wang, X.H., Shao, J.G., Chen, H.P., 2016. The densification of bio-char: effect of pyrolysis temperature on the qualities of pellets. Bioresour. Technol. 200, 521-527. doi: 10.1016/j.biortech.2015.10.077
    [112]
    Huang, N., Zhao, P.T., Ghosh, S., Fedyukhin, A., 2019. Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production. Appl. Energy 240, 882-892. doi: 10.1016/j.apenergy.2019.02.050
    [113]
    Huang, Y.F., MacKenzie, A., Meteer, L., Hofmann, R., 2020. Evaluation of phosphorus removal from a lake by two drinking water treatment plants. Environ. Technol. 41, 863-869. doi: 10.1080/09593330.2018.1512656
    [114]
    Huggins, T.M., Haeger, A., Biffinger, J.C., Ren, Z.J., 2016. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res. 94, 225-232. doi: 10.1016/j.watres.2016.02.059
    [115]
    Ideta, K., Kim, D.W., Kim, T., Nakabayashi, K., Miyawaki, J., Park, J.I., Yoon, S.H., 2020.19F ex situ solid-state NMR study on structural differences in pores of activated carbon series derived from chemical and physical activation processes for EDLCs. J. Phys. Chem. C 124, 12457-12465. doi: 10.1021/acs.jpcc.0c02106
    [116]
    Iftikhar, M., Asghar, A., Ramzan, N., Sajjadi, B., Chen, W.Y., 2019. Biomass densification: effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass Bioenergy 122, 1-16. doi: 10.1016/j.biombioe.2019.01.005
    [117]
    Ighalo, J.O., Adeniyi, A.G., Adelodun, A.A., 2021. Recent advances on the adsorption of herbicides and pesticides from polluted waters: performance evaluation via physical attributes. J. Ind. Eng. Chem. 93, 117-137. doi: 10.1016/j.jiec.2020.10.011
    [118]
    Islam, M.S., Rouf, M.A., 2013. Waste biomass as sources for activated carbon production: a review. Bangladesh J. Sci. Ind. Res. 47, 347-364. doi: 10.3329/bjsir.v47i4.14064
    [119]
    Islam, N.F., Sarma, H., Prasad, M.N., 2020. Emerging Disinfection By-Products in water: Novel Biofiltration techniques. Disinfection By-Products in Drinking Water. Amsterdam: Elsevier, 109-135.
    [120]
    Jain, A., Xu, C.H., Jayaraman, S., Balasubramanian, R., Lee, J.Y., Srinivasan, M.P., 2015. Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater. 218, 55-61. doi: 10.1016/j.micromeso.2015.06.041
    [121]
    Janković, B., Manić, N., Dodevski, V., Radović, I., Pijović, M., Katnić, Đ., Tasić, G., 2019. Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization. J. Clean. Prod. 236, 117614. http://www.sciencedirect.com/science/article/pii/S0959652619324345
    [122]
    Jaria, G., Calisto, V., Silva, C.P., Gil, M.V., Otero, M., Esteves, V.I., 2019. Obtaining granular activated carbon from paper mill sludge: a challenge for application in the removal of pharmaceuticals from wastewater. Sci. Total. Environ. 653, 393-400. doi: 10.1016/j.scitotenv.2018.10.346
    [123]
    Jiang, J.Y., Zhang, X.R., 2018. A smart strategy for controlling disinfection byproducts by reversing the sequence of activated carbon adsorption and chlorine disinfection. Sci. Bull. 63, 1167-1169. doi: 10.1016/j.scib.2018.07.022
    [124]
    Jiang, J.Y., Zhang, X.R., Zhu, X.H., Li, Y., 2017. Removal of intermediate aromatic halogenated DBPs by activated carbon adsorption: a new approach to controlling halogenated DBPs in chlorinated drinking water. Environ. Sci. Technol. 51, 3435-3444. doi: 10.1021/acs.est.6b06161
    [125]
    Jiang, X.C., Guo, F.Q., Jia, X.P., Zhan, Y.B., Zhou, H.M., Qian, L., 2020. Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors. J. Energy Storage 30, 101451. doi: 10.1016/j.est.2020.101451
    [126]
    Jin, E., Lee, S., Kang, E., Kim, Y., Choe, W., 2020. Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products. Coord. Chem. Rev. 425, 213526. doi: 10.1016/j.ccr.2020.213526
    [127]
    Jung, K.W., Choi, B.H., Hwang, M.J., Jeong, T.U., Ahn, K.H., 2016. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresour. Technol. 219, 185-195. doi: 10.1016/j.biortech.2016.07.098
    [128]
    Jusoh, A., Hartini, W.J.H., Ali, N., Endut, A., 2011. Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour. Technol. 102, 5312-5318. doi: 10.1016/j.biortech.2010.12.074
    [129]
    Kalaruban, M., Loganathan, P., Nguyen, T.V., Nur, T., Hasan Johir, M.A., Nguyen, T.H., Trinh, M.V., Vigneswaran, S., 2019. Iron-impregnated granular activated carbon for arsenic removal: application to practical column filters. J. Environ. Manag. 239, 235-243. doi: 10.1016/j.jenvman.2019.03.053
    [130]
    Kalderis, D., Bethanis, S., Paraskeva, P., Diamadopoulos, E., 2008a. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour. Technol. 99, 6809-6816. doi: 10.1016/j.biortech.2008.01.041
    [131]
    Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Valle, J.O.D., Fernández-Pereira, C., 2008b. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144, 42-50. doi: 10.1016/j.cej.2008.01.007
    [132]
    Kan, Y., Yue, Q., Gao, B., Li, Q., 2015. Comparative study of dry-mixing and wet-mixing activated carbons prepared from waste printed circuit boards by NaOH activation. RSC Adv. 5, 105943-105951. doi: 10.1039/C5RA18840G
    [133]
    Kan, Y.J., Yue, Q.Y., Li, D., Wu, Y.W., Gao, B.Y., 2017. Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal. J. Taiwan Inst. Chem. Eng. 71, 494-500. doi: 10.1016/j.jtice.2016.12.012
    [134]
    Kang, K., Nanda, S., Sun, G.T., Qiu, L., Gu, Y.Q., Zhang, T.L., Zhu, M.Q., Sun, R.C., 2019. Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: optimization of process parameters and characterization of hydrochar. Energy 186, 115795. doi: 10.1016/j.energy.2019.07.125
