Citation: | Ruoshi Gao, Yi Jing, Yeyan Ni, Qiwen Jiang. Effects of chitin nanocrystals on coverage of coating layers and water retention of coating color[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 201-210. doi: 10.1016/j.jobab.2021.11.003 |
Aulin, C., Gällstedt, M., Lindström, T., 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17, 559–574. doi: 10.1007/s10570-009-9393-y
|
Bezrodnikh, E.A., Tikhonov, V.E., Lopezllorca, L.V., 2010. Separation of chitin from seafood wastes and preparation of chitosan. Fish Industry 2, 9–12.
|
Boger, D.V., 1977. A highly elastic constant-viscosity fluid. J. Non Newton. Fluid Mech. 3, 87–91. doi: 10.1016/0377-0257(77)80014-1
|
Chen, Q.J., Dong, X.F., Zhou, L.L., Zheng, X.M., Wang, P., 2017. Application of nano carboxymethyl starch in micro weight coated paper. Chem. Ind. For. Prod. 37, 107–112.
|
Chen, S., Jiang, S.F., Jiang, H., 2020. A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. J. Bioresour. Bioprod. 5, 238–247. doi: 10.1016/j.jobab.2020.10.002
|
Dimic-Misic, K., Gane, P.A.C., Paltakari, J., 2013. Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind. Eng. Chem. Res. 52, 16066–16083. doi: 10.1021/ie4028878
|
Fan, Y.M., Saito, T., Isogai, A., 2008. Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin. Biomacromolecules 9, 192–198. doi: 10.1021/bm700966g
|
Focher, B., Beltrame, P.L., Naggi, A., Torri, G., 1990. Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr. Polym. 12, 405–418. doi: 10.1016/0144-8617(90)90090-F
|
Grankvist, T., Kokko, A., Anaes, P.H., Rutanen, A., 2001. New approach in water retention measurement. Wochenblatt Fur Pap 129, 1078–1091.
|
Hamada, H., Bousfield, D.W., 2010. Nanofibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets. Novemb 9, 25–29 2010.
|
Hiscock, D.F., Merrifield, T.B., 2000. Coating immobilization using soy protein polymers: technical concepts and importance to quality. J. Korea Tech. Assoc. Pulp Pap. Ind. 32, 7.
|
Huang, Y.W., Niu, X.J., Bi, F., 2012. Development of paper's surface picking and printability. J. Xi'an Univ. Technol. 28, 189–192.
|
Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., Yano, H., 2009. Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules 10, 1584–1588. doi: 10.1021/bm900163d
|
Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85. doi: 10.1039/C0NR00583E
|
Jäder, J., Engström, G., 2004. Frequency analysis evaluation of base sheet structure in a pilot coating trial using different thickener systems. Nord. Pulp Pap. Res. J. 19, 360–365. doi: 10.3183/npprj-2004-19-03-p360-365
|
Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V., Tamura, H., 2010. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 82, 227–232. doi: 10.1016/j.carbpol.2010.04.074
|
Jiang, J., Chen, H., Liu, L., Yu, J., Fan, Y.M., Saito, T., Isogai, A., 2020. Influence of chemical and enzymatic TEMPO-mediated oxidation on chemical structure and nanofibrillation of lignocellulose. ACS Sustainable Chem. Eng. 8, 14198–14206. doi: 10.1021/acssuschemeng.0c05291
|
Jiang, J., Ye, W.B., Liu, L., Wang, Z.G., Fan, Y.M., Saito, T., Isogai, A., 2017. Cellulose nanofibers prepared using the TEMPO/laccase/O2 system. Biomacromolecules 18, 288–294. doi: 10.1021/acs.biomac.6b01682
|
Li, M.C., Wu, Q.L., Song, K.L., Lee, S., Qing, Y., Wu, Y.Q., 2015. Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustainable Chem. Eng. 3, 821–832. doi: 10.1021/acssuschemeng.5b00144
|
Liu, J., 2004. The hydrokinetics of the coatings—the applied technology. East China Pulp Pap. Ind. 35, 35–40.
|
Liu, J.G., Peng, J.J., Wang, B.S., Cao, Z.L., 2003. Effect of CMC on coating water retention property. China Pulp Pap 22, 3–6.
|
Liu, L.Q., Seta, F.T., An, X.Y., Yang, J., Zhang, W., Dai, H.Q., Cao, H.B., Xu, Q.L., Liu, H.B., 2020. Facile isolation of colloidal stable chitin nano-crystals from Metapenaeus ensis shell via solid maleic acid hydrolysis and their application for synthesis of silver nanoparticles. Cellulose 27, 9853–9875. doi: 10.1007/s10570-020-03499-7
|
Miao, X.R., Lin, J.Y., Bian, F.G., 2020. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J. Bioresour. Bioprod. 5, 26–36. doi: 10.1016/j.jobab.2020.03.003
|
Ni, Y.Y., Yi, J., 2019. Research on improving the surface hydrophobicity of paper coated by poly-vinyl alcohol -itaconic acid grafting copolymer. Prog. Org. Coat. 131, 152–158. doi: 10.1016/j.porgcoat.2019.02.006
|
Oh, K., Lee, J.H., Im, W., Rajabi Abhari, A., Lee, H.L., 2017. Role of cellulose nanofibrils in structure formation of pigment coating layers. Ind. Eng. Chem. Res. 56, 9569–9577. doi: 10.1021/acs.iecr.7b02750
|
Okita, Y., Saito, T., Isogai, A., 2010. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11, 1696–1700. doi: 10.1021/bm100214b
|
Ou, H.J., Chen, G., Jiang, C.Y., Wang, C.C., Liu, Y., Che, M.Y., 2017. Preparation of cellulose nanofibrils and its application in paper coating. Pap. Sci. Technol. 36, 57–60.
