Citation: | Amare Abuhay, Wassie Mengie, Tamrat Tesfaye, Gemeda Gebino, Million Ayele, Adane Haile, Derseh Yillie. Opportunities for New Biorefinery Products from Ethiopian Ginning Industry By-products: Current Status and Prospects[J]. Journal of Bioresources and Bioproducts, 2021, 6(3): 195-214. doi: 10.1016/j.jobab.2021.04.001 |
Adl, M., Sheng, K.C., Gharibi, A., 2012. Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments. Appl. Energy 93, 251–260. doi: 10.1016/j.apenergy.2011.11.065
|
Agblevor, F.A., Cundiff, J.S., Mingle, C., Li, W., 2006. Storage and characterization of cotton gin waste for ethanol production. Resour. Conserv. Recycl. 46, 198–216. doi: 10.1016/j.resconrec.2005.07.002
|
Akperov, E.O., Akperov, O.H., 2019. The wastage of the cotton stalks (Gossypium hirsutum L. ) as low-cost adsorbent for removal of the Basic Green 5 dye from aqueous solutions. Appl. Water Sci. 9, 183. doi: 10.1007/s13201-019-1071-0
|
Akpinar, O., Ak, O., Kavas, A., Bakir, U., Yilmaz, L., 2007. Enzymatic production of xylooligosaccharides from cotton stalks. J. Agric, Food Chem, 55, 5544–5551. doi: 10.1021/jf063580d
|
Akpinar, O., Levent, O., Bostanci, S., Bostanci, S., Bakir, U., Yilmaz, L., 2011. The optimization of dilute acid hydrolysis of cotton stalk in xylose production. Appl. Biochem. Biotechnol. 163, 313–325. doi: 10.1007/s12010-010-9040-y
|
Al Afif, R., Pfeifer, C., Pröll, T., 2020. Bioenergy Recovery from Cotton Stalk. Advances in Cotton Research. London: IntechOpen.
|
Bashari, A., Rouhani Shirvan, A., Shakeri, M., 2018. Cellulose-based hydrogels for personal care products. Polym. Adv. Technol. 29, 2853–2867. doi: 10.1002/pat.4290
|
Bedane, G., Egziabher, A.G., 2019. Cotton production potential areas, production trends, research status, gaps and future directions of cotton improvement in Ethiopia. Greener. J. Agric. Sci. 9, 163–170. doi: 10.15580/GJAS.2019.2.040619064
|
Binod, P., Kuttiraja, M., Archana, M., Janu, K.U., Sindhu, R., Sukumaran, R.K., Pandey, A., 2012. High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92, 340–345. doi: 10.1016/j.fuel.2011.07.044
|
Chaudhry, M.R., 1997. Harvesting and ginning of cotton in the world. Proceedings of the Beltwide Cotton Conferences, New Orleans, USA.
|
Chen, H.Z., 2015. Future perspectives for lignocellulose biorefinery engineering. Lignocellulose Biorefinery Engineering. Amsterdam: Elsevier, 247–251.
|
Chen, M.D., Kang, X.Y., Wumaier, T., Dou, J.Q., Gao, B., Han, Y., Xu, G.Q., Liu, Z.Q., Zhang, L., 2013. Preparation of activated carbon from cotton stalk and its application in supercapacitor. J. Solid State Electrochem. 17, 1005–1012. doi: 10.1007/s10008-012-1946-6
|
Coronado, M., Montero, G., García, C., Torres, R., Vázquez, A., Ayala, R., León, J., Pérez, L., Romero, E., 2015. Cotton Stalks For Power Generation in Baja California, Mexico by SWOT Analysis Methodology Energy and Sustainability VI. Medellin, Colombia. Southampton, UK: WIT Press.
|
Das, N., 2018. Biodegradable hydrogels for controlled drug delivery. Polymers and Polymeric Composites: A Reference Series. Cham: Springer International Publishing, 1–41.
|
Deng, H., Lu, J.J., Li, G.X., Zhang, G.L., Wang, X.G., 2011. Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem. Eng. J. 172, 326–334. doi: 10.1016/j.cej.2011.06.013
|
Deng, H., Yang, L., Tao, G.H., Dai, J.L., 2009. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution. J. Hazard. Mater. 166, 1514–1521. doi: 10.1016/j.jhazmat.2008.12.080
|
Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., Sels, B.F., 2013. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ. Sci. 6, 1415–1442. doi: 10.1039/c3ee00069a
|
FAS (Foreign Agricultural Service), 2019. Ethiopia Cotton Production Annual. In: Rachelbick ford (ed. ). Gain Report Addis Ababa: USDA Foreign Agricultural service.
|
Girgis, B.S., Smith, E., Louis, M.M., El-Hendawy, A.N.A., 2009. Pilot production of activated carbon from cotton stalks using H3PO4. J. Anal. Appl. Pyrolysis 86, 180–184. doi: 10.1016/j.jaap.2009.06.002
|
Goksu, E.I., Karamanlioglu, M., Bakir, U., Yilmaz, L., Yilmazer, U., 2007. Production and characterization of films from cotton stalk xylan. J. Agric. Food Chem. 55, 10685–10691. doi: 10.1021/jf071893i
|
Gordon, S., Hsieh, Y.L., 2007. Cotton: Science and Technology. U.K. : Woodhead Publishing Limited.
|
Haleem, N., Arshad, M., Shahid, M., Tahir, M.A., 2014. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydr. Polym. 113, 249–255. doi: 10.1016/j.carbpol.2014.07.023
|
Huang, C.M.Y., Chia, Lim, C.S.S., Nai, Q., Chan, E.W.C., 2017. Synthesis and characterisation of carboxymethyl cellulose from various agricultural wastes. Cellul. Chem. Technol. 51, 665–672. http://www.researchgate.net/publication/320033775_Synthesis_and_Characterisation_of_Carboxymethyl_Cellulose_from_Various_Agricultural_Wastes/download
|
Huang, Y., Wei, X.Y., Zhou, S.G., Liu, M.Y., Tu, Y.Y., Li, A., Chen, P., Wang, Y.T., Zhang, X.W., Tai, H.Z., Peng, L.C., Xia, T., 2015. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresour. Technol. 181, 224–230. doi: 10.1016/j.biortech.2015.01.020
|
Hughes, K., 2019. Developments in the Global Cotton MarketWashington DC: International Cotton Advisory Committee.
|
ICAC, 2015. Global Textile Fibre Demand: Trends and Forecast. International Cotton Advisory Committee. Available at: https://icac.org/Content/EventDocuments/PdfFiles4407c817_a379_45b7_b3ac_c33809c9ae4d/4OS-Global%20Textile%20Fibres%20Demand-%20Trends%20and%20Forecast.pdf
|
ITC, 2015. Cotton Ginning Machinery. Geneva, Switzerland: International Trade Centre.
|
Johnson, J., Kiawu, J., MacDonald, S., Meyer, L., Skelly, C., 2018. The world and United States cotton outlook. Available at: www.researchgate.net/publication/267367914.
|
Jordan, J.H., Easson, M.W., Dien, B., Thompson, S., Condon, B.D., 2019. Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 26, 5959–5979. doi: 10.1007/s10570-019-02533-7
|
Kabir, S.M.F., Sikdar, P.P., Haque, B., Bhuiyan, M.A.R., Ali, A., Islam, M.N., 2018. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. 7, 153–174. doi: 10.1007/s40204-018-0095-0
|
Karthikeyan, O.P., Heimann, K., Muthu, S.S., 2016. Recycling of Solid Waste For Biofuels and Bio-Chemicals. Singapore: Springer Singapore.
|
Keshav, P.K., Shaik, N., Koti, S., Linga, V.R., 2016. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind. Crop. Prod. 91, 323–331. doi: 10.1016/j.indcrop.2016.07.031
|
Khan, M.A., Wahid, A., Ahmad, M., Tahir, M.T., Ahmed, M., Ahmad, S., Hasanuzzaman, M., 2020. World cotton production and consumption: an overview. Cotton Production and Uses. Singapore: Springer Singapore, 1–7.
|
Klasson, K.T., Wartelle, L.H., Lima, I.M., Marshall, W.E., Akin, D.E., 2009. Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene. Bioresour. Technol. 100, 5045–5050. doi: 10.1016/j.biortech.2009.02.068
|
Li, K.Q., Li, Y., Zheng, Z., 2010. Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam. J. Hazard. Mater. 178, 553–559. doi: 10.1016/j.jhazmat.2010.01.120
|
Lugani, Y., Sooch, B.S., 2018. Insights into fungal xylose reductases and its application in xylitol production. Fungal Biology. Cham: Springer International Publishing, 121–144.
|
Ma, J.Z., Li, X.L., Bao, Y., 2015. Advances in cellulose-based superabsorbent hydrogels. RSC Adv. 5, 59745–59757. doi: 10.1039/C5RA08522E
|
Mao, J.J., Li, S.H., Huang, J.Y., Meng, K., Chen, G.Q., Lai, Y.K., 2019. Recent Advances of Multifunctional Cellulose-Based Hydrogels. Cellul. -Based Superabsorbent Hydrogels. DOI: 10.1007/978-3-319-77830-3_5.
|
Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M., Mohamad, R., 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7, 257. doi: 10.3390/nano7090257
|
Mussatto, S.I., 2012. Application of Xylitol in Food Formulations and Benefits For health. d-Xylitol. Berlin, Heidelberg: Springer Berlin Heidelberg, 309–323.
|
Naidu, D.S., Hlangothi, S.P., John, M.J., 2018. Bio-based products from xylan: a review. Carbohydr Polym 179, 28–41. doi: 10.1016/j.carbpol.2017.09.064
|
Rahbar Shamskar, K., Heidari, H., Rashidi, A., 2016. Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind. Crop. Prod. 93, 203–211. doi: 10.1016/j.indcrop.2016.01.044
|
Reddy, N., Yang, Y.Q., 2009. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour. Technol. 100, 3563–3569. doi: 10.1016/j.biortech.2009.02.047
|
Rennie, E.A., Scheller, H.V., 2014. Xylan biosynthesis. Curr. Opin. Biotechnol. 26, 100–107. doi: 10.1016/j.copbio.2013.11.013
|
Ruiz-Ruiz, F., Mancera-Andrade, E.I., Parra-Saldivar, R., Keshavarz, T., Iqbal, H.M.N., 2017. Drug delivery and cosmeceutical applications of poly-lactic acid based novel constructs: a review. Curr. Drug Metab. 18, 914–925. http://ingentaconnect.com/contentone/ben/cdm/2017/00000018/00000010/art00008
|
Sannino, A., Demitri, C., Madaghiele, M., 2009. Biodegradable cellulose-based hydrogels: design and applications. Materials 2, 353–373. doi: 10.3390/ma2020353
|
Shankaran, D.R., 2018. Cellulose Nanocrystals For Health Care applications. Applications of Nanomaterials. Amsterdam: Elsevier, 415–459.
|
Sharholy, M., Ahmad, K., Mahmood, G., Trivedi, R.C., 2008. Municipal solid waste management in Indian cities: a review. Waste Manag. 28, 459–467. doi: 10.1016/j.wasman.2007.02.008
|
Sidhu, G.K., 2015. Engineering properties of cotton stalks (Gossypium hirsitum L. ). Indian J. Agric. Res. 49, 456–459. http://www.cabdirect.org/abstracts/20163069463.html
|
Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J., 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98, 3000–3011. doi: 10.1016/j.biortech.2006.10.022
|
Soni, B., Hassan el, B., Mahmoud, B., 2015. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr. Polym. 134, 581–589. doi: 10.1016/j.carbpol.2015.08.031
|
Tadesse, Y., 2018. Co-pelletization of Torrefied Cotton Stalk and Coffee Husk As an Alternative Energy Source for Cement Pyroprocessing. Ethiopia: Masters of Science Graduate Studies, Addis Ababa University.
|
Tchobanoglous, G., Kreith, F., 2002. Handbook of Solid Waste Management. 2nd ed. New York: McGRAW-HILL.
|
Townsend, T., 2020. World Natural Fibre Production and employment. Handbook of Natural Fibres. Amsterdam: Elsevier, 15–36.
|
Tutus, A., Ezici, A.C., Ates, S., 2010. Chemical, morphological and anatomical properties and evaluation of cotton stalks (Gossypium hirsutum L. ) in pulp industry. Scientific Research and Essays 5, 1553–1560. http://www.cabdirect.org/abstracts/20103218681.html
|
Vaish, B., Sarkar, A., Singh, P., Singh, P.K., Singh, R.P., 2016. Prospects of biomethanation in Indian urban solid waste: stepping towards a sustainable future. DOI: 10.1007/978-981-10-0150-5_1
|
Vázquez, M.J., Alonso, J.L., Domı́nguez, H., Parajó, J.C., 2000. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11, 387–393. doi: 10.1016/S0924-2244(01)00031-0
|
Wang, Q., Cheng, X., Zhang, Y.H., 2012. Biomorphous porous carbon prepared from cotton stalk. Appl. Mech. Mater. 253/254/255, 871–874. http://www.scientific.net/AMM.253-255.871
|
Yalcin-Enis, I., Kucukali-Ozturk, M., Sezgin, H., 2019. Risks and Management of Textile waste. Nanoscience and Biotechnology for Environmental Applications. Cham: Springer International Publishing, 29–53.
|
Zhang, G.L., Zhang, L., Deng, H., Sun, P., 2011. Preparation and characterization of sodium carboxymethyl cellulose from cotton stalk using microwave heating. J. Chem. Technol. Biotechnol. 86, 584–589. doi: 10.1002/jctb.2556
|