Volume 7 Issue 2
May  2022
Turn off MathJax
Article Contents
Gotore Obey, Munodawafa Adelaide, Rameshprabu Ramaraj. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 109-115. doi: 10.1016/j.jobab.2021.12.001
Citation: Gotore Obey, Munodawafa Adelaide, Rameshprabu Ramaraj. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 109-115. doi: 10.1016/j.jobab.2021.12.001

Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment

doi: 10.1016/j.jobab.2021.12.001
More Information
  • Corresponding author: E-mail address: gotoreobey@gmail.com (G. Obey)
  • Received Date: 2021-10-19
  • Accepted Date: 2021-12-07
  • Rev Recd Date: 2021-12-01
  • Available Online: 2022-05-06
  • Publish Date: 2022-05-01
  • This study of Matamba shell reviled them as material with outstanding surface morphology, elemental and kinetic mechanism characteristics. Mutamba biochar revealed irregular honeycomb morphological transformation from the field emission scanning electron microscope after pyrolysis at 600 ℃ for 2 h. Energy dispersive X-ray spectroscopy revealed high content of carbon (72.68wt%), nitrogen (14.14wt%) and oxygen (10.35wt%) on the biochar surface. The available oxygen composition provides enough polarization ability for high iodine adsorption (43.65 mmol/g) from the experimental data which were significantly induced by weak van der Waals forces and π-π and π-stacking interaction on the biochar surface and its micropores. The carbon content above 50% in ash rich biochar with an increase in pyrolysis can be ascribed to elements incorporated into aromatic or heterocyclic ring system established through preferential loss of oxygen at 600 ℃ pyrolysis. The adsorption kinetics were conducted to evaluate the equilibrium adsorption of the novel material and Elovich and Intra particle diffusion better described well the kinetic adsorption through Iodine adsorption than pseudo first order and pseudo second order models. Elovich was the best model to fit the adsorption kinetics with 45.41 mmol/(g·min) adsorption rate. The second order Akaike Information Criterion (38.26), adjusted correlation coefficient R2 (0.9898) and sum of squares error (1.442) were used to fit the data. Consequently, the biochar in this study can serve as a promising green material for efficiently removing organic and inorganic contaminants from the environmental water ecosystem. The environmental significance of biochar will be of fundamental meaning to rural areas in developing countries in aquatic contaminants immobilization for water reuse. These results indicate that the Matamba fruit shells has the possibility to be used as an eco-friendly and low-cost effective adsorbent for anionic dye removal from the water environment. They also demonstrate the immense potential of the fruit shell waste to produce high performance biochar as an alternative green carbonaceous material that can be applied to adsorb organic and inorganic unwanted constituencies from wastewater as well as improvement of waste management in developing countries at a low cost. Its application as a pathway mitigation for diminishing greenhouse gasses and reducing the global warming potential could not be underestimated.


  • loading
  • Abechi, E.S., Gimba, C.E., Uzairu, A., Kagbu, J.A., 2011. Kinetics of adsorption of methylene blue onto activated carbon prepared from palm kernel shell. Arch. Appl. Sci. Res. 3, 154-164.
    Abu Talha, M., Goswami, M., Giri, B.S., Sharma, A., Rai, B.N., Singh, R.S., 2018. Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char. Bioresour. Technol. 252, 37-43. doi: 10.1016/j.biortech.2017.12.081
    Abuh, M.A., Akpomie, G.K., Nwagbara, N.K., Abia-Bassey, N., Ape, D.I., Ayabie, B.U., 2013. Kinetic rate equations application on the removal of copper (Ⅱ) and zinc (Ⅱ) by unmodified lignocellulosic fibrous layer of palm tree trunk-single component system studies. Int. J. Basic Appl. Sci. 1, 800-809.
    Al-Qahtani, K.M., 2016. Water purification using different waste fruit cortexes for the removal of heavy metals. J. Taibah Univ. Sci. 10, 700-708. doi: 10.1016/j.jtusci.2015.09.001
    Amela, K., Hassen, M.A., Kerroum, D., 2012. Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia 19, 286-295. doi: 10.1016/j.egypro.2012.05.208
    Bedin, K.C., Martins, A.C., Cazetta, A.L., Pezoti, O., Almeida, V.C., 2016. KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chem. Eng. J. 286, 476-484. doi: 10.1016/j.cej.2015.10.099
    Bekçi, Z., Ozveri, C., Seki, Y., Yurdakoç, K., 2008. Sorption of malachite green on chitosan bead. J. Hazard. Mater. 154, 254-261. doi: 10.1016/j.jhazmat.2007.10.021
    Bello, O.S., Ahmad, M.A., Ahmad, N., 2012. Adsorptive features of banana (Musa paradisiaca) stalk-based activated carbon for malachite green dye removal. Chem. Ecol. 28, 153-167. doi: 10.1080/02757540.2011.628318
    Bharti, V., Shahi, A., Geed, S.R., Kureel, M.K., Rai, B.N., Kumar, S., Singh, R.S., 2017. Biodegradation of reactive orange 16 (RO-16) dye in packed bed bioreactor using seeds of Ashoka and Casuarina as packing medium. Indian J. Biotechnol. 16, 216-221.
    Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., 2018. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702-712. doi: 10.1016/j.ecoenv.2017.11.034
    Chandra, S., Bhattacharya, J., 2019. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Clean. Prod. 215, 1123-1139. doi: 10.1016/j.jclepro.2019.01.079
    Chen, R., Wang, W., Zhao, X.R., Zhang, Y.J., Wu, S.Z., Li, F., 2014. Rapid hydrothermal synthesis of magnetic CoxNi1-xFe2O4 nanoparticles and their application on removal of Congo red. Chem. Eng. J. 242, 226-233. doi: 10.1016/j.cej.2013.12.016
    Cheung, C.W., Porter, J.F., McKay, G., 2000. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J. Chem. Technol. Biotechnol. 75, 963-970. doi: 10.1002/1097-4660(200011)75:11<963::AID-JCTB302>3.0.CO;2-Z
    de Sousa, A. É. A., Gomes, E.C.C., de Quadros Melo, D., Diógenes, I.C.N., Becker, H., Longhinotti, E., 2014. Adsorption of safranin on pseudostem banana fibers. Sep. Sci. Technol. 49, 2681-2688. doi: 10.1080/01496395.2014.937496
    Dotto, G.L., Pinto, L.A.A., 2011. Adsorption of food dyes onto chitosan: optimization process and kinetic. Carbohydr. Polym. 84, 231-238. doi: 10.1016/j.carbpol.2010.11.028
    Gan, C., Liu, Y.G., Tan, X.F., Wang, S.F., Zeng, G.M., Zheng, B.H., Li, T.T., Jiang, Z.J., Liu, W., 2015. Effect of porous zinc-biochar nanocomposites on Cr(vi) adsorption from aqueous solution. RSC Adv. 5, 35107-35115. doi: 10.1039/C5RA04416B
    Gautam, U.K., Panchakarla, