Turn off MathJax
Article Contents
Amare Abuhay, Wassie Mengie, Tamrat Tesfaye, Gemeda Gebino, Million Ayele, Adane Haile, Derseh Yillie. Opportunities for New Biorefinery Products from Ethiopian Ginning Industry By-products: Current Status and Prospects[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.04.001
Citation: Amare Abuhay, Wassie Mengie, Tamrat Tesfaye, Gemeda Gebino, Million Ayele, Adane Haile, Derseh Yillie. Opportunities for New Biorefinery Products from Ethiopian Ginning Industry By-products: Current Status and Prospects[J]. Journal of Bioresources and Bioproducts. doi: 10.1016/j.jobab.2021.04.001

Opportunities for New Biorefinery Products from Ethiopian Ginning Industry By-products: Current Status and Prospects

doi: 10.1016/j.jobab.2021.04.001
More Information
  • Corresponding author: Corresponding author. Birorefinery Research Centre, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
    Email address: amare2000et@gmail.com (Amare Abuhay)
  • Received Date: 2020-10-22
  • Accepted Date: 2020-12-22
  • Rev Recd Date: 2020-12-15
  • The global demand for textile products is rapidly increasing due to population growth, rising living standards, economic development, and fast fashion trends. Ethiopian growth and transformation plan (GTP) gives high priorities for the textile and apparel sectors to transform its agriculturally led economy to an industrial-based economy. To achieve this, the number of textile and apparel industries is rapidly expanding. However, the rapid growth in textile industry is generating mountains and mountains of by-products. In this review, possible applications of cotton stalk and cotton ginning waste in a variety of technologies and products are discussed in Ethiopian context. The finding of this study shows that Ethiopian current cotton cultivating area is about 80 000 hm2, even though the country has a potential of about 3 000 810 hm2 land for cotton cultivation. From the current cultivated area, more than 240 000 t of cotton stalk and 9240 t of cotton ginning trash have been generated as a by-product. But only a very little portion of the cotton stalk is being used as a raw fuel for household purposes and a small portion of cotton ginning trash is used for animal feed. Therefore, these underutilized lignocellulosic biomasses can be used as raw materials for producing different high-value biomaterials and thus country can perceive an economic and environmental benefit. A closer look at the structure and composition of the by-products shows that the whole part of cotton stalk and ginning waste can be used as a source of cellulose which can be exploited for conversion into a number of high-value biomaterials. Thus, conversion of the waste into valuable products can make cotton stalk and ginning by-products an attractive raw material for the production of high value bio-products.

     

  • loading
  • [1]
    Adl, M., Sheng, K.C., Gharibi, A., 2012. Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments. Appl. Energy 93, 251–260. doi: 10.1016/j.apenergy.2011.11.065
    [2]
    Agblevor, F.A., Cundiff, J.S., Mingle, C., Li, W., 2006. Storage and characterization of cotton gin waste for ethanol production. Resour. Conserv. Recycl. 46, 198–216. doi: 10.1016/j.resconrec.2005.07.002
    [3]
    Akperov, E.O., Akperov, O.H., 2019. The wastage of the cotton stalks (Gossypium hirsutum L. ) as low-cost adsorbent for removal of the Basic Green 5 dye from aqueous solutions. Appl. Water Sci. 9, 183. doi: 10.1007/s13201-019-1071-0
    [4]
    Akpinar, O., Ak, O., Kavas, A., Bakir, U., Yilmaz, L., 2007. Enzymatic production of xylooligosaccharides from cotton stalks. J. Agric, Food Chem, 55, 5544–5551. doi: 10.1021/jf063580d
    [5]
    Akpinar, O., Levent, O., Bostanci, S., Bostanci, S., Bakir, U., Yilmaz, L., 2011. The optimization of dilute acid hydrolysis of cotton stalk in xylose production. Appl. Biochem. Biotechnol. 163, 313–325. doi: 10.1007/s12010-010-9040-y
    [6]
    Al Afif, R., Pfeifer, C., Pröll, T., 2020. Bioenergy Recovery from Cotton Stalk. Advances in Cotton Research. London: IntechOpen.
    [7]
    Bashari, A., Rouhani Shirvan, A., Shakeri, M., 2018. Cellulose-based hydrogels for personal care products. Polym. Adv. Technol. 29, 2853–2867. doi: 10.1002/pat.4290
    [8]
    Bedane, G., Egziabher, A.G., 2019. Cotton production potential areas, production trends, research status, gaps and future directions of cotton improvement in Ethiopia. Greener. J. Agric. Sci. 9, 163–170. doi: 10.15580/GJAS.2019.2.040619064
    [9]
    Binod, P., Kuttiraja, M., Archana, M., Janu, K.U., Sindhu, R., Sukumaran, R.K., Pandey, A., 2012. High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92, 340–345. doi: 10.1016/j.fuel.2011.07.044
    [10]
    Chaudhry, M.R., 1997. Harvesting and ginning of cotton in the world. Proceedings of the Beltwide Cotton Conferences, New Orleans, USA.
    [11]
    Chen, H.Z., 2015. Future perspectives for lignocellulose biorefinery engineering. Lignocellulose Biorefinery Engineering. Amsterdam: Elsevier, 247–251.
    [12]
    Chen, M.D., Kang, X.Y., Wumaier, T., Dou, J.Q., Gao, B., Han, Y., Xu, G.Q., Liu, Z.Q., Zhang, L., 2013. Preparation of activated carbon from cotton stalk and its application in supercapacitor. J. Solid State Electrochem. 17, 1005–1012. doi: 10.1007/s10008-012-1946-6
    [13]
    Coronado, M., Montero, G., García, C., Torres, R., Vázquez, A., Ayala, R., León, J., Pérez, L., Romero, E., 2015. Cotton Stalks For Power Generation in Baja California, Mexico by SWOT Analysis Methodology Energy and Sustainability VI. Medellin, Colombia. Southampton, UK: WIT Press.
    [14]
    Das, N., 2018. Biodegradable hydrogels for controlled drug delivery. Polymers and Polymeric Composites: A Reference Series. Cham: Springer International Publishing, 1–41.
    [15]
    Deng, H., Lu, J.J., Li, G.X., Zhang, G.L., Wang, X.G., 2011. Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem. Eng. J. 172, 326–334. doi: 10.1016/j.cej.2011.06.013
    [16]
    Deng, H., Yang, L., Tao, G.H., Dai, J.L., 2009. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution. J. Hazard. Mater. 166, 1514–1521. doi: 10.1016/j.jhazmat.2008.12.080
    [17]
    Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., Sels, B.F., 2013. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ. Sci. 6, 1415–1442. doi: 10.1039/c3ee00069a
    [18]
    FAS (Foreign Agricultural Service), 2019. Ethiopia Cotton Production Annual. In: Rachelbick ford (ed. ). Gain Report Addis Ababa: USDA Foreign Agricultural service.
    [19]
    Girgis, B.S., Smith, E., Louis, M.M., El-Hendawy, A.N.A., 2009. Pilot production of activated carbon from cotton stalks using H3PO4. J. Anal. Appl. Pyrolysis 86, 180–184. doi: 10.1016/j.jaap.2009.06.002
    [20]
    Goksu, E.I., Karamanlioglu, M., Bakir, U., Yilmaz, L., Yilmazer, U., 2007. Production and characterization of films from cotton stalk xylan. J. Agric. Food Chem. 55, 10685–10691. doi: 10.1021/jf071893i
    [21]
    Gordon, S., Hsieh, Y.L., 2007. Cotton: Science and Technology. U.K. : Woodhead Publishing Limited.
    [22]
    Haleem, N., Arshad, M., Shahid, M., Tahir, M.A., 2014. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydr. Polym. 113, 249–255. doi: 10.1016/j.carbpol.2014.07.023
    [23]
    Huang, C.M.Y., Chia, Lim, C.S.S., Nai, Q., Chan, E.W.C., 2017. Synthesis and characterisation of carboxymethyl cellulose from various agricultural wastes. Cellul. Chem. Technol. 51, 665–672. http://www.researchgate.net/publication/320033775_Synthesis_and_Characterisation_of_Carboxymethyl_Cellulose_from_Various_Agricultural_Wastes/download
    [24]
    Huang, Y., Wei, X.Y., Zhou, S.G., Liu, M.Y., Tu, Y.Y., Li, A., Chen, P., Wang, Y.T., Zhang, X.W., Tai, H.Z., Peng, L.C., Xia, T., 2015. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresour. Technol. 181, 224–230. doi: 10.1016/j.biortech.2015.01.020
    [25]
    Hughes, K., 2019. Developments in the Global Cotton MarketWashington DC: International Cotton Advisory Committee.
    [26]
    ICAC, 2015. Global Textile Fibre Demand: Trends and Forecast. International Cotton Advisory Committee. Available at: https://icac.org/Content/EventDocuments/PdfFiles4407c817_a379_45b7_b3ac_c33809c9ae4d/4OS-Global%20Textile%20Fibres%20Demand-%20Trends%20and%20Forecast.pdf
    [27]
    ITC, 2015. Cotton Ginning Machinery. Geneva, Switzerland: International Trade Centre.
    [28]
    Johnson, J., Kiawu, J., MacDonald, S., Meyer, L., Skelly, C., 2018. The world and United States cotton outlook. Available at: www.researchgate.net/publication/267367914.
    [29]
    Jordan, J.H., Easson, M.W., Dien, B., Thompson, S., Condon, B.D., 2019. Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 26, 5959–5979. doi: 10.1007/s10570-019-02533-7
    [30]
    Kabir, S.M.F., Sikdar, P.P., Haque, B., Bhuiyan, M.A.R., Ali, A., Islam, M.N., 2018. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. 7, 153–174. doi: 10.1007/s40204-018-0095-0
    [31]
    Karthikeyan, O.P., Heimann, K., Muthu, S.S., 2016. Recycling of Solid Waste For Biofuels and Bio-Chemicals. Singapore: Springer Singapore.
    [32]
    Keshav, P.K., Shaik, N., Koti, S., Linga, V.R., 2016. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind. Crop. Prod. 91, 323–331. doi: 10.1016/j.indcrop.2016.07.031
    [33]
    Khan, M.A., Wahid, A., Ahmad, M., Tahir, M.T., Ahmed, M., Ahmad, S., Hasanuzzaman, M., 2020. World cotton production and consumption: an overview. Cotton Production and Uses. Singapore: Springer Singapore, 1–7.
    [34]
    Klasson, K.T., Wartelle, L.H., Lima, I.M., Marshall, W.E., Akin, D.E., 2009. Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene. Bioresour. Technol. 100, 5045–5050. doi: 10.1016/j.biortech.2009.02.068
    [35]
    Li, K.Q., Li, Y., Zheng, Z., 2010. Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam. J. Hazard. Mater. 178, 553–559. doi: 10.1016/j.jhazmat.2010.01.120
    [36]
    Lugani, Y., Sooch, B.S., 2018. Insights into fungal xylose reductases and its application in xylitol production. Fungal Biology. Cham: Springer International Publishing, 121–144.
    [37]
    Ma, J.Z., Li, X.L., Bao, Y., 2015. Advances in cellulose-based superabsorbent hydrogels. RSC Adv. 5, 59745–59757. doi: 10.1039/C5RA08522E
    [38]
    Mao, J.J., Li, S.H., Huang, J.Y., Meng, K., Chen, G.Q., Lai, Y.K., 2019. Recent Advances of Multifunctional Cellulose-Based Hydrogels. Cellul. -Based Superabsorbent Hydrogels. DOI: 10.1007/978-3-319-77830-3_5.
    [39]
    Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M., Mohamad, R., 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7, 257. doi: 10.3390/nano7090257
    [40]
    Mussatto, S.I., 2012. Application of Xylitol in Food Formulations and Benefits For health. d-Xylitol. Berlin, Heidelberg: Springer Berlin Heidelberg, 309–323.
    [41]
    Naidu, D.S., Hlangothi, S.P., John, M.J., 2018. Bio-based products from xylan: a review. Carbohydr Polym 179, 28–41. doi: 10.1016/j.carbpol.2017.09.064
    [42]
    Rahbar Shamskar, K., Heidari, H., Rashidi, A., 2016. Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind. Crop. Prod. 93, 203–211. doi: 10.1016/j.indcrop.2016.01.044
    [43]
    Reddy, N., Yang, Y.Q., 2009. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour. Technol. 100, 3563–3569. doi: 10.1016/j.biortech.2009.02.047
    [44]
    Rennie, E.A., Scheller, H.V., 2014. Xylan biosynthesis. Curr. Opin. Biotechnol. 26, 100–107. doi: 10.1016/j.copbio.2013.11.013
    [45]
    Ruiz-Ruiz, F., Mancera-Andrade, E.I., Parra-Saldivar, R., Keshavarz, T., Iqbal, H.M.N., 2017. Drug delivery and cosmeceutical applications of poly-lactic acid based novel constructs: a review. Curr. Drug Metab. 18, 914–925. http://ingentaconnect.com/contentone/ben/cdm/2017/00000018/00000010/art00008
    [46]
    Sannino, A., Demitri, C., Madaghiele, M., 2009. Biodegradable cellulose-based hydrogels: design and applications. Materials 2, 353–373. doi: 10.3390/ma2020353
    [47]
    Shankaran, D.R., 2018. Cellulose Nanocrystals For Health Care applications. Applications of Nanomaterials. Amsterdam: Elsevier, 415–459.
    [48]
    Sharholy, M., Ahmad, K., Mahmood, G., Trivedi, R.C., 2008. Municipal solid waste management in Indian cities: a review. Waste Manag. 28, 459–467. doi: 10.1016/j.wasman.2007.02.008
    [49]
    Sidhu, G.K., 2015. Engineering properties of cotton stalks (Gossypium hirsitum L. ). Indian J. Agric. Res. 49, 456–459. http://www.cabdirect.org/abstracts/20163069463.html
    [50]
    Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J., 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98, 3000–3011. doi: 10.1016/j.biortech.2006.10.022
    [51]
    Soni, B., Hassan el, B., Mahmoud, B., 2015. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr. Polym. 134, 581–589. doi: 10.1016/j.carbpol.2015.08.031
    [52]
    Tadesse, Y., 2018. Co-pelletization of Torrefied Cotton Stalk and Coffee Husk As an Alternative Energy Source for Cement Pyroprocessing. Ethiopia: Masters of Science Graduate Studies, Addis Ababa University.
    [53]
    Tchobanoglous, G., Kreith, F., 2002. Handbook of Solid Waste Management. 2nd ed. New York: McGRAW-HILL.
    [54]
    Townsend, T., 2020. World Natural Fibre Production and employment. Handbook of Natural Fibres. Amsterdam: Elsevier, 15–36.
    [55]
    Tutus, A., Ezici, A.C., Ates, S., 2010. Chemical, morphological and anatomical properties and evaluation of cotton stalks (Gossypium hirsutum L. ) in pulp industry. Scientific Research and Essays 5, 1553–1560. http://www.cabdirect.org/abstracts/20103218681.html
    [56]
    Vaish, B., Sarkar, A., Singh, P., Singh, P.K., Singh, R.P., 2016. Prospects of biomethanation in Indian urban solid waste: stepping towards a sustainable future. DOI: 10.1007/978-981-10-0150-5_1
    [57]
    Vázquez, M.J., Alonso, J.L., Domı́nguez, H., Parajó, J.C., 2000. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11, 387–393. doi: 10.1016/S0924-2244(01)00031-0
    [58]
    Wang, Q., Cheng, X., Zhang, Y.H., 2012. Biomorphous porous carbon prepared from cotton stalk. Appl. Mech. Mater. 253/254/255, 871–874. http://www.scientific.net/AMM.253-255.871
    [59]
    Yalcin-Enis, I., Kucukali-Ozturk, M., Sezgin, H., 2019. Risks and Management of Textile waste. Nanoscience and Biotechnology for Environmental Applications. Cham: Springer International Publishing, 29–53.
    [60]
    Zhang, G.L., Zhang, L., Deng, H., Sun, P., 2011. Preparation and characterization of sodium carboxymethyl cellulose from cotton stalk using microwave heating. J. Chem. Technol. Biotechnol. 86, 584–589. doi: 10.1002/jctb.2556
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(6)

    Article Metrics

    Article views (65) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return