    [135]
    Kårelid, V., Larsson, G., Björlenius, B., 2017. Pilot-scale removal of pharmaceuticals in municipal wastewater: comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. J. Environ. Manag. 193, 491-502. doi: 10.1016/j.jenvman.2017.02.042
    [136]
    Karri, R.R., Sahu, J.N., Meikap, B.C., 2020. Improving efficacy of Cr(VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. Ind. Crop. Prod. 143, 111927. doi: 10.1016/j.indcrop.2019.111927
    [137]
    Kaur, M., Neetu, Pal Verma, Y., Chauhan, S., 2020. Effect of chemical pretreatment of sugarcane bagasse on biogas production. Mater. Today: Proc. 21, 1937-1942. doi: 10.1016/j.matpr.2020.01.278
    [138]
    Kaur, P., Kaur, P., Kaur, K., 2019. Adsorptive removal of imazethapyr and imazamox from aqueous solution using modified rice husk. J. Clean. Prod. 244, 118699. http://www.sciencedirect.com/science/article/pii/S0959652619335693
    [139]
    Khadhri, N., El Khames Saad, M., ben Mosbah, M., Moussaoui, Y., 2019. Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J. Environ. Chem. Eng. 7, 102775. doi: 10.1016/j.jece.2018.11.020
    [140]
    Khoshbouy, R., Takahashi, F., Yoshikawa, K., 2019. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environ. Res. 175, 457-467. doi: 10.1016/j.envres.2019.04.002
    [141]
    Kim, K.H., Bai, X.L., Rover, M., Brown, R.C., 2014. The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor. Fuel 124, 49-56. doi: 10.1016/j.fuel.2014.01.086
    [142]
    Kim, Y., Bae, J., Park, H., Suh, J.K., You, Y.W., Choi, H., 2016. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: facile synthesis and adsorption kinetics. Water Res. 101, 187-194. doi: 10.1016/j.watres.2016.04.077
    [143]
    Korotta-Gamage, S.M., Sathasivan, A., 2017. A review: potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 167, 120-138. doi: 10.1016/j.chemosphere.2016.09.097
    [144]
    Köseoğlu, E., Akmil-Başar, C., 2015. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv. Powder Technol. 26, 811-818. doi: 10.1016/j.apt.2015.02.006
    [145]
    Koutník, I., Vráblová, M., Bednárek, J., 2020. Reynoutria japonica, an invasive herb as a source of activated carbon for the removal of xenobiotics from water. Bioresour. Technol. 309, 123315. doi: 10.1016/j.biortech.2020.123315
    [146]
    Kumagai, S., Ishizawa, H., Aoki, Y., Toida, Y., 2010. Molded micro- and mesoporous carbon/silica composite from rice husk and beet sugar. Chem. Eng. J. 156, 270-277. doi: 10.1016/j.cej.2009.10.016
    [147]
    Kumar, M., Upadhyay, S.N., Mishra, P.K., 2019. A comparative study of thermochemical characteristics of lignocellulosic biomasses. Bioresour. Technol. Rep. 8, 100186. doi: 10.1016/j.biteb.2019.100186
    [148]
    Kuntail, J., Jain, Y.M., Shukla, M., Sinha, I., 2019. Adsorption mechanism of phenol, p-chlorophenol, and p-nitrophenol on magnetite surface: a molecular dynamics study. J. Mol. Liq. 288, 111053. doi: 10.1016/j.molliq.2019.111053
    [149]
    Kutluay, S., Baytar, O., Şahin, Ö., 2019. Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from Elaeagnus angustifolia seeds. J. Environ. Chem. Eng. 7, 102947. doi: 10.1016/j.jece.2019.102947
    [150]
    Kwon, G., Bhatnagar, A., Wang, H.L., Kwon, E.E., Song, H., 2020. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J. Hazard. Mater. 400, 123242. doi: 10.1016/j.jhazmat.2020.123242
    [151]
    Larous, S., Meniai, A.H., 2012. The use of sawdust as by product adsorbent of organic pollutant from wastewater: adsorption of phenol. Energy Procedia 18, 905-914. doi: 10.1016/j.egypro.2012.05.105
    [152]
    Lee, J.H., Heo, Y.J., Park, S.J., 2018. Effect of silica removal and steam activation on extra-porous activated carbons from rice husks for methane storage. Int. J. Hydrog. Energy 43, 22377-22384. doi: 10.1016/j.ijhydene.2018.10.039
    [153]
    Levchuk, I., Rueda Márquez, J.J., Sillanpää, M., 2018. Removal of natural organic matter (NOM) from water by ion exchange: a review. Chemosphere 192, 90-104. doi: 10.1016/j.chemosphere.2017.10.101
    [154]
    Li, B.S., Liu, Y.X., Li, R.D., Yang, T.H., Kai, X.P., 2020a. Aluminum-water reactions assisted in situ hydrodeoxygenation of enzymolysis lignin from bioconversion of rice straw over NiMo catalyst. Ind. Crop. Prod. 154, 112727. doi: 10.1016/j.indcrop.2020.112727
    [155]
    Li, B.Z., Yang, Y.C., Wu, H.Y., Zhang, C., Zheng, W., Sun, D.K., 2020b. Adsorptive removal and mechanism of monocyclic aromatics by activated carbons from water: effects of structure and surface chemistry. Colloids Surfaces A: Physicochem. Eng. Aspects 605, 125346. doi: 10.1016/j.colsurfa.2020.125346
    [156]
    Li, C., Wang, L., Shen, Y.G., 2014. The removal of atrazine, simazine, and prometryn by granular activated carbon in aqueous solution. Desalination Water Treat. 52, 3510-3516. doi: 10.1080/19443994.2013.803650
    [157]
    Li, Y.J., Yue, Q.Y., Li, W.H., Gao, B.Y., Li, J.Z., Du, J.D., 2011. Properties improvement of paper mill sludge-based granular activated carbon fillers for fluidized-bed bioreactor by bentonite (Na) added and acid washing. J. Hazard. Mater. 197, 33-39. doi: 10.1016/j.jhazmat.2011.09.050
    [158]
    Liang, S., Ye, N., Hu, Y.C., Shi, Y.F., Zhang, W., Yu, W.B., Wu, X., Yang, J.K., 2016. Lead adsorption from aqueous solutions by a granular adsorbent prepared from Phoenix tree leaves. RSC Adv. 6, 25393-25400. doi: 10.1039/C6RA03258C
    [159]
    Lima, L., Baêta, B.E.L., Lima, D.R.S., Afonso, R.J.C.F., de Aquino, S.F., Libânio, M., 2016. Comparison between two forms of granular activated carbon for the removal of pharmaceuticals from different waters. Environ. Technol. 37, 1334-1345. doi: 10.1080/09593330.2015.1114030
    [160]
    Liu, D.Q., Xie, Q., Huang, X.Q., Wan, C.R., Deng, F., Liang, D.C., Liu, J.C., 2020a. Backwashing behavior and hydrodynamic performances of granular activated carbon blends. Environ. Res. 184, 109302. doi: 10.1016/j.envres.2020.109302
    [161]
    Liu, L.H., Lin, Y., Liu, Y.Y., He, Q., 2014. Effect of binders on porous properties, surface chemical properties and adsorption characteristics of granular adsorbents from sewage sludge. Mater. Sci. 20, 488-492. http://www.ingentaconnect.com/content/doaj/13921320/2014/00000020/00000004/art00022
    [162]
    Liu, M.P., Zhu, L., Zhang, X.X., Han, W.H., Qiu, Y.P., 2020b. Insight into the role of ion-pairing in the adsorption of imidazolium derivative-based ionic liquids by activated carbon. Sci. Total. Environ. 743, 140644. doi: 10.1016/j.scitotenv.2020.140644
    [163]
    Lu, Z.D., Sun, W.J., Li, C., Cao, W.F., Jing, Z.B., Li, S.M., Ao, X.W., Chen, C., Liu, S.M., 2020. Effect of granular activated carbon pore-size distribution on biological activated carbon filter performance. Water Res. 177, 115768. doi: 10.1016/j.watres.2020.115768
    [164]
    Lütke, S.F., Igansi, A.V., Pegoraro, L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S. Jr, 2019. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396. doi: 10.1016/j.jece.2019.103396
    [165]
    Ma, Q.L., Han, L.J., Huang, G.Q., 2018. Effect of water-washing of wheat straw and hydrothermal temperature on its hydrochar evolution and combustion properties. Bioresour. Technol. 269, 96-103. doi: 10.1016/j.biortech.2018.08.082
    [166]
    Mailler, R., Gasperi, J., Coquet, Y., Derome, C., Buleté, A., Vulliet, E., Bressy, A., Varrault, G., Chebbo, G., Rocher, V., 2016. Removal of emerging micropollutants from wastewater by activated carbon adsorption: experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. J. Environ. Chem. Eng. 4, 1102-1109. doi: 10.1016/j.jece.2016.01.018
    [167]
    Mallek, M., Chtourou, M., Portillo, M., Monclús, H., Walha, K., Salah, A.B., Salvadó, V., 2018. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J. Environ. Manag. 223, 576-585. doi: 10.1016/j.jenvman.2018.06.069
    [168]
    Martínez, L.V., Rubiano, J.E., Figueredo, M., Gómez, M.F., 2020. Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions. Renew. Energy 148, 1216-1226. doi: 10.1016/j.renene.2019.10.034
    [169]
    Martín-Lara, M.A., Pérez, A., Vico-Pérez, M.A., Calero, M., Blázquez, G., 2019. The role of temperature on slow pyrolysis of olive cake for the production of solid fuels and adsorbents. Process. Saf. Environ. Prot. 121, 209-220. doi: 10.1016/j.psep.2018.10.028
    [170]
    Mason, S.A., Welch, V.G., Neratko, J., 2018. Synthetic polymer contamination in bottled water. Front. Chem. 6, 407. doi: 10.3389/fchem.2018.00407
    [171]
    Masoumi, S., Dalai, A.K., 2020. Optimized production and characterization of highly porous activated carbon from algal-derived hydrochar. J. Clean. Prod. 263, 121427. doi: 10.1016/j.jclepro.2020.121427
    [172]
    Matilainen, A., Gjessing, E.T., Lahtinen, T., Hed, L., Bhatnagar, A., Sillanpää, M., 2011. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83, 1431-1442. doi: 10.1016/j.chemosphere.2011.01.018
    [173]
    Matilainen, A., Vieno, N., Tuhkanen, T., 2006. Efficiency of the activated carbon filtration in the natural organic matter removal. Environ. Int. 32, 324-331. doi: 10.1016/j.envint.2005.06.003
    [174]
    Matsushita, T., Morimoto, A., Kuriyama, T., Matsumoto, E., Matsui, Y., Shirasaki, N., Kondo, T., Takanashi, H., Kameya, T., 2018. Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination. Water Res. 138, 67-76. doi: 10.1016/j.watres.2018.01.028
    [175]
    Meinel, F., Ruhl, A.S., Sperlich, A., Zietzschmann, F., Jekel, M., 2014. Pilot-scale investigation of micropollutant removal with granular and powdered activated carbon. Water Air Soil Pollut. 226, 1-10. doi: 10.1007/s11270-014-2260-y
    [176]
    Menya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y., 2018. Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem. Eng. Res. Des. 129, 271-296. doi: 10.1016/j.cherd.2017.11.008
    [177]
    Menya, E., Olupot, P.W., Storz, H., Lubwama, M., Kiros, Y., 2020. Synthesis and evaluation of activated carbon from rice husks for removal of humic acid from water. Biomass Convers. Biorefin., 1-20. doi: 10.1007/s13399-020-01158-2
    [178]
    Mintenig, S.M., Löder, M.G.J., Primpke, S., Gerdts, G., 2019. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total. Environ. 648, 631-635. doi: 10.1016/j.scitotenv.2018.08.178
    [179]
    Missagia, B., Guerrero, C., Narra, S., Sun, Y.L., Ay, P., Krautz, H.J., 2011. Physicomechanical properties of rice husk pellets for energy generation. Energy Fuels 25, 5786-5790. doi: 10.1021/ef201271b
    [180]
    Missaoui, A., Bostyn, S., Belandria, V., Cagnon, B., Sarh, B., Gökalp, I., 2017. Hydrothermal carbonization of dried olive pomace: energy potential and process performances. J. Anal. Appl. Pyrolysis 128, 281-290. doi: 10.1016/j.jaap.2017.09.022
    [181]
    Mohamad Nor, N., Lau, L.C., Lee, K.T., Mohamed, A.R., 2013. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—A review. J. Environ. Chem. Eng. 1, 658-666. doi: 10.1016/j.jece.2013.09.017
    [182]
    Mohamad Nor, N., Lau, L.C., Lee, K.T., Mohamed, A.R., 2013. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—A review. J. Environ. Chem. Eng. 1, 658-666.
