Citation: | Fanglin Dai, Junrong Luo, Shenghui Zhou, Xingzhen Qin, Detao Liu, Haisong Qi. Porous Hafnium-Containing Acid/Base Bifunctional Catalysts for Efficient Upgrading of Bio-Derived Aldehydes[J]. Journal of Bioresources and Bioproducts, 2021, 6(3): 243-253. doi: 10.1016/j.jobab.2021.04.006 |
Novel organic-inorganic hybrids were synthesized by using HfCl4 and organic ligand 1H-pyrrole-2, 5-dicarboxylic acid (PDCA) via a simple hydrothermal method. The as-prepared Hf-PDCA were characterized by various techniques, such as electron microscope, N2 adsorption/desorption, and X-ray photoelectron spectroscopy. Among them, the porous and nitrogen-containing Hf-PDCA as heterogeneous acid/base bifunctional catalyst was then applied to the catalytic hydrogenation of furfural to produce furfuryl alcohol (FFA). It exhibited excellent catalytic performance, with high conversion (98.8%) and selectivity (98.5%) by using 2-propanol as hydrogen source under a relatively mild condition. Moreover, the Hf-PDCA has strong stability and durability, and can be recovered after the catalyst reaction. In addition, the Hf-PDCA as catalyst can be extended to fabricate corresponding alcohols by catalytic conversion of other biomass derived aldehydes.
Berkessel, A., Schubert, T.J., Müllerm, T.N., 2002. Hydrogenation without a transition-metal catalyst: on the mechanism of the base-catalyzed hydrogenation of ketones. J. Am. Chem. Soc. 124, 8693-8698. doi: 10.1021/ja016152r
|
Bui, L., Luo, H., Gunther, W.R., Román-Leshkov, Y., 2013. Domino reaction catalyzed by zeolites with brønsted and lewis acid sites for the production of -valerolactone from furfural. Angewandte Chemie Int. Ed. 52, 8022-8025. doi: 10.1002/anie.201302575
|
Chen, H., Ruan, H.H., Lu, X.L., Fu, J., Langrish, T., Lu, X.Y., 2018. Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in near-critical isopropanol over Cu/MgO-Al2O3 catalyst. Mol. Catal. 445, 94-101. doi: 10.1016/j.mcat.2017.11.011
|
Chia, M., Dumesic, J.A., 2011. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to -valerolactone over metal oxide catalysts. Chem. Commun. (Camb) 47, 12233-12235. doi: 10.1039/c1cc14748j
|
Corma, A., García, H., Llabrés, i., Xamena, F.X., 2010. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606-4655. doi: 10.1021/cr9003924
|
Dai, F.L., Zhou, S.H., Qin, X.Z., Liu, D.T., Qi, H.S., 2019. Surfactant-assisted synthesis of mesoporous hafnium- imidazoledicarboxylic acid hybrids for highly efficient hydrogen transfer of biomass-derived carboxides. Mol. Catal. 479, 110611. doi: 10.1016/j.mcat.2019.110611
|
Deng, L., Li, J., Lai, D.M., Fu, Y., Guo, Q.X., 2009. Catalytic conversion of biomass-derived carbohydrates into gamma-valerolactone without using an external H2 supply. Angew. Chem. Int. Ed. Engl. 48, 6529-6532. doi: 10.1002/anie.200902281
|
Deng, W.P., Zhang, Q.H., Wang, Y., 2014. Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal. Today 234, 31-41. doi: 10.1016/j.cattod.2013.12.041
|
Gong, W.B., Chen, C., Fan, R.Y., Zhang, H.M., Wang, G.Z., Zhao, H.J., 2018. Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel 231, 165-171. doi: 10.1016/j.fuel.2018.05.075
|
Gupta, D., Ahmad, E., Pant, K.K., Saha, B., 2017. Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars. RSC Adv 7, 41973-41979. doi: 10.1039/C7RA07147G
|
He, J., Li, H., Riisager, A., Yang, S., 2018a. Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides. ChemCatChem 10, 430-438. doi: 10.1002/cctc.201701266
|
