Citation: | Linhu Ding, Xiaoshuai Han, Lihua Cao, Yiming Chen, Zhe Ling, Jingquan Han, Shuijian He, Shaohua Jiang. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 190-200. doi: 10.1016/j.jobab.2021.11.002 |
Researches on novel natural fibers in polymer-based composites will help promote the invention of novel reinforcement and expand their possible applications. Herein, in this study, novel cellulosic fibers were extracted from the stem of manau rattan (Calamus manan) by mechanical separation. The chemical, thermal, mechanical and morphological properties of manau rattan fibers were comprehensively analyzed and studied by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), single fiber tensile test and scanning electron microscopy (SEM). Component analysis results showed that the cellulose, hemicellulose and lignin contents of C. manan fibers were 42wt%, 20wt%, and 27wt%, respectively. The surface of the rattan fiber was hydrophilic according to the oxygen/carbon ratio of 0.49. The C. manan has a crystalline index of 48.28%, inducing a maximum degradation temperature of 332.8 ℃. This reveals that it can be used as a reinforcement for thermoplastic composites whose operating temperature is below 300 ℃. The average tensile strength can reach (273.28 ± 52.88) MPa, which is beneficial to improve the mechanical properties of rattan fiber reinforced composites. The SEM images displayed the rough surface of the fiber, which helped to enhance the interfacial adhesion between the fibers and matrices in composites. These results indicate the great potential of C. manan fibers as the reinforcement in polymer-based composites.
Abdal-Hay, A., Suardana, N.P.G., Jung, D.Y., Choi, K.S., Lim, J.K., 2012. Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int. J. Precis. Eng. Manuf. 13, 1199–1206. doi: 10.1007/s12541-012-0159-3
|
Alaaeddin, M.H., Sapuan, S.M., Zuhri, M.Y.M., Zainudin, E.S., AL- Oqla, F.M., 2019. Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Compos. B: Eng. 176, 107342. doi: 10.1016/j.compositesb.2019.107342
|
Al-Khanbashi, A., Al-Kaabi, K., Hammami, A., 2005. Date palm fibers as polymeric matrix reinforcement: Fiber characterization. Polym. Compos. 26, 486–497. doi: 10.1002/pc.20118
|
Al-Oqla, F.M., El-Shekeil, Y.A., 2019. Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. J. Clean. Prod. 222, 865–870. doi: 10.1016/j.jclepro.2019.03.042
|
Al-Oqla, F.M., Hayajneh, M.T., 2021. A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. Int. J. Sustain. Eng. 14, 1043–1048. doi: 10.1080/19397038.2020.1822951
|
Al-Oqla, F.M., Hayajneh, M.T., Fares, O., 2019. Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. J. Clean. Prod. 241, 118256. doi: 10.1016/j.jclepro.2019.118256
|
Al-Oqla, F.M., Sapuan, S.M., 2014. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354. doi: 10.1016/j.jclepro.2013.10.050
|
Al-Oqla, F.M., Sapuan, S.M., Ishak, M.R., Nuraini, A.A., 2014. A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10, 299–312.
|
Al-Oqla, F.M., Sapuan, S.M., Ishak, M.R., Nuraini, A.A., 2016. A decision-making model for selecting the most appropriate natural fiber: polypropylene-based composites for automotive applications. J. Compos. Mater. 50, 543–556. doi: 10.1177/0021998315577233
|
Béakou, A., Ntenga, R., Lepetit, J., Atéba, J.A., Ayina, L.O., 2008. Physico-chemical and microstructural characterization of "Rhectophyllum camerunense" plant fiber. Compos. A: Appl. Sci. Manuf. 39, 67–74. doi: 10.1016/j.compositesa.2007.09.002
|
Belouadah, Z., Ati, A., Rokbi, M., 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr. Polym. 134, 429–437. doi: 10.1016/j.carbpol.2015.08.024
|
Cárdenas-R, J.P., Cea, M., Santín, K., Valdés, G., Hunter, R., Navia, R., 2018. Characterization and application of a natural polymer obtained from Hydrangea macrophylla as a thermal insulation biomaterial. Compos. B: Eng. 132, 10–16. doi: 10.1016/j.compositesb.2017.07.086
|
Dalmis, R., Köktaş, S., Seki, Y., Kılınç, A. Ç., 2020. Characterization of a new natural cellulose based fiber from Hierochloe Odarata. Cellulose 27, 127–139. doi: 10.1007/s10570-019-02779-1
|
de Rosa, I.M., Kenny, J.M., Puglia, D., Santulli, C., Sarasini, F., 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos. Sci. Technol. 70, 116–122. doi: 10.1016/j.compscitech.2009.09.013
|
de Silva, F.D.A., Chawla, N., Filho, R.D.D.T., 2008. Tensile behavior of high performance natural (sisal) fibers. Compos. Sci. Technol. 68, 3438–3443. doi: 10.1016/j.compscitech.2008.10.001
|
Doronina, Y.V., Ryabovaya, V.O., 2013. A method of structural and functional synthesis in problems of restructuring environmental monitoring systems. J. Autom. Inf. Sci. 45, 63–74. doi: 10.1615/JAutomatInfScien.v45.i11.80
|
Fiore, V., Scalici, T., Valenza, A., 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym. 106, 77–83.
|
Han, X.S., Wang, Z.X., Ding, L.H., Chen, L., Wang, F., Pu, J.W., Jiang, S.H., 2021. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.03.044.
|
Han, X.S., Ye, Y.H., Lam, F., Pu, J.W., Jiang, F., 2019. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 7, 27023–27031. doi: 10.1039/C9TA11118B
|
Hyness, N.R.J., Vignesh, N.J., Senthamaraikannan, P., Saravanakumar, S.S., Sanjay, M.R., 2018. Characterization of new natural cellulosic fiber from Heteropogon contortus plant. J. Nat. Fibers 15, 146–153. doi: 10.1080/15440478.2017.1321516
|
Ilangovan, M., Guna, V., Hu, C.Y., Nagananda, G.S., Reddy, N., 2018. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind. Crops Prod. 112, 556–560. doi: 10.1016/j.indcrop.2017.12.042
|
Indran, S., Raj, R.E., 2015. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 117, 392–399. doi: 10.1016/j.carbpol.2014.09.072
|
Ismail, H., Othman, N., Komethi, M., 2012. Curing characteristics and mechanical properties of rattan-powder-filled natural rubber composites as a function of filler loading and silane coupling agent. J. Appl. Polym. Sci. 123, 2805–2811. doi: 10.1002/app.34730
|
Jiménez, L., Rodríguez, A., Pérez, A., Moral, A., Serrano, L., 2008. Alternative raw materials and pulping process using clean technologies. Ind. Crops Prod. 28, 11–16. doi: 10.1016/j.indcrop.2007.12.005
|
Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., Saravanakumar, S.S., 2019a. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr. Polym. 217, 178–189. doi: 10.1016/j.carbpol.2019.04.063
|
Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., Saravanakumar, S.S., 2019b. Isolation and characterization of cellulose fibers from Thespesia populnea barks: a study on physicochemical and structural properties. Int. J. Biol. Macromol. 129, 396–406. doi: 10.1016/j.ijbiomac.2019.02.044
|
Kılınç, A. Ç., Köktaş, S., Seki, Y., Atagür, M., Dalmış, R., Erdoğan, Ü. H., Göktaş, A.A., Seydibeyoğlu, M. Ö., 2018. Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Compos. B: Eng. 140, 1–8. doi: 10.1016/j.compositesb.2017.11.059
|
Kim, U.J., Eom, S.H., Wada, M., 2010. Thermal decomposition of native cellulose: Influence on crystallite size. Polym. Degrad. Stab. 95, 778–781. doi: 10.1016/j.polymdegradstab.2010.02.009
|
Kumar, S., Prasad, L., Patel, V.K., Kumar, V., Kumar, A., Yadav, A., Winczek, J., 2021. Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites. Polymers 13, 1369. doi: 10.3390/polym13091369
|
Li, R.J., Fei, J.M., Cai, Y.R., Li, Y.F., Feng, J.Q., Yao, J.M., 2009. Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr. Polym. 76, 94–99. doi: 10.1016/j.carbpol.2008.09.034
|
Liu, L., Xu, W.H., Ding, Y.C., Agarwal, S., Greiner, A., Duan, G.G., 2020. A review of smart electrospun fibers toward textiles. Compos. Commun. 22, 100506. doi: 10.1016/j.coco.2020.100506
|
Manimaran, P., Senthamaraikannan, P., Sanjay, M.R., Marichelvam, M.K., Jawaid, M, 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 181, 650–658. doi: 10.1016/j.carbpol.2017.11.099
|
Milan, S., Christopher, T., Manivannan, A., Mayandi, K., Jappes, J.T.W., 2021. Mechanical and thermal properties of a novel Spinifex Littoreus fiber reinforced polymer composites as an alternate for synthetic glass fiber composites. Mater. Res. Express 8, 035301. doi: 10.1088/2053-1591/abe73d
|
Patt, R., Kordsachia, O., Fehr, J., 2006. European hardwoods versus Eucalyptus globulus as a raw material for pulping. Wood Sci. Technol. 40, 39–48. doi: 10.1007/s00226-005-0042-9
|
Prata, J.C., Godoy, V., da Costa, J.P., Calero, M., Martín-Lara, M.A., Duarte, A.C., Rocha-Santos, T., 2021. Microplastics and fibers from three areas under different anthropogenic pressures in Douro river. Sci. Total. Environ. 776, 145999. doi: 10.1016/j.scitotenv.2021.145999
|
Reddy, N., Yang, Y.Q., 2005. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46, 5494–5500. doi: 10.1016/j.polymer.2005.04.073
|
Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P., Baskaran, R., 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92, 1928–1933. doi: 10.1016/j.carbpol.2012.11.064
|
Sathishkumar, T.P., Navaneethakrishnan, P., Shankar, S., Rajasekar, R., Rajini, N., 2013. Characterization of natural fiber and composites: a review. J. Reinf. Plast. Compos. 32, 1457–1476. doi: 10.1177/0731684413495322
|
Seki, Y., Sarikanat, M., Sever, K., Durmuşkahya, C., 2013. Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos. B: Eng. 44, 517–523. doi: 10.1016/j.compositesb.2012.03.013
|
Seki, Y., Seki, Y., Sarikanat, M., Sever, K., Durmuşkahya, C., Bozacı, E., 2016. Evaluation of linden fibre as a potential reinforcement material for polymer composites. J. Ind. Text. 45, 1221–1238. doi: 10.1177/1528083714557055
|
Sgriccia, N., Hawley, M.C., Misra, M., 2008. Characterization of natural fiber surfaces and natural fiber composites. Compos. A: Appl. Sci. Manuf. 39, 1632–1637. doi: 10.1016/j.compositesa.2008.07.007
|
Shanmugasundaram, N., Rajendran, I., Ramkumar, T., 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr. Polym. 195, 566–575. doi: 10.1016/j.carbpol.2018.04.127
|
Sinha, A.K., Bhattacharya, S., Narang, H.K., 2021. Abaca fibre reinforced polymer composites: a review. J. Mater. Sci. 56, 4569–4587.
|
Vinod, A., Vijay, R., Lenin Singaravelu, D., Sanjay, M.R., Siengchin, S., Moure, M.M., 2019. Characterization of untreated and alkali treated natural fibers extracted from the stem of. Catharanthus roseus 6, 085406.
|
Wang, Z.X., Han, X.S., Zhou, Z.J., Meng, W.Y., Han, X.W., Wang, S.J., Pu, J.W., 2021. Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931. doi: 10.1016/j.compscitech.2021.108931
|
Xu, Y.S., de Adekunle, K., Ramamoorthy, S.K., Skrifvars, M., Hakkarainen, M., 2020. Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Compos. Commun. 22, 100536.
|
Yao, K.Q., Chen, J., Li, P., Duan, G.G., Hou, H.Q., 2019. Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend. Compos. Commun. 15, 92–95.
|
Yusuff, I., Sarifuddin, N., Ali, A.M., 2021. A review on kenaf fiber hybrid composites: mechanical properties, potentials, and challenges in engineering applications. Prog. Rubber Plast. Recycl. Technol. 37, 66–83.
|