Citation: | Eman M. Saad, Reda F. Elshaarawy, Safaa A. Mahmoud, Khalid M. El-Moselhy. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions[J]. Journal of Bioresources and Bioproducts, 2021, 6(3): 223-242. doi: 10.1016/j.jobab.2021.04.002 |
The current article covers the production of chitosan (CS) from shells of shrimp waste and its utilization in the preparation of eco-friendly imprinting and non-imprinting composites with Ulva lactuca algae (Alg). These bio-composites namely (Imp-Alg-25wt% CS) and (NImp-Alg-25wt% CS) were used for removal of Cd(II) ions. Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM) equipped with electron dispersive X-ray (EDX), X-ray diffraction (XRD), and elemental analysis measurements were performed to characterize these bio-composites sorbents. The highest adsorption of these sorbents towards Cd(II) ions was determined as a function of solutions pH, contact time, Cd(II) ion concentration, beads dose, and temperature. The equilibrium experimental data were treated using various mathematical isotherm and kinetic models to approve the maximum bio-sorption capacities of NImp-Alg-25wt% CS and Imp-Alg-25wt% CS (in mg/g). The results exhibited that Imp-Alg-25wt% CS gave higher removal capacity than NImp-Alg-25wt% CS at the same optimum parameters. Pseudo-2nd order dynamic and Langmuir isotherm models were well described in these biosorption processes. Thermodynamically, the removal behavior of Cd(II) using both bio-composites was spontaneous at room temperature. The reusability of the sorbents, NImp-Alg-25wt% CS and Imp-Alg-25wt% CS, showed three cycles. In addition, comparative study was also conducted for Cd(II) removal onto some reported sorbents.
Abd El-Azim, H., El-Sayed Seleman, M.M., Saad, E.M., 2019. Applicability of water-spray electric arc furnace steel slag for removal of Cd and Mn ions from aqueous solutions and industrial wastewaters. J. Environ. Chem. Eng. 7, 102915. doi: 10.1016/j.jece.2019.102915
|
Abdel-Ghani, N.T., El-Chaghaby, G.A., 2014. Biosorption for metal ions removal from aqueous solutions: a review of recent studies. Int. J. Lat. Res. Sci. Technol. 3, 24–42.
|
Ajjabi, L.C., Chouba, L., 2009. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J. Environ. Manag. 90, 3485–3489. doi: 10.1016/j.jenvman.2009.06.001
|
Al Prol, A.E.M., 2014. Biosorption of Some Toxic Heavy Metal Ions from Industrial Wastewater By Some Marine Macro Algae. Egypt: Faculty of Science, Tanta University.
|
Anan, N.A., Hassan, S.M., Saad, E.M., Butler, I.S., Mostafa, S.I., 2011. Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidene chitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III). Carbohyd. Res. 346, 775–793. doi: 10.1016/j.carres.2011.01.014
|
Apiratikul, R., Pavasant, P., 2008. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour. Technol. 99, 2766–2777. doi: 10.1016/j.biortech.2007.06.036
|
Awwad, A.M., Farhan, A.M., 2012. Equilibrium, kinetic and thermodynamics of biosorption of lead(II) copper(II) and cadmium(II) ions from aqueous solutions onto olive leaves powder. Am. J. Chem. 2, 238–244. doi: 10.5923/j.chemistry.20120204.09
|
Benavente, M., 2008. Adsorption of Metallic Ions Onto chitosan: Equilibrium and Kinetic Studies. Royal Institute of Technology, Department of Chemical Engineering and Technology, Division of Transport Phenomena, Stockholm, Sweden, 55.
|
Biswas, Sh., Rashid, T. Ur., Debnath, T., Haque, P., Rahman, M.M., 2020. Application of chitosan-clay biocomposite beads for removal of heavy metal and dye from industrial effluent. J. Compos. Sci., 4, 1–14.
|
Chong, H.L.H., Chia, P.S., Ahmad, M.N., 2013. The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresour. Technol. 130, 181–186. doi: 10.1016/j.biortech.2012.11.136
|
Dalida, M.L.P., Mariano, A.F.V., Futalan, C.M., Kan, C.C., Tsai, W.C., Wan, M.W., 2011. Adsorptive removal of Cu(II) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads. Desalination 275, 154–159. doi: 10.1016/j.desal.2011.02.051
|
Davis, T.A., Volesky, B., Vieira, R.H.S.F., 2000. Sargassum seaweed as biosorbent for heavy metals. Water Res. 34, 4270–4278. doi: 10.1016/S0043-1354(00)00177-9
|
Domszy, J.G., Roberts, G.A.F., 1985. Evaluation of infrared spectroscopic techniques for analysing chitosan. Makromol. Chem. 186, 1671–1677. doi: 10.1002/macp.1985.021860815
|
Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V., 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zh. Fiz. Khim. 21, 1351–1362.
|
Elkhatib, E., Mahdy, A., Sherif, F., Elshemy, W., 2016. Competitive adsorption of cadmium(II) from aqueous solutions onto nanoparticles of water treatment residual. J. Nanomater. 2016, 1–10.
|
Elsayed, S.A., Saad, E.M., Butler, I.S., Mostafa, S.I., 2018. 2-Hydroxynaphthaldehyde chitosan schiff-base; new complexes, biosorbent to remove cadmium(II) ions from aqueous media and aquatic ecotoxicity against green alga Pseudokirchneriella subcapitata. J. Environ. Chem. Eng. 6, 3451–3468. doi: 10.1016/j.jece.2017.12.051
|
El-Sikaily, A., Nemr, A.E., Khaled, A., Abdelwehab, O., 2007. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J. Hazard. Mater. 148, 216–228. doi: 10.1016/j.jhazmat.2007.01.146
|
Esteves, A.J.P., Valdman, E., Leite, S.G.F., 2000. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnol. Lett. 22, 499–502. doi: 10.1023/A:1005608701510
|
Fan, W., Xu, Z., 2011. Biosorption of nickel ion by chitosan-immobilized brown algae Laminaria japonica. Chem. Biochem. Eng. 25, 247–254.
|
Farhan, A.M., Al-Dujaili, A.H., Awwad, A.M., 2013. Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves. Int. J. Ind. Chem. 4, 1–8. doi: 10.1186/2228-5547-4-1
|
Farooq, U., Khan, M.A., Athar, M., Kozinski, J.A., 2011. Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chem. Eng. J. 171, 400–410. doi: 10.1016/j.cej.2011.03.094
|
Feng, N.C., Guo, X.Y., Liang, S., 2009. Adsorption study of copper (II) by chemically modified orange peel. J. Hazard. Mater. 164, 1286–1292. doi: 10.1016/j.jhazmat.2008.09.096
|
Florido, A., Valderrama, C., Arévalo, J.A., Casas, I., Martínez, M., Miralles, N., 2010. Application of two sites non-equilibrium sorption model for the removal of Cu(II) onto grape stalk wastes in a fixed-bed column. Chem. Eng. J. 156, 298–304. doi: 10.1016/j.cej.2009.10.020
|
Fourest, E., Volesky, B., 1996. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ. Sci. Technol. 30, 277–282. doi: 10.1021/es950315s
|
Ghoneim, M.M., El-Desoky, H.S., El-Moselhy, K.M., Amer, A., Abou El-Naga, E.H., Mohamedein, L.I., Al-Prol, A.E., 2014. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egypt. J. Aquat. Res. 40, 235–242. doi: 10.1016/j.ejar.2014.08.005
|
Goldberg, S., 2018. Equations and models describing adsorption processes in soils. SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 489–517.
|
Gupta, K.C., Jabrail, F.H., 2006. Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydr. Polym. 66, 43–54. doi: 10.1016/j.carbpol.2006.02.019
|
Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process. Biochem. 34, 451–465. doi: 10.1016/S0032-9592(98)00112-5
|
Horsfall, M., Spiff, A.I., Abia, A.A., 2004. Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution. Bull. Korean Chem. Soc. 25, 969–976. doi: 10.5012/bkcs.2004.25.7.969
|
Hussain, M.R., Iman, M., Maji, T.K., 2013. Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Inter. J. Adv. Eng. Appl. 2, 4–12.
|
Karaca, M., 2008. Biosorption of Aqueous Pb2+, Cd2+ and Ni2+ Ions By Dunaliella salina, Oocystis sp. Porphyridium cruentum, and Scenedesmus protuberans Prior to Atomic Spectrometric. İZMİR, Turky: Graduate School of Engineering and Sciences of İZMİR Institute of Technology.
|
Krika, F., Azzouz, N., Ncibi, M.C., 2016. Adsorptive removal of cadmium from aqueous solution by cork biomass: equilibrium, dynamic and thermodynamic studies. Arab. J. Chem. 9, S1077–S1083. doi: 10.1016/j.arabjc.2011.12.013
|
Kumar, A.V.A., Hashimi, S.A., Hilal, N., 2008. Investigation of kinetics and mechanism involved in the biosorption of heavy metals on activated sludge. Int. J. Green Energy 5, 313–321. doi: 10.1080/15435070802229068
|
Kumar, D., Gaur, J.P., 2011. Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresour. Technol. 102, 2529–2535. doi: 10.1016/j.biortech.2010.11.061
|
Kuyucak, N., Volesky, B., 1989. The mechanism of cobalt biosorption. Biotechnol. Bioeng. 33, 823–831. doi: 10.1002/bit.260330705
|
Lagergren, S., 1907. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift Für Chemie Und Ind. Der Kolloide 2, 15.
|
Lee, Y.C., Chang, S.P., 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour. Technol. 102, 5297–5304. doi: 10.1016/j.biortech.2010.12.103
|
Li, Z.C., Fan, H.T., Zhang, Y., Chen, M.X., Yu, Z.Y., Cao, X.Q., Sun, T., 2011. Cd(II)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted Sol-gel process for selective removal of cadmium(II) from aqueous solution. Chem. Eng. J. 171, 703–710. doi: 10.1016/j.cej.2011.05.023
|
Liang, S., Guo, X.Y., Feng, N.C., Tian, Q.H., 2009. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions. J. Hazard. Mater. 170, 425–429. doi: 10.1016/j.jhazmat.2009.04.078
|
Liu, H.J., Yang, F., Zheng, Y.M., Kang, J., Qu, J.H., Chen, J.P., 2011. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res. 45, 145–154. doi: 10.1016/j.watres.2010.08.017
|
Liu, L., Li, C., Bao, C.L., Jia, Q., Xiao, P.F., Liu, X.T., Zhang, Q.P., 2012. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93, 350–357. doi: 10.1016/j.talanta.2012.02.051
|
Madala, S., Nadavala, S.K., Vudagandla, S., Boddu, V.M., Abburi, K., 2017. Equilibrium, kinetics and thermodynamics of cadmium (II) biosorption on to composite chitosan biosorbent. Arab. J. Chem. 10, S1883–S1893. doi: 10.1016/j.arabjc.2013.07.017
|
Monier, M., Ayad, D.M., Abdel-Latif, D.A., 2012. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base. Colloids Surfaces B: Biointerfaces 94, 250–258. doi: 10.1016/j.colsurfb.2012.01.051
|
Nessim, R.B., Bassiouny, A.R., Zaki, H.R., Moawad, M.N., Kandeel, K.M., 2011. Biosorption of lead and cadmium using marine algae. Chem. Ecol. 27, 579–594. doi: 10.1080/02757540.2011.607439
|
Ngah, W.S.W., Fatinathan, S., 2010. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J. Environ. Manag. 91, 958–969. doi: 10.1016/j.jenvman.2009.12.003
|
Parlayıcı, S., Pehlivan, E., 2018, Chitosan based a new bio-composite adsorbent for the removal of Cr(VI) from aqueous solution. Ann. Ecol. Environ. Sci., 2, 30–35.
|
Percot, A., Viton, C., Domard, A., 2003. Optimization of chitin extraction from shrimp shells. Biomacromolecules 4, 12–18. doi: 10.1021/bm025602k
|
Pujari, N., Pandharipande, S.I., 2016. Review on synthesis, characterization and bioactivity of chitosan. Int. J. Eng. Sci. Res. Tech. 5, 334.
|
Puvvada, Y.S., Vankayalapati, S., Sukhavasi, S., 2012. Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Int. Curr. Pharm. J. 1, 258–263. doi: 10.3329/icpj.v1i9.11616
|
Rathinam, A., Maharshi, B., Janardhanan, S.K., Jonnalagadda, R.R., Nair, B.U., 2010. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour. Technol. 101, 1466–1470. doi: 10.1016/j.biortech.2009.08.008
|
Saad, E.M., Hassan, H.M., Soltan, M.S., Butler, I.S., Mostafa, S.I., 2018. Removal of copper(II) ions from aqueous media by chemically modified MCM-41 with N-(3- (trimethoxysilyl)propyl)ethylenediamine and its 4-hydroxysalicylidene schiff-base, Environ. Prog. Sus. Ener. 37, 746–760. doi: 10.1002/ep.12771
|
Saravanan, A., Brindha, V., Krishnan, S., 2011. Studies on the structural changes of the biomass Sargassum sp. on metal adsorption. J. Adv. Bioinf. 2, 193–196.
|
Shehab, A.M., Abdelbary, E.S.M., Elsherbiny, I.M., Butler, I.S., Mostafa, S.I., 2019. Efficient adsorption of Cd(ІІ) ions from aqueous media onto a semi-interpenetrating bio-composite. Environ. Prog. Sustainable Energy38: e13253.
|
Sheng, P.X., Ting, Y.P., Chen, J.P., Hong, L., 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275, 131–141. doi: 10.1016/j.jcis.2004.01.036
|
Sofiane, B., Sofia, K.S., 2015. Biosorption of heavy metals by chitin and the chitosan. Der Pharma Chem. 7, 54–63.
|
Temkin, M.I., Pyzhev, V.M., 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. 12, 327–352.
|
Velasco-Garduño, O., Martínez, M.E., Gimeno, M., Tecante, A., Beristain-Cardoso, R., Shirai, K., 2020. Copper removal from wastewater by a chitosan-based biodegradable composite. Environ. Sci. Pollut. Res. 27, 28527–28535. doi: 10.1007/s11356-019-07560-2
|
Wang, J.L., Chen, C., 2014. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129–141. doi: 10.1016/j.biortech.2013.12.110
|
WHO, 2008. Guidelines For Drinking Water Quality: Recommendations. World Health Organization, 3rd ed., Geneva.
|
Yang, L., 2007. Biosorption of Copper and Chromium By Sargassum sp. Determination of Biosorption Properties and Investigation of Metal-Sorbent Interactions. Singapore: National University of Singapore.
|
Zeraatkar, A.K., Ahmadzadeh, H., Talebi, A.F., Moheimani, N.R., McHenry, M.P., 2016. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 181, 817–831. doi: 10.1016/j.jenvman.2016.06.059
|
Zheng, H., Liu, D.H., Zheng, Y., Liang, S.P., Liu, Z., 2009. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 167, 141–147. doi: 10.1016/j.jhazmat.2008.12.093
|
Zheng, H., Wang, Y., Zheng, Y., Zhang, H.M., Liang, S.P., Long, M., 2008. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem. Eng. J. 143, 117–123. doi: 10.1016/j.cej.2007.12.022
|