He, J., Yang, S., Riisager, A., 2018b. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes. Catal. Sci. Technol. 8, 790-797. doi: 10.1039/C7CY02197F
|
Hussain, S., Akbar, K., Vikraman, D., Liu, H.L., Chun, S.H., Jung, J., 2018. WS2/CoSe2 heterostructure: a designed structure as catalysts for enhanced hydrogen evolution performance. J. Ind. Eng. Chem. 65, 167-174. doi: 10.1016/j.jiec.2018.04.025
|
Kumar, G., Shobana, S., Chen, W.H., Bach, Q.V., Kim, S.H., Atabani, A.E., Chang, J.S., 2017. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem 19, 44-67. doi: 10.1039/C6GC01937D
|
Lange, J.P., van der Heide, E., van Buijtenen, J., Price, R., 2012. Furfural: a promising platform for lignocellulosic biofuels. ChemSusChem 5, 150-166. doi: 10.1002/cssc.201100648
|
Lausund, K.B., Nilsen, O., 2016. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nat. Commun. 7, 13578. doi: 10.1038/ncomms13578
|
Li, F.K., France, L.J., Cai, Z.P., Li, Y.W., Liu, S.J., Lou, H.M., Long, J.X., Li, X.H., 2017a. Catalytic transfer hydrogenation of butyl levulinate to -valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites. Appl. Catal. B: Environ. 214, 67-77. doi: 10.1016/j.apcatb.2017.05.013
|
Li, F.K., Li, Z.M., France, L.J., Mu, J.L., Song, C.H., Chen, Y., Jiang, L.L., Long, J.X., Li, X.H., 2018a. Highly efficient transfer hydrogenation of levulinate esters to -valerolactone over basic zirconium carbonate. Ind. Eng. Chem. Res. 57, 10126-10136. doi: 10.1021/acs.iecr.8b00712
|
Li, H., Fang, Z., He, J., Yang, S., 2017b. Orderly layered Zr-benzylphosphonate nanohybrids for efficient acid-base-mediated bifunctional/cascade catalysis. Chem-SusChem 10, 681-686. doi: 10.1002/cssc.201601570
|
Li, H., He, J., Riisager, A., Saravanamurugan, S., Song, B.A., Yang, S., 2016. Acid-base bifunctional zirconium N-alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides. ACS Catal 6, 7722-7727. doi: 10.1021/acscatal.6b02431
|
Li, H., Liu, X., Yang, T., Zhao, W., Saravanamurugan, S., Yang, S., 2017c. Porous zirconium-furandicarboxylate microspheres for efficient redox conversion of biofu-ranics. ChemSusChem 10, 1761-1770. doi: 10.1002/cssc.201601898
|
Li, H., Yang, T.T., Fang, Z., 2018b. Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Appl. Catal. B: Environ. 227, 79-89. doi: 10.1016/j.apcatb.2018.01.017
|
Li, H.X., Luo, H.S., Zhuang, L., Dai, W.L., Qiao, M.H., 2003. Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts. J. Mol. Catal. A: Chem. 203, 267-275. doi: 10.1016/S1381-1169(03)00368-6
|
Li, H.X., Zhang, S.Y., Luo, H.S., 2004. A Ce-promoted Ni-B amorphous alloy catalyst (Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol. Mater. Lett. 58, 2741-2746. doi: 10.1016/j.matlet.2004.04.003
|
Li, W.K., Cai, Z., Li, H., Shen, Y., Zhu, Y.Q., Li, H.C., Zhang, X.B., Wang, F.M., 2019. Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to -valerolactone. Mol. Catal. 472, 17-26. doi: 10.1016/j.mcat.2019.04.010
|
Luo, H.Y., Consoli, D.F., Gunther, W.R., Román-Leshkov, Y., 2014. Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meer-wein-Ponndorf-Verley reduction of methyl levulinate to -valerolactone. J. Catal. 320, 198-207. doi: 10.1016/j.jcat.2014.10.010
|
Luterbacher, J.S., Rand, J.M., Alonso, D.M., Han, J., Youngquist, J.T., Maravelias, C.T., Pfleger, B.F., Dumesic, J.A., 2014. Nonenzymatic sugar production from biomass using biomass-derived -valerolactone. Science 343, 277-280. doi: 10.1126/science.1246748
|
Nagaraja, B.M., Siva Kumar, V., Shasikala, V., Padmasri, A.H., Sreedhar, B., David Raju, B., Rama Rao, K.S., 2003. A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol. Catal. Commun. 4, 287-293. doi: 10.1016/S1566-7367(03)00060-8