    [183]
    Mohammed, I.Y., Abakr, Y.A., Musa, M., Yusup, S., Singh, A., Kazi, F.K., 2016. Valorization of Bambara groundnut shell via intermediate pyrolysis: products distribution and characterization. J. Clean. Prod. 139, 717-728. doi: 10.1016/j.jclepro.2016.08.090
    [184]
    Mohd Faizal, H., Shamsuddin, H.S., M. Heiree, M.H., Muhammad Ariff Hanaffi, M.F., Abdul Rahman, M.R., Rahman, M.M., Latiff, Z.A., 2018. Torrefaction of densified mesocarp fibre and palm kernel shell. Renew. Energy122, 419-428. doi: 10.1016/j.renene.2018.01.118
    [185]
    Muazu, R.I., Stegemann, J.A., 2015. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Process. Technol. 133, 137-145. doi: 10.1016/j.fuproc.2015.01.022
    [186]
    Mustafa, R., Asmatulu, E., 2020. Preparation of activated carbon using fruit, paper and clothing wastes for wastewater treatment. J. Water Process. Eng. 35, 101239. doi: 10.1016/j.jwpe.2020.101239
    [187]
    Myers, M.A., Johnson, N.W., Marin, E.Z., Pornwongthong, P., Liu, Y., Gedalanga, P.B., Mahendra, S., 2018. Abiotic and bioaugmented granular activated carbon for the treatment of 1, 4-dioxane-contaminated water. Environ. Pollut. 240, 916-924. doi: 10.1016/j.envpol.2018.04.011
    [188]
    Nagalakshmi, T.V., Emmanuel, K.A., Bhavani, P., 2019. Adsorption of disperse blue 14 onto activated carbon prepared from Jackfruit-PPI-I waste. Mater. Today: Proc. 18, 2036-2051. doi: 10.1016/j.matpr.2019.06.081
    [189]
    Naqvi, S.R., Ali, I., Nasir, S., Ali Ammar Taqvi, S., Atabani, A.E., Chen, W.H., 2020. Assessment of agro-industrial residues for bioenergy potential by investigating thermo-kinetic behavior in a slow pyrolysis process. Fuel 278, 118259. doi: 10.1016/j.fuel.2020.118259
    [190]
    Nasri, N.S., Zain, H.M., D. Usman, H., Majid, Z.A., Sharer, Z., Sazali, N.A., Anirman, N.L., 2013. CO2 adsorption-breakthrough study on activated carbon derived from renewable oil palm empty fruit bunch. Aust. J. Basic Appl. Sci. 7, 222-231. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=GRDS201508005061
    [191]
    Nawaz, T., Sengupta, S., 2019. Contaminants of Emerging concern: occurrence, fate, and remediation. Advances in Water Purification Techniques. Amsterdam: Elsevier, 67-114.
    [192]
    Nguyen, D.T., Tran, H.N., Juang, R.S., Dat, N.D., Tomul, F., Ivanets, A., Woo, S.H., Hosseini-Bandegharaei, A., Nguyen, V.P., Chao, H.P., 2020. Adsorption process and mechanism of acetaminophen onto commercial activated carbon. J. Environ. Chem. Eng. 8, 104408. http://www.sciencedirect.com/science/article/pii/S2213343720307570
    [193]
    Nieto-Delgado, C., Terrones, M., Rangel-Mendez, J.R., 2011. Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products. Biomass Bioenergy35, 103-112. doi: 10.1016/j.biombioe.2010.08.025
    [194]
    Nikić, J., Agbaba, J., Watson, M.A., Tubić, A., Šolić, M., Maletić, S., Dalmacija, B., 2019. Arsenic adsorption on Fe-Mn modified granular activated carbon (GAC-FeMn): batch and fixed-bed column studies. J. Environ. Sci. Heal. 54, 168-178. doi: 10.1080/10934529.2018.1541375
    [195]
    Njoku, V.O., Foo, K.Y., Hameed, B.H., 2013. Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2, 4-dichlorophenoxyacetic acid. Chem. Eng. J. 215/216, 383-388. doi: 10.1016/j.cej.2012.10.068
    [196]
    Njoku, V.O., Islam, M.A., Asif, M., Hameed, B.H., 2015. Adsorption of 2, 4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. J. Environ. Manag. 154, 138-144. doi: 10.1016/j.jenvman.2015.02.002
    [197]
    Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-Moghadam, F., Nourmoradi, H., Goudarzi, B., Dindarloo, K., 2018. Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour. Technol. 258, 48-56. doi: 10.1016/j.biortech.2018.02.106
    [198]
    Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., Pivokonsky, M., 2019. Microplastics in drinking water treatment—Current knowledge and research needs. Sci. Total. Environ. 667, 730-740. doi: 10.1016/j.scitotenv.2019.02.431
    [199]
    Nunell, G.V., Fernández, M.E., Bonelli, P.R., Cukierman, A.L., 2012. Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass Bioenergy44, 87-95. doi: 10.1016/j.biombioe.2012.05.001
    [200]
    Ogata, F., Tominaga, H., Yabutani, H., Taga, A., Kawasaki, N., 2012. Granulation of gibbsite with inorganic binder and its ability to adsorb Mo(VI) from aqueous solution. Toxicol. Environ. Chem. 94, 650-659. doi: 10.1080/02772248.2012.671325
    [201]
    Olupot, P.W., Candia, A., Menya, E., Walozi, R., 2016. Characterization of rice husk varieties in Uganda for biofuels and their techno-economic feasibility in gasification. Chem. Eng. Res. Des. 107, 63-72. doi: 10.1016/j.cherd.2015.11.010
    [202]
    Omorogie, M.O., Naidoo, E.B., Ofomaja, A.E., 2017. Response surface methodology, central composite design, process methodology and characterization of pyrolyzed KOH pretreated environmental biomass: mathematical modelling and optimization approach. Model. Earth Syst. Environ. 3, 1171-1186. doi: 10.1007/s40808-017-0365-1
    [203]
    Oßmann, B.E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S.H., Dicke, W., 2018. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 141, 307-316. doi: 10.1016/j.watres.2018.05.027
    [204]
    Ouyang, J.B., Zhou, L.M., Liu, Z.R., Heng, J.Y.Y., Chen, W.Q., 2020. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: a review. Sep. Purif. Technol. 253, 117536. doi: 10.1016/j.seppur.2020.117536
    [205]
    Ozbay, N., Yargic, A.S., Yarbay Sahin, R.Z., Yaman, E., 2019. Valorization of banana peel waste via in situ catalytic pyrolysis using Al-Modified SBA-15. Renew. Energy 140, 633-646. doi: 10.1016/j.renene.2019.03.071
    [206]
    Özdemir, M., Bolgaz, T., Saka, C., Şahin, Ö., 2011. Preparation and characterization of activated carbon from cotton stalks in a two-stage process. J. Anal. Appl. Pyrolysis 92, 171-175. doi: 10.1016/j.jaap.2011.05.010
    [207]
    Palansooriya, K.N., Yang, Y., Tsang, Y.F., Sarkar, B., Hou, D.Y., Cao, X.D., Meers, E., Rinklebe, J., Kim, K.H., Ok, Y.S., 2020. Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review. Crit. Rev. Environ. Sci. Technol. 50, 549-611. doi: 10.1080/10643389.2019.1629803
    [208]
    Pallarés, J., González-Cencerrado, A., Arauzo, I., 2018. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115, 64-73. doi: 10.1016/j.biombioe.2018.04.015
    [209]
    Paredes, L., Fernandez-Fontaina, E., Lema, J.M., Omil, F., Carballa, M., 2016. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Sci. Total. Environ. 551/552, 640-648. doi: 10.1016/j.scitotenv.2016.02.008
    [210]
    Park, K.Y., Yu, Y.J., Yun, S.J., Kweon, J.H., 2019. Natural organic matter removal from algal-rich water and disinfection by-products formation potential reduction by powdered activated carbon adsorption. J. Environ. Manag. 235, 310-318. doi: 10.1016/j.jenvman.2019.01.080
    [211]
    Pathak, P.D., Mandavgane, S.A., 2015. Preparation and characterization of raw and carbon from banana peel by microwave activation: application in citric acid adsorption. J. Environ. Chem. Eng. 3, 2435-2447. doi: 10.1016/j.jece.2015.08.023
    [212]
    Patowary, D., Baruah, D.C., 2018. Effect of combined chemical and thermal pretreatments on biogas production from lignocellulosic biomasses. Ind. Crop. Prod. 124, 735-746. doi: 10.1016/j.indcrop.2018.08.055
    [213]
    Pesqueira, J.F.J.R., Pereira, M.F.R., Silva, A.M.T., 2020. Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: a review. J. Clean. Prod. 261, 121078. doi: 10.1016/j.jclepro.2020.121078
    [214]
    Piai, L., Blokland, M., van der Wal, A., Langenhoff, A., 2020. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant. J. Hazard. Mater. 388, 122028. doi: 10.1016/j.jhazmat.2020.122028
    [215]
    Piai, L., Dykstra, J.E., Adishakti, M.G., Blokland, M., Langenhoff, A.A.M., van der Wal, A., 2019. Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Res. 162, 518-527. doi: 10.1016/j.watres.2019.06.012
    [216]
    Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., Janda, V., 2018. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 643, 1644-1651. doi: 10.1016/j.scitotenv.2018.08.102
    [217]
    Pivokonský, M., Pivokonská, L., Novotná, K., Čermáková, L., Klimtová, M., 2020. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment. Sci. Total Environ. 741, 140236. doi: 10.1016/j.scitotenv.2020.140236
    [218]
    Plaza, M.G., Durán, I., Rubiera, F., Pevida, C., 2015. CO2 adsorbent pellets produced from pine sawdust: effect of coal tar pitch addition. Appl. Energy 144, 182-192. doi: 10.1016/j.apenergy.2014.12.090
    [219]
    Plaza-Recobert, M., Trautwein, G., Pérez-Cadenas, M., Alcañiz-Monge, J., 2017. Preparation of binderless activated carbon monoliths from cocoa bean husk. Microporous Mesoporous Mater. 243, 28-38. doi: 10.1016/j.micromeso.2017.02.015
    [220]
    Poinern, G.E.J., Senanayake, G., Shah, N., Thi-Le, X.N., Parkinson, G.M., Fawcett, D., 2011. Adsorption of the aurocyanide, Au(CN)2- complex on granular activated carbons derived from Macadamia nut shells—A preliminary study. Miner. Eng. 24, 1694-1702. doi: 10.1016/j.mineng.2011.09.011
    [221]
    Popov, M., Kragulj Isakovski, M., Molnar Jazić, J., Tubić, A., Watson, M., Šćiban, M., Agbaba, J., 2020. Fate of natural organic matter and oxidation/disinfection by-products formation at a full-scale drinking water treatment plant. Environ. Technol. 2020, 1-12. doi: 10.1080/09593330.2020.1732474
    [222]
    Qiu, G.N., Guo, M.X., 2010. Quality of poultry litter-derived granular activated carbon. Bioresour. Technol. 101, 379-386. doi: 10.1016/j.biortech.2009.07.050
    [223]
    Rajput, S.P., Jadhav, S.V., Thorat, B.N., 2020. Methods to improve properties of fuel pellets obtained from different biomass sources: effect of biomass blends and binders. Fuel Process. Technol. 199, 106255. doi: 10.1016/j.fuproc.2019.106255
    [224]
    Rashidi, N.A., Yusup, S., 2017. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem. Eng. J. 314, 277-290. doi: 10.1016/j.cej.2016.11.059
    [225]
    Rizhikovs, J., Zandersons, J., Spince, B., Dobele, G., Jakab, E., 2012. Preparation of granular activated carbon from hydrothermally treated and pelletized deciduous wood. J. Anal. Appl. Pyrolysis 93, 68-76. doi: 10.1016/j.jaap.2011.09.009
    [226]
    Saeidi, N., Lotfollahi, M.N., 2016. Effects of powder activated carbon particle size on activated carbon monolith's properties. Mater. Manuf. Process. 31, 1634-1638. http://smartsearch.nstl.gov.cn/paper_detail.html?id=817504bead080c77ed24e413c63fa50d
    [227]
    Saha, S., Kurade, M.B., El-Dalatony, M.M., Chatterjee, P.K., Lee, D.S., Jeon, B.H., 2016. Improving bioavailability of fruit wastes using organic acid: an exploratory study of biomass pretreatment for fermentation. Energy Convers. Manag. 127, 256-264. doi: 10.1016/j.enconman.2016.09.016
    [228]
    Sajjadi, S.A., Meknati, A., Lima, E.C., Dotto, G.L., Mendoza-Castillo, D.I., Anastopoulos, I., Alakhras, F., Unuabonah, E.I., Singh, P., Hosseini-Bandegharaei, A., 2019. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J. Environ. Manag. 236, 34-44. doi: 10.1016/j.jenvman.2019.01.087
    [229]
    Sajjadi, S.A., Mohammadzadeh, A., Tran, H.N., Anastopoulos, I., Dotto, G.L., Lopičić, Z.R., Sivamani, S., Rahmani-Sani, A., Ivanets, A., Hosseini-Bandegharaei, A., 2018. Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J. Environ. Manag. 223, 1001-1009. doi: 10.1016/j.jenvman.2018.06.077
    [230]
    Salman, J.M., 2014. Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution. Arab. J. Chem. 7, 101-108. doi: 10.1016/j.arabjc.2013.05.033
    [231]
    Salomón-Negrete, M. Á., Reynel-Ávila, H.E., Mendoza-Castillo, D.I., Bonilla-Petriciolet, A., Duran-Valle, C.J., 2018. Water defluoridation with avocado-based adsorbents: synthesis, physicochemical characterization and thermodynamic studies. J. Mol. Liq. 254, 188-197. doi: 10.1016/j.molliq.2018.01.084
    [232]
    Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D.O., Prasetyoko, D., 2020. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater. Today Chem. 16, 100233. doi: 10.1016/j.mtchem.2019.100233
    [233]
    Sayğılı, H., Güzel, F., Önal, Y., 2015. Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. J. Clean. Prod. 93, 84-93. doi: 10.1016/j.jclepro.2015.01.009
    [234]
    Schymanski, D., Goldbeck, C., Humpf, H.U., Fürst, P., 2018. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res. 129, 154-162. doi: 10.1016/j.watres.2017.11.011
    [235]
    Semerciöz, A.S., Göğüş, F., Çelekli, A., Bozkurt, H., 2017. Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II). J. Clean. Prod. 165, 599-610. doi: 10.1016/j.jclepro.2017.07.159
    [236]
    Serp, P., Machado, B., 2015. Nanostructured Carbon Materials For Catalysis. In: Nanostructured Carbon Materials for Catalysis. Royal Society of Chemistry, UK, 1-45.
    [237]
    Setter, C., Silva, F.T.M., Assis, M.R., Ataíde, C.H., Trugilho, P.F., Oliveira, T.J.P., 2020. Slow pyrolysis of coffee husk briquettes: characterization of the solid and liquid fractions. Fuel 261, 116420. doi: 10.1016/j.fuel.2019.116420
    [238]
    Seyedein Ghannad, S.M.R., Lotfollahi, M.N., 2018. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal. Water Sci. Technol. 77, 1591-1601. doi: 10.2166/wst.2018.036
    [239]
    Shahabazuddin, M., Sarat Chandra, T., Meena, S., Sukumaran, R.K., Shetty, N.P., Mudliar, S.N., 2018. Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: physico-chemical and structural characterization. Bioresour. Technol. 263, 199-206. doi: 10.1016/j.biortech.2018.04.027
    [240]
    Shaheen, S.M., Niazi, N.K., Hassan, N.E.E., Bibi, I., Wang, H.L., Tsang, D.C.W., Ok, Y.S., Bolan, N., Rinklebe, J., 2019. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int. Mater. Rev. 64, 216-247. doi: 10.1080/09506608.2018.1473096
    [241]
    Shakya, A., Agarwal, T., 2019. Removal of Cr(VI) from water using pineapple peel derived biochars: adsorption potential and re-usability assessment. J. Mol. Liq. 293, 111497. doi: 10.1016/j.molliq.2019.111497
    [242]
    Shao, Y.C., Tan, H., Shen, D.S., Zhou, Y., Jin, Z.Y., Zhou, D., Lu, W.J., Long, Y.Y., 2020. Synthesis of improved hydrochar by microwave hydrothermal carbonization of green waste. Fuel 266, 117146. doi: 10.1016/j.fuel.2020.117146
    [243]
    Sharma, R., Jasrotia, K., Singh, N., Ghosh, P., Srivastava, S., Sharma, N.R., Singh, J., Kanwar, R., Kumar, A., 2020. A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem. Afr. 3, 1-19. doi: 10.1007/s42250-019-00098-3
    [244]
    Shen, F., Liu, J., Zhang, Z., Dong, Y., Gu, C., 2018. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Process. Technol. 171, 258-264. doi: 10.1016/j.fuproc.2017.11.026
    [245]
    Shen, Z.T., Zhang, Y.H., McMillan, O., Jin, F., Al-Tabbaa, A., 2017. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ. Sci. Pollut. Res. 24, 12809-12819. doi: 10.1007/s11356-017-8847-2
    [246]
    Shin, J., Lee, S.H., Kim, S., Ochir, D., Park, Y., Kim, J., Lee, Y.G., Chon, K., 2020. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr2+). Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-10095-6
    [247]
    Shruti, V.C., Pérez-Guevara, F., Kutralam-Muniasamy, G., 2020. Metro station free drinking water fountain—A potential "microplastics hotspot" for human consumption. Environ. Pollut. 261. doi: 10.1016/j.envpol.2020.114227.
    [248]
    Shukla, N., Sahoo, D., Remya, N., 2019. Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. J. Clean. Prod. 235, 1073-1079. doi: 10.1016/j.jclepro.2019.07.042
    [249]
    Si, Y.H., Hu, J.H., Wang, X.H., Yang, H.P., Chen, Y.Q., Shao, J.G., Chen, H.P., 2016. Effect of carboxymethyl cellulose binder on the quality of biomass pellets. Energy Fuels 30, 5799-5808. doi: 10.1021/acs.energyfuels.6b00869
    [250]
    Siddiqi, H., Bal, M., Kumari, U., Meikap, B.C., 2020a. In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential. Renew. Energy 148, 756-771. doi: 10.1016/j.renene.2019.10.162
    [251]
    Siddiqi, H., Kumari, U., Biswas, S., Mishra, A., Meikap, B.C., 2020b. A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste. Energy 204, 117933. doi: 10.1016/j.energy.2020.117933
    [252]
    Sindelar, H.R., Brown, M.T., Boyer, T.H., 2014. Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources. Chemosphere 105, 112-118. doi: 10.1016/j.chemosphere.2013.12.040
    [253]
    Smith, K.M., Fowler, G.D., Pullket, S., Graham, N.J.D., 2012. The production of attrition resistant, sewage-sludge derived, granular activated carbon. Sep. Purif. Technol. 98, 240-248. doi: 10.1016/j.seppur.2012.07.026
    [254]
    Song, X.B., Zhang, S.Y., Wu, Y.M., Cao, Z.Y., 2020. Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust. Renew. Energy 151, 184-191. doi: 10.1016/j.renene.2019.11.003
    [255]
    Sun, X.F., Chen, M., Wei, D.B., Du, Y.G., 2019. Research progress of disinfection and disinfection by-products in China. J. Environ. Sci. 81, 52-67. doi: 10.1016/j.jes.2019.02.003
    [256]
    Supong, A., Bhomick, P.C., Baruah, M., Pongener, C., Sinha, U.B., Sinha, D., 2019. Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustain. Chem. Pharm. 13, 100159. doi: 10.1016/j.scp.2019.100159
    [257]
    Talat, M., Mohan, S., Dixit, V., Singh, D.K., Hasan, S.H., Srivastava, O.N., 2018. Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: experimental and breakthrough curves analysis. Groundw. Sustain. Dev. 7, 48-55. doi: 10.1016/j.gsd.2018.03.001
    [258]
    Tang, L., Ma, X.Y., Wang, Y., Zhang, S., Zheng, K., Wang, X.C., Lin, Y., 2020. Removal of trace organic pollutants (pharmaceuticals and pesticides) and reduction of biological effects from secondary effluent by typical granular activated carbon. Sci. Total Environ. 749, 141611. doi: 10.1016/j.scitotenv.2020.141611
    [259]
    Taylor, A.C., Fones, G.R., Mills, G.A., 2020. Trends in the use of passive sampling for monitoring polar pesticides in water. Trends Environ. Anal. Chem. 27, e00096. doi: 10.1016/j.teac.2020.e00096
    [260]
    Tchikuala, E., Mourão, P., Nabais, J., 2017. Valorisation of natural fibres from African baobab wastes by the production of activated carbons for adsorption of diuron. Procedia Eng. 200, 399-407. doi: 10.1016/j.proeng.2017.07.056
    [261]
    Teng, H., Lin, H.C., 1998. Activated carbon production from low ash subbituminous coal with CO2 activation. Aiche J. 44, 1170-1177. doi: 10.1002/aic.690440514
    [262]
    Thakur, V., Sharma, E., Guleria, A., Sangar, S., Singh, K., 2020. Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. Mater. Today: Proc. 32, 608-619. doi: 10.1016/j.matpr.2020.02.756
    [263]
    Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L., Vaghetti, J.C.P., Dias, S.L.P., 2016. Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 223, 1067-1080. doi: 10.1016/j.molliq.2016.09.032
    [264]
    Tian, B., Li, P.F., Li, D.W., Qiao, Y.Y., Xu, D.P., Tian, Y., 2018. Preparation of micro-porous monolithic activated carbon from anthracite coal using coal tar pitch as binder. J. Porous Mater. 25, 989-997. doi: 10.1007/s10934-017-0509-8
    [265]
    Tian, Y., Wang, F., Djandja, J.O., Zhang, S.L., Xu, Y.P., Duan, P.G., 2020. Hydrothermal liquefaction of crop straws: effect of feedstock composition. Fuel 265, 116946. doi: 10.1016/j.fuel.2019.116946
    [266]
    Tran, H.N., Nguyen, H.C., Woo, S.H., Nguyen, T.V., Vigneswaran, S., Hosseini-Bandegharaei, A., Rinklebe, J., Kumar Sarmah, A., Ivanets, A., Dotto, G.L., Bui, T.T., Juang, R.S., Chao, H.P., 2019. Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review. Crit. Rev. Environ. Sci. Technol. 49, 2155-2219. doi: 10.1080/10643389.2019.1607442
    [267]
    Tran, H.N., Wang, Y.F., You, S.J., Chao, H.P., 2017. Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of π-π interactions. Process. Saf. Environ. Prot. 107, 168-180. doi: 10.1016/j.psep.2017.02.010
    [268]
    Valdivia-Garcia, M., Weir, P., Frogbrook, Z., Graham, D.W., Werner, D., 2016. Climatic, geographic and operational determinants of trihalomethanes (THMs) in drinking water systems. Sci. Rep. 6, 1-12. doi: 10.1038/s41598-016-0001-8
    [269]
    Varsihini, J.S., Das, D., Das, N., 2014. Optimization of parameters for cerium(III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: equilibrium, kinetic, thermodynamic and regeneration studies. J. Rare Earths 32, 745-758. doi: 10.1016/S1002-0721(14)60136-8
    [270]
    Velten, S., Knappe, D.R.U., Traber, J., Kaiser, H.P., von Gunten, U., Boller, M., Meylan, S., 2011. Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Res. 45, 3951-3959. doi: 10.1016/j.watres.2011.04.047
    [271]
    Verdugo, E.M., Gifford, M., Glover, C., Cuthbertson, A.A., Trenholm, R.A., Kimura, S.Y., Liberatore, H.K., Richardson, S.D., Stanford, B.D., Summers, R.S., Dickenson, E.R.V., 2020. Controlling disinfection byproducts from treated wastewater using adsorption with granular activated carbon: impact of pre-ozonation and pre-chlorination. Water Res. X9, 100068. http://www.sciencedirect.com/science/article/pii/S2589914720300281
    [272]
    Villaescusa, I., Fiol, N., Poch, J., Bianchi, A., Bazzicalupi, C., 2011. Mechanism of paracetamol removal by vegetable wastes: the contribution of π-π interactions, hydrogen bonding and hydrophobic effect. Desalination 270, 135-142. doi: 10.1016/j.desal.2010.11.037
    [273]
    Wan, S.Q., Zheng, N., Zhang, J., Wang, J., 2019. Role of neutral extractives and inherent active minerals in pyrolysis of agricultural crop residues and bio-oil formations. Biomass Bioenergy 122, 53-62. doi: 10.1016/j.biombioe.2019.01.010
    [274]
    Wang, H.B., Zhu, Y., Hu, C., 2017. Impacts of bacteria and corrosion on removal of natural organic matter and disinfection byproducts in different drinking water distribution systems. Int. Biodeterior. Biodegrad. 117, 52-59. doi: 10.1016/j.ibiod.2016.11.023
    [275]
    Wang, J.W., Wu, B., Chew, J.W., 2020a. Membrane fouling mitigation by fluidized granular activated carbon: effect of fiber looseness and impact on irreversible fouling. Sep. Purif. Technol. 242, 116764. doi: 10.1016/j.seppur.2020.116764
    [276]
    Wang, T., Meng, D.X., Zhu, J.X., Chen, X.L., 2020b. Effects of pelletizing conditions on the structure of rice straw-pellet pyrolysis char. Fuel 264, 116909. doi: 10.1016/j.fuel.2019.116909
    [277]
    Wang, Y.M., Peng, C.S., Padilla-Ortega, E., Robledo-Cabrera, A., López-Valdivieso, A., 2020c. Cr(VI) adsorption on activated carbon: mechanisms, modeling and limitations in water treatment. J. Environ. Chem. Eng. 8, 104031. doi: 10.1016/j.jece.2020.104031
    [278]
    Wang, Z.F., Lin, T., Chen, W., 2020dOccurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total. Environ. 700, 134520. doi: 10.1016/j.scitotenv.2019.134520
    [279]
    Wang, Z.H., Sedighi, M., Lea-Langton, A., 2020e. Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Res. 184, 116165. doi: 10.1016/j.watres.2020.116165
    [280]
    Wei, X.C., Xue, X.F., Wu, L., Yu, H.Z., Liang, J., Sun, Y.F., 2020. High-grade bio-oil produced from coconut shell: a comparative study of microwave reactor and core-shell catalyst. Energy 212, 118692. doi: 10.1016/j.energy.2020.118692
    [281]
    Wright, S.L., Kelly, F.J., 2017. Plastic and human health: a micro issue?Environ. Sci. Technol. 51, 6634-6647. doi: 10.1021/acs.est.7b00423
    [282]
    Wu, S.Y., Zhang, S.Y., Wang, C.W., Mu, C., Huang, X.H., 2018. High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes. Fuel Process. Technol. 171, 293-300. doi: 10.1016/j.fuproc.2017.11.025
    [283]
    Xie, N., Wang, H.M., You, C.F., 2021. Role of oxygen functional groups in Pb2+ adsorption from aqueous solution on carbonaceous surface: a density functional theory study. J. Hazard. Mater. 405, 124221. doi: 10.1016/j.jhazmat.2020.124221
    [284]
    Yagmur, E., Gokce, Y., Tekin, S., Semerci, N.I., Aktas, Z., 2020. Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L. ) fruit using KOH and ZnCl2. Fuel 267, 117232. doi: 10.1016/j.fuel.2020.117232
    [285]
    Yahya, M.A., Al-Qodah, Z., Ngah, C.W.Z., 2015. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sustain. Energy Rev. 46, 218-235. doi: 10.1016/j.rser.2015.02.051
    [286]
    Yang, J., Qiu, K.Q., 2011. Experimental design to optimize the preparation of activated carbons from herb residues by vacuum and traditional ZnCl2 chemical activation. Ind. Eng. Chem. Res. 50, 4057-4064. doi: 10.1021/ie101531p
    [287]
    Yang, K.B., Peng, J.H., Xia, H.Y., Zhang, L.B., Srinivasakannan, C., Guo, S.H., 2010. Textural characteristics of activated carbon by single step CO2 activation from coconut shells. J. Taiwan Inst. Chem. Eng. 41, 367-372. doi: 10.1016/j.jtice.2009.09.004
    [288]
    Yang, Y., Ok, Y.S., Kim, K.H., Kwon, E.E., Tsang, Y.F., 2017. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci. Total Environ. (596/597), 303-320. http://europepmc.org/abstract/MED/28437649
    [289]
    Yang, Y., Zhu, J.J., Yang, L., Zhu, Y.Z., 2019. Co-gasification characteristics of scrap tyre with pine sawdust using thermogravimetric and a whole-tyre gasifier reactor. Energy Procedia 158, 37-42. doi: 10.1016/j.egypro.2019.01.031
    [290]
    Yao, X., Xie, Q., Yang, C., Zhang, B., Wan, C.R., Cui, S.S., 2016. Additivity of pore structural parameters of granular activated carbons derived from different coals and their blends. Int. J. Min. Sci. Technol. 26, 661-667. doi: 10.1016/j.ijmst.2016.05.019
    [291]
    Ndjientcheu Yossa, L.M., Ouiminga, S.K., Sidibe, S.S., Ouedraogo, I.W.K., 2020. Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron: chemical activation as alternative route for preparation of activated carbon from baobab seeds hulls and adsorption of diuron. Sci. Afr. 9, e00476. http://www.sciencedirect.com/science/article/pii/S2468227620302143
    [292]
    Yu, F.B., Zhu, X.D., Jin, W.J., Fan, J.J., Clark, J.H., Zhang, S.C., 2020. Optimized synthesis of granular fuel and granular activated carbon from sawdust hydrochar without binder. J. Clean. Prod. 276, 122711. doi: 10.1016/j.jclepro.2020.122711
    [293]
    Yuan, T.Q., Sun, R.C., 2010. Modification of Straw For Activated Carbon Preparation and Application For the Removal of Dyes from Aqueous solutions. Cereal Straw As a Resource for Sustainable Biomaterials and Biofuels. Amsterdam: Elsevier, 239-252.
    [294]
    Zaini, M.A.A., Zhi, L.L., Hui, T.S., Amano, Y., Machida, M., 2021. Effects of physical activation on pore textures and heavy metals removal of fiber-based activated carbons. Mater. Today: Proc. 39, 917-921. doi: 10.1016/j.matpr.2020.03.815
    [295]
    Zhang, Z., Wang, T., Ke, L., Zhao, X.Q., Ma, C.Y., 2016. Powder-activated semicokes prepared from coal fast pyrolysis: influence of oxygen and steam atmosphere on pore structure. Energy Fuels 30, 896-903. doi: 10.1021/acs.energyfuels.5b02488
    [296]
    Zhang, Z.Q., Chen, Y.G., 2020. Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review. Chem. Eng. J. 382, 122955. doi: 10.1016/j.cej.2019.122955
    [297]
    Ziemba, C., Larivé, O., Reynaert, E., Huisman, T., Morgenroth, E., 2020. Linking transformations of organic carbon to post-treatment performance in a biological water recycling system. Sci. Total. Environ. 721, 137489. doi: 10.1016/j.scitotenv.2020.137489
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (85) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return