|
Pang, J.J., Zhao, C.S., Han, W.J., 2009. Effect of water retention value on the performance of coating and the coated paper. Pap. Sci. Technol. 28, 81–83 87.
|
Patel, I., Opietnik, M., Böhmdorfer, S., Becker, M., Potthast, A., Saito, T., Isogai, A., Rosenau, T., 2010. Side reactions of 4-acetamido-TEMPO as the catalyst in cellulose oxidation systems. Holzforschung 64, 549–554.
|
Rojo, E., Alonso, M.V., Domínguez, J.C., Saz-Orozco, B.D., Oliet, M., Rodriguez, F., 2013. Alkali treatment of viscose cellulosic fibers from Eucalyptus wood: Structural, morphological, and thermal analysis. J. Appl. Polym. Sci. 130, 2198–2204. doi: 10.1002/app.39399
|
Roy, C., Budtova, T., Navard, P., Bedue, O., 2001. Structure of cellulose-soda solutions at low temperatures. Biomacromolecules 2, 687–693. doi: 10.1021/bm010002r
|
Saito, T., Isogai, A., 2004. TEMPO-mediated oxidation of native cellulose. the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983–1989. doi: 10.1021/bm0497769
|
Saito, T., Kimura, S., Nishiyama, Y., Isogai, A., 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491. doi: 10.1021/bm0703970
|
Salaberria, A.M., Fernandes, S.C.M., Diaz, R.H., Labidi, J., 2015. Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. Niger. Carbohydr. Polym. 116, 286–291. doi: 10.1016/j.carbpol.2014.04.047
|
Singhal, A.K., Kumar, S., Gupta, S., Bhardwaj, N.K., Varadhan, R., 2015. Calcium sulphate as pigment for improved functional properties of coated paper. Prog. Org. Coat. 79, 31–36. doi: 10.1016/j.porgcoat.2014.11.002
|
Sun, Y., Han, S., Ma, L., Cai, L.Y., Zhang, Y.H., 2018. Effect of acid and alkali concentration on the extracting process of bigeye tuna skin gelatin. Food Ferment. Ind. 44, 73–81.
|
Tang, Y.J., Mosseler, J.A., He, Z.B., Ni, Y.H., 2014. Imparting cellulosic paper of high conductivity by surface coating of dispersed graphite. Ind. Eng. Chem. Res. 53, 10119–10124. doi: 10.1021/ie500558f
|
Tsaih, M.L., Chen, R.H., 2003. The effect of reaction time and temperature during heterogenous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan. J. Appl. Polym. Sci. 88, 2917–2923. doi: 10.1002/app.11986
|
Wang, Y.L., Zhang, H.W., 2009. Preparation of phosphorylated oxidized starch and its application in coating paper. Pap. Sci. Technol. 28, 66–69.
|
Wu, S.B., Liu, J.Y., Yan, Q.S., Sun, Q.Y., 2011. Study on dissolving out law and physical and chemical properties of elm phloem extractives. Pap. Sci. Technol. 30, 1–9.
|
Xu, H., Zhu, Y.L., Dai, H.Q., 2017. Properties of carboxymethyl modified nanofibrillated cellulose and its influence on pigment dispersion and coating property. Trans. China Pulp Pap. 32, 16–21.
|
Xu, L., Liu, J.G., 2010. A new method for measuring roughening of base paper during coating. China Pulp Pap 29, 36–40.
|
Yang, S.J., Tang, Y.J., Wang, J.M., Kong, F.G., Zhang, J.H., 2014. Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind. Eng. Chem. Res. 53, 13980–13988. doi: 10.1021/ie502125s
|
Ye, W.B., Hu, Y.L., Ma, H.Z., Liu, L., Yu, J., Fan, Y.M., 2020. Comparison of cast films and hydrogels based on chitin nanofibers prepared using TEMPO/NaBr/NaClO and TEMPO/NaClO/NaClO2 systems. Carbohydr. Polym. 237, 116125. doi: 10.1016/j.carbpol.2020.116125
|
Zhong, T.H., Wolcott, M.P., Liu, H., Wang, J.W., 2019. Developing chitin nanocrystals for flexible packaging coatings. Carbohydr. Polym. 226, 115276. doi: 10.1016/j.carbpol.2019.115276
|
Zinatloo-Ajabshir, S., Morassaei, M.S., Amiri, O., Salavati-Niasari, M., Foong, L.K., 2020. Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196. doi: 10.1016/j.ceramint.2020.03.014
|