Citation: | Lamia Zuniga Linan, Anne C. Mendonça Cidreira, Cláudia Quintino da Rocha, Fabrícia Farias de Menezes, George J de Moraes Rocha, Antônio E Macedo Paiva. Utilization of Acai Berry Residual Biomass for Extraction of Lignocellulosic Byproducts[J]. Journal of Bioresources and Bioproducts, 2021, 6(4): 323-337. doi: 10.1016/j.jobab.2021.04.007 |
According to the National Company of Supplying (CONAB) in 2017 alone, the national production of acai pulp reached 219 855 t, equating to 180 million dollar (USD). Almost 85% of the weight of fruit is constituted by residual biomass, even though researches have highlighted important applications for this biomass, most of it is discarded as organic waste. Thus, it is relevant to envisage in-depth studies about how to use these residues, particularly regarding the environmental impact of its target destination. Nanocrystalline cellulose (CNC) and lignin are organic derivatives obtained through the physical-chemical treatment of lignocellulosic biomass. Both are abundant and currently considered as biopolymers because of their structural characteristics and their diverse applications in food and the medical field. This work presents the mass yields achieved and the physical-chemical characteristics of the lignocellulosic derivatives extracted from the fiber of the acai berry. A statistical design was used to define the influence of process variables as temperature, reaction time and fiber size on the yield of these byproducts. A maximum yield close to 64% of type I CNC, with 45% of crystallinity degree was achieved at the minimum condition of temperature and fiber size. Additionally, through rheological analysis, it was possible to predict the nanocrystal aspect ratios, ranging from 71 to 125. The extracted lignin was rich in methoxy groups, p-coumaryl alcohol and p-coumaric acid, and its structural unit's low state of aggregation can be an indication of low molecular weight, which envisions an appropriate use for this lignin to produce commodity chemicals.
Baker, D.A., Rials, T.G., 2013. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 130, 713-728 doi: 10.1002/app.39273
|
Barros, N.B.D., Spacino, S.I., Bruns, R.E., 2003. How to do experiments: research and development in science and industry. UNICAMP, Campinas.
|
Bercea, M., Navard, P., 2000. Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33, 6011-6016
|
Boluk, Y., Lahiji, R., Zhao, L.Y., McDermott, M.T., 2011. Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surfaces A: Physicochem. Eng. Aspects 377, 297-303
|
CONAB (National Company of Supplying, 2019. Açaí (fruit) Monthly Analysis) Available at https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-eextrativista/analises-do-mercado/historico-mensal-de-acai/item/download/25312_2335ac0327e2c3b9ea5997c46bea0b09/.
|
Czaikoski, A., 2017. Study of the rheological behavior of cellulose nanofibers obtained by different methods Available at http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/322744/1/Czaikoski_Aline_M.pdf/.
|
de Teixeira, E., de Oliveira, C.R., Mattoso, L.H.C., Corrêa, A.C., Paladin, P.D., 2010. Cotton nanofibers obtained under different conditions of acid hydrolysis. Polímeros 20, 264-268
|
del Río, J.C., Lino, A.G., Colodette, J.L., Lima, C.F., Gutiérrez, A., Martínez, Á. T., Lu, F.C., Ralph, J., Rencoret, J., 2015. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy 81, 322-338
|
Donnici, C., Vargas, F., Alves, L., Rodrigues, S., 2013. Process of obtaining cellulose nanocrystals through the hydrolysis reaction with alkaline agent, product and use. Federal University of Minas Gerais Patent BR n. 1020130223735. Available at https://busca.inpi.gov.br/pePI/servlet/ImagemDocumentoPdfController?CodDiretoria=200&NumeroID=719aa2984e9b4f01fa4cbbba550286082ea09796083689055413747a8109c39b&certificado=undefined&numeroProcesso=&ipasDoc=undefined&codPedido=1010235.
|
dos Santos, G., Maia, G., de Sousa, P., da Costa, J., de Figuereiro, R., do Prado, G., 2008. Correlation between antioxidant activity and bioactive compounds of açaí (Euterpe Olerácea Mart. ) commercial pulps. Arch. Latinoam. Nutr 58, 187-192
|
Fang, W., Yang, S., Wang, X.L., Yuan, T.Q., Sun, R.C., 2017. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem 19, 1794-1827
|
FAPESP, 2017. Alternativas de uma fibra vegetal. Revista Fapesp. Available at: https://revistapesquisa.fapesp.br/alternativas-de-uma-fibra-vegetal/.
|
Gouveia, E.R., Nascimento, R.T.D., Souto-Maior, A.M., de Moraes Rocha, G.J., 2009. Validation of methodology for the chemical characterization of sugar cane bagasse. Quim. Nova 32, 1500-1503 doi: 10.1590/S0100-40422009000600026
|
Iotti, M., Gregersen, Ø. W., Moe, S., Lenes, M., 2011. Rheological studies of microfibrillar cellulose water dispersions. J. Polym. Environ. 19, 137-145 doi: 10.1007/s10924-010-0248-2
|
Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497-4559
|
Iwamoto, S., Lee, S.H., Endo, T., 2014. Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym. J. 46, 73-76 doi: 10.1038/pj.2013.64
|
Janković, A., Eraković, S., Ristoscu, C., Mihailescu, N., Duta, L., Visan, A., Stan, G.E., Popa, A.C., Husanu, M.A., Luculescu, C.R., Srdić, V.V., Janaćković, D., Mišković-Stanković, V., Bleotu, C., Chifiriuc, M.C., Mihailescu, I.N., 2015. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J. Mater. Sci. : Mater. Med. 26, 1-14
|
Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R., 2015. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22, 935-969 doi: 10.1007/s10570-015-0551-0
|
Kai, D., Jiang, S., Low, Z.W., Loh, X.J., 2015. Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. J. Mater. Chem. B 3, 6194-6204 doi: 10.1039/C5TB00765H
|
Li, M.C., Wu, Q.L., Song, K.L., Lee, S., Qing, Y., Wu, Y.Q., 2015. Cellulose nanoparticles: structure-morphology-rheology relationships. ACS Sustainable Chem. Eng. 3, 821-832 doi: 10.1021/acssuschemeng.5b00144
|
Menezes, F.F., 2018. Characterization of enzymatic hydrolysis residues from sugarcane bagasse and lignoboots kraft lignin from eucalyptus and of their phenolic resins Available at http://repositorio.unicamp.br/jspui/handle/REPOSIP/331890.
|
Menezes, F.F., da Silva Fernandes, R.H., de Moraes Rocha, G.J., Maciel Filho, R., 2016. Physicochemical characterization of residue from the enzymatic hydrolysis of sugarcane bagasse in a cellulosic ethanol process at pilot scale. Ind. Crop. Prod. 94, 463-470
|
Mradu, G., Saumyakanti, S., Sohini, M., Arup, M., 2012. HPLC Profiles of standard phenolic compounds present in medicinal plants. Int. J. Pharmacogn. Res. 4, 162-167
|
Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R., 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. Part B: Eng. 75, 176-200
|
Pereira, E., Rodrigues, C.V., 2013. Açaí kernel coal (Euterpe Olerácea) chemically modified with sodium hydroxide (NaOH) and its efficiency in the treatment of drinking water. Moju Science Club (CCIM) Annals, 27. Available at http://estatico.cnpq.br/portal/premios/2013/pjc/imagens/publicacoes/ganhadores/EnsinoMedio/1Lugar_1671_Edivan_Nascimento_Pereira.pdf.
|
Pereira, S., Maciel, A., Santos, D., Oliveira, J., 2014. Metal removal from surface waters using açaí charcoal (Euterpe Olerácea). In: International Conference on Engineering and Technology Education Annals, 13. Available at.
|
Pessoa, J.D.C., Arduin, M., Martins, M.A., de Carvalho, J.E.U., 2010. Characterization of açaí (E. oleracea) fruits and its processing residues. Braz. Arch. Biol. Technol. 53, 1451-1460
|
Pye, E., Lora, J., 1991. The Alcell process. A proven alternative to kraft pulping. Tappi J 74, 113-118
|
Revol, J.F., Bradford, H., Giasson, J., Marchessault, R.H., Gray, D.G., 1992. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170-172
|
Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H., 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83-92
|
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2012. Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure (LAP) Available at https://www.nrel.gov/docs/gen/fy13/42618.pdf/.
|
Tortora, M., Cavalieri, F., Mosesso, P., Ciaffardini, F., Melone, F., Crestini, C., 2014. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules 15, 1634-1643 doi: 10.1021/bm500015j
|
Tursi, A., 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 6, 962-979 doi: 10.18331/brj2019.6.2.3
|
Wu, Q., Li, X., Li, Q., Wang, S., Luo, Y., 2019. Estimation of aspect ratio of cellulose nanocrystals by viscosity measurement: influence of aspect ratio distribution and ionic strength. Polymers 11, 781-792 doi: 10.3390/polym11050781
|
Xu, X.Z., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D., Wiesenborn, D.P., 2013. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5, 2999-3009 doi: 10.1021/am302624t
|
Yuyama, L.K.O., Aguiar, J.P.L., Silva Filho, D.F., Yuyama, K., de Jesus Varejão, M., Fávaro, D.I.T., Vasconcellos, M.B.A., Pimentel, S.A., Caruso, M.S.F., 2011. Physicochemical characterization of açaí juice of Euterpe precatoria Mart. From different Amazonian ecosystems. Acta Amaz 41, 545-552 doi: 10.1590/S0044-59672011000400011
|