|
Panagiotopoulou, P., Vlachos, D.G., 2014. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Appl. Catal. A: Gen. 480, 17-24. doi: 10.1016/j.apcata.2014.04.018
|
Paulino, P.N., Perez, R.F., Figueiredo, N.G., Fraga, M.A., 2017. Tandem dehydration-transfer hydrogenation reactions of xylose to furfuryl alcohol over zeolite catalysts. Green Chem 19, 3759-3763. doi: 10.1039/C7GC01288H
|
Rojas-Buzo, S., García-García, P., Corma, A., 2018a. Catalytic transfer hydrogenation of biomass-derived carbonyls over hafnium-based metal-organic frameworks. ChemSusChem 11, 432-438. doi: 10.1002/cssc.201701708
|
Rojas-Buzo, S., García-García, P., Corma, A., 2018b. Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chem 20, 3081-3091. doi: 10.1039/C8GC00806J
|
Román-Leshkov, Y., Barrett, C.J., Liu, Z.Y., Dumesic, J.A., 2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447, 982-985. doi: 10.1038/nature05923
|
Rowsell, J.L., Yaghi, O.M., 2005. Strategies for hydrogen storage in metal: organic frameworks. Angew. Chem. Int. Ed. Engl. 44, 4670-4679. doi: 10.1002/anie.200462786
|
Shi, J.J., Wang, Y.Y., Du, W.C., Hou, Z.Y., 2016. Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. Carbon 99, 330-337. doi: 10.1016/j.carbon.2015.12.049
|
Song, J.L., Zhou, B.W., Zhou, H.C., Wu, L.Q., Meng, Q.L., Liu, Z.M., Han, B.X., 2015. Porous zirconium-phytic acid hybrid: a highly efficient catalyst for meerwein-pon-ndorf-verley reductions. Angewandte Chemie Int. Ed. 54, 9399-9403. doi: 10.1002/anie.201504001
|
Tang, B., Dai, W.L., Sun, X.M., Wu, G.J., Guan, N.J., Hunger, M., Li, L.D., 2015. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chem 17, 1744-1755. doi: 10.1039/C4GC02116A
|
Valekar, A.H., Lee, M., Yoon, J.W., Kwak, J., Hong, D.Y., Oh, K.R., Cha, G.Y., Kwon, Y.U., Jung, J., Chang, J.S., Hwang, Y.K., 2020. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catal 10, 3720-3732. doi: 10.1021/acscatal.9b05085
|
Wang, F., Zhang, Z.H., 2017. Catalytic transfer hydrogenation of furfural into furfuryl alcohol over magnetic -Fe2O3@HAP catalyst. ACS Sustainable Chem. Eng. 5, 942-947. doi: 10.1021/acssuschemeng.6b02272
|
Wang, X.L., Hao, J.X., Deng, L.J., Zhao, H.Y., Liu, Q.S., Li, N., He, R.X., Zhi, K.D., Zhou, H.C., 2020. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley reduction. RSC Adv 10, 6944-6952. doi: 10.1039/C9RA10317A
|
Xia, H.A., Xu, S.Q., Hu, H., An, J.H., Li, C.Z., 2018. Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Adv 8, 30875-30886. doi: 10.1039/C8RA05308A
|
Xie, C., Song, J.L., Zhou, B.W., Hu, J.Y., Zhang, Z.R., Zhang, P., Jiang, Z.W., Han, B.X., 2016. Porous hafnium phosphonate: novel heterogeneous catalyst for conversion of levulinic acid and esters into-valerolactone. ACS Sustainable Chem. Eng. 4, 6231-6236. doi: 10.1021/acssuschemeng.6b02230
|
Zhou, S.H., Chen, G.X., Feng, X., Wang, M., Song, T., Liu, D.T., Lu, F.C., Qi, H.S., 2018a. In situ MnOx/N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chem 20, 3593-3603. doi: 10.1039/C8GC01413B
|
Zhou, S.H., Dai, F.L., Chen, Y.A., Dang, C., Zhang, C.Z., Liu, D.T., Qi, H.S., 2019b. Sustainable hydrothermal self-assembly of hafnium-lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural. Green Chem 21, 1421-1431. doi: 10.1039/C8GC03710H
|
Zhou, S.H., Dai, F.L., Xiang, Z.Y., Song, T., Liu, D.T., Lu, F.C., Qi, H.S., 2019a. Zirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl. Catal. B: Environ. 248, 31-43. doi: 10.1016/j.apcatb.2019.02.011
|