Volume 6 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
Fanglin Dai, Junrong Luo, Shenghui Zhou, Xingzhen Qin, Detao Liu, Haisong Qi. Porous Hafnium-Containing Acid/Base Bifunctional Catalysts for Efficient Upgrading of Bio-Derived Aldehydes[J]. Journal of Bioresources and Bioproducts, 2021, 6(3): 243-253. doi: 10.1016/j.jobab.2021.04.006
Citation: Fanglin Dai, Junrong Luo, Shenghui Zhou, Xingzhen Qin, Detao Liu, Haisong Qi. Porous Hafnium-Containing Acid/Base Bifunctional Catalysts for Efficient Upgrading of Bio-Derived Aldehydes[J]. Journal of Bioresources and Bioproducts, 2021, 6(3): 243-253. doi: 10.1016/j.jobab.2021.04.006

Porous Hafnium-Containing Acid/Base Bifunctional Catalysts for Efficient Upgrading of Bio-Derived Aldehydes

doi: 10.1016/j.jobab.2021.04.006
More Information
  • Corresponding author: E-mail addresses: xzhqin2009@163.com (X. Qin); E-mail addresses: qihs@scut.edu.cn (H. Qi)
  • Received Date: 2020-07-20
  • Accepted Date: 2020-09-28
  • Rev Recd Date: 2020-09-20
  • Available Online: 2021-04-17
  • Publish Date: 2021-08-01
  • Novel organic-inorganic hybrids were synthesized by using HfCl4 and organic ligand 1H-pyrrole-2, 5-dicarboxylic acid (PDCA) via a simple hydrothermal method. The as-prepared Hf-PDCA were characterized by various techniques, such as electron microscope, N2 adsorption/desorption, and X-ray photoelectron spectroscopy. Among them, the porous and nitrogen-containing Hf-PDCA as heterogeneous acid/base bifunctional catalyst was then applied to the catalytic hydrogenation of furfural to produce furfuryl alcohol (FFA). It exhibited excellent catalytic performance, with high conversion (98.8%) and selectivity (98.5%) by using 2-propanol as hydrogen source under a relatively mild condition. Moreover, the Hf-PDCA has strong stability and durability, and can be recovered after the catalyst reaction. In addition, the Hf-PDCA as catalyst can be extended to fabricate corresponding alcohols by catalytic conversion of other biomass derived aldehydes.


  • 1 Fanglin Dai and Junrong Luo contributed equally to this work and should be considered co-first authors.
  • loading
  • Berkessel, A., Schubert, T.J., Müllerm, T.N., 2002. Hydrogenation without a transition-metal catalyst: on the mechanism of the base-catalyzed hydrogenation of ketones. J. Am. Chem. Soc. 124, 8693-8698. doi: 10.1021/ja016152r
    Bui, L., Luo, H., Gunther, W.R., Román-Leshkov, Y., 2013. Domino reaction catalyzed by zeolites with brønsted and lewis acid sites for the production of -valerolactone from furfural. Angewandte Chemie Int. Ed. 52, 8022-8025. doi: 10.1002/anie.201302575
    Chen, H., Ruan, H.H., Lu, X.L., Fu, J., Langrish, T., Lu, X.Y., 2018. Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in near-critical isopropanol over Cu/MgO-Al2O3 catalyst. Mol. Catal. 445, 94-101. doi: 10.1016/j.mcat.2017.11.011
    Chia, M., Dumesic, J.A., 2011. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to -valerolactone over metal oxide catalysts. Chem. Commun. (Camb) 47, 12233-12235. doi: 10.1039/c1cc14748j
    Corma, A., García, H., Llabrés, i., Xamena, F.X., 2010. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606-4655. doi: 10.1021/cr9003924
    Dai, F.L., Zhou, S.H., Qin, X.Z., Liu, D.T., Qi, H.S., 2019. Surfactant-assisted synthesis of mesoporous hafnium- imidazoledicarboxylic acid hybrids for highly efficient hydrogen transfer of biomass-derived carboxides. Mol. Catal. 479, 110611. doi: 10.1016/j.mcat.2019.110611
    Deng, L., Li, J., Lai, D.M., Fu, Y., Guo, Q.X., 2009. Catalytic conversion of biomass-derived carbohydrates into gamma-valerolactone without using an external H2 supply. Angew. Chem. Int. Ed. Engl. 48, 6529-6532. doi: 10.1002/anie.200902281
    Deng, W.P., Zhang, Q.H., Wang, Y., 2014. Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal. Today 234, 31-41. doi: 10.1016/j.cattod.2013.12.041
    Gong, W.B., Chen, C., Fan, R.Y., Zhang, H.M., Wang, G.Z., Zhao, H.J., 2018. Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel 231, 165-171. doi: 10.1016/j.fuel.2018.05.075
    Gupta, D., Ahmad, E., Pant, K.K., Saha, B., 2017. Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars. RSC Adv 7, 41973-41979. doi: 10.1039/C7RA07147G
    He, J., Li, H., Riisager, A., Yang, S., 2018a. Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides. ChemCatChem 10, 430-438. doi: 10.1002/cctc.201701266
    He, J., Yang, S., Riisager, A., 2018b. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes. Catal. Sci. Technol. 8, 790-797. doi: 10.1039/C7CY02197F
    Hussain, S., Akbar, K., Vikraman, D., Liu, H.L., Chun, S.H., Jung, J., 2018. WS2/CoSe2 heterostructure: a designed structure as catalysts for enhanced hydrogen evolution performance. J. Ind. Eng. Chem. 65, 167-174. doi: 10.1016/j.jiec.2018.04.025
    Kumar, G., Shobana, S., Chen, W.H., Bach, Q.V., Kim, S.H., Atabani, A.E., Chang, J.S., 2017. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem 19, 44-67. doi: 10.1039/C6GC01937D
    Lange, J.P., van der Heide, E., van Buijtenen, J., Price, R., 2012. Furfural: a promising platform for lignocellulosic biofuels. ChemSusChem 5, 150-166. doi: 10.1002/cssc.201100648
    Lausund, K.B., Nilsen, O., 2016. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nat. Commun. 7, 13578. doi: 10.1038/ncomms13578
    Li, F.K., France, L.J., Cai, Z.P., Li, Y.W., Liu, S.J., Lou, H.M., Long, J.X., Li, X.H., 2017a. Catalytic transfer hydrogenation of butyl levulinate to -valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites. Appl. Catal. B: Environ. 214, 67-77. doi: 10.1016/j.apcatb.2017.05.013
    Li, F.K., Li, Z.M., France, L.J., Mu, J.L., Song, C.H., Chen, Y., Jiang, L.L., Long, J.X., Li, X.H., 2018a. Highly efficient transfer hydrogenation of levulinate esters to -valerolactone over basic zirconium carbonate. Ind. Eng. Chem. Res. 57, 10126-10136. doi: 10.1021/acs.iecr.8b00712
    Li, H., Fang, Z., He, J., Yang, S., 2017b. Orderly layered Zr-benzylphosphonate nanohybrids for efficient acid-base-mediated bifunctional/cascade catalysis. Chem-SusChem 10, 681-686. doi: 10.1002/cssc.201601570
    Li, H., He, J., Riisager, A., Saravanamurugan, S., Song, B.A., Yang, S., 2016. Acid-base bifunctional zirconium N-alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides. ACS Catal 6, 7722-7727. doi: 10.1021/acscatal.6b02431
    Li, H., Liu, X., Yang, T., Zhao, W., Saravanamurugan, S., Yang, S., 2017c. Porous zirconium-furandicarboxylate microspheres for efficient redox conversion of biofu-ranics. ChemSusChem 10, 1761-1770. doi: 10.1002/cssc.201601898
    Li, H., Yang, T.T., Fang, Z., 2018b. Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Appl. Catal. B: Environ. 227, 79-89. doi: 10.1016/j.apcatb.2018.01.017
    Li, H.X., Luo, H.S., Zhuang, L., Dai, W.L., Qiao, M.H., 2003. Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts. J. Mol. Catal. A: Chem. 203, 267-275. doi: 10.1016/S1381-1169(03)00368-6
    Li, H.X., Zhang, S.Y., Luo, H.S., 2004. A Ce-promoted Ni-B amorphous alloy catalyst (Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol. Mater. Lett. 58, 2741-2746. doi: 10.1016/j.matlet.2004.04.003
    Li, W.K., Cai, Z., Li, H., Shen, Y., Zhu, Y.Q., Li, H.C., Zhang, X.B., Wang, F.M., 2019. Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to -valerolactone. Mol. Catal. 472, 17-26. doi: 10.1016/j.mcat.2019.04.010
    Luo, H.Y., Consoli, D.F., Gunther, W.R., Román-Leshkov, Y., 2014. Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meer-wein-Ponndorf-Verley reduction of methyl levulinate to -valerolactone. J. Catal. 320, 198-207. doi: 10.1016/j.jcat.2014.10.010
    Luterbacher, J.S., Rand, J.M., Alonso, D.M., Han, J., Youngquist, J.T., Maravelias, C.T., Pfleger, B.F., Dumesic, J.A., 2014. Nonenzymatic sugar production from biomass using biomass-derived -valerolactone. Science 343, 277-280. doi: 10.1126/science.1246748
    Nagaraja, B.M., Siva Kumar, V., Shasikala, V., Padmasri, A.H., Sreedhar, B., David Raju, B., Rama Rao, K.S., 2003. A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol. Catal. Commun. 4, 287-293. doi: 10.1016/S1566-7367(03)00060-8
    Panagiotopoulou, P., Vlachos, D.G., 2014. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Appl. Catal. A: Gen. 480, 17-24. doi: 10.1016/j.apcata.2014.04.018
    Paulino, P.N., Perez, R.F., Figueiredo, N.G., Fraga, M.A., 2017. Tandem dehydration-transfer hydrogenation reactions of xylose to furfuryl alcohol over zeolite catalysts. Green Chem 19, 3759-3763. doi: 10.1039/C7GC01288H
    Rojas-Buzo, S., García-García, P., Corma, A., 2018a. Catalytic transfer hydrogenation of biomass-derived carbonyls over hafnium-based metal-organic frameworks. ChemSusChem 11, 432-438. doi: 10.1002/cssc.201701708
    Rojas-Buzo, S., García-García, P., Corma, A., 2018b. Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chem 20, 3081-3091. doi: 10.1039/C8GC00806J
    Román-Leshkov, Y., Barrett, C.J., Liu, Z.Y., Dumesic, J.A., 2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447, 982-985. doi: 10.1038/nature05923
    Rowsell, J.L., Yaghi, O.M., 2005. Strategies for hydrogen storage in metal: organic frameworks. Angew. Chem. Int. Ed. Engl. 44, 4670-4679. doi: 10.1002/anie.200462786
    Shi, J.J., Wang, Y.Y., Du, W.C., Hou, Z.Y., 2016. Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. Carbon 99, 330-337. doi: 10.1016/j.carbon.2015.12.049
    Song, J.L., Zhou, B.W., Zhou, H.C., Wu, L.Q., Meng, Q.L., Liu, Z.M., Han, B.X., 2015. Porous zirconium-phytic acid hybrid: a highly efficient catalyst for meerwein-pon-ndorf-verley reductions. Angewandte Chemie Int. Ed. 54, 9399-9403. doi: 10.1002/anie.201504001
    Tang, B., Dai, W.L., Sun, X.M., Wu, G.J., Guan, N.J., Hunger, M., Li, L.D., 2015. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chem 17, 1744-1755. doi: 10.1039/C4GC02116A
    Valekar, A.H., Lee, M., Yoon, J.W., Kwak, J., Hong, D.Y., Oh, K.R., Cha, G.Y., Kwon, Y.U., Jung, J., Chang, J.S., Hwang, Y.K., 2020. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catal 10, 3720-3732. doi: 10.1021/acscatal.9b05085
    Wang, F., Zhang, Z.H., 2017. Catalytic transfer hydrogenation of furfural into furfuryl alcohol over magnetic -Fe2O3@HAP catalyst. ACS Sustainable Chem. Eng. 5, 942-947. doi: 10.1021/acssuschemeng.6b02272
    Wang, X.L., Hao, J.X., Deng, L.J., Zhao, H.Y., Liu, Q.S., Li, N., He, R.X., Zhi, K.D., Zhou, H.C., 2020. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein-Ponndorf-Verley reduction. RSC Adv 10, 6944-6952. doi: 10.1039/C9RA10317A
    Xia, H.A., Xu, S.Q., Hu, H., An, J.H., Li, C.Z., 2018. Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Adv 8, 30875-30886. doi: 10.1039/C8RA05308A
    Xie, C., Song, J.L., Zhou, B.W., Hu, J.Y., Zhang, Z.R., Zhang, P., Jiang, Z.W., Han, B.X., 2016. Porous hafnium phosphonate: novel heterogeneous catalyst for conversion of levulinic acid and esters into-valerolactone. ACS Sustainable Chem. Eng. 4, 6231-6236. doi: 10.1021/acssuschemeng.6b02230
    Zhou, S.H., Chen, G.X., Feng, X., Wang, M., Song, T., Liu, D.T., Lu, F.C., Qi, H.S., 2018a. In situ MnOx/N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chem 20, 3593-3603. doi: 10.1039/C8GC01413B
    Zhou, S.H., Dai, F.L., Chen, Y.A., Dang, C., Zhang, C.Z., Liu, D.T., Qi, H.S., 2019b. Sustainable hydrothermal self-assembly of hafnium-lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural. Green Chem 21, 1421-1431. doi: 10.1039/C8GC03710H
    Zhou, S.H., Dai, F.L., Xiang, Z.Y., Song, T., Liu, D.T., Lu, F.C., Qi, H.S., 2019a. Zirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Appl. Catal. B: Environ. 248, 31-43. doi: 10.1016/j.apcatb.2019.02.011
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (28) PDF downloads(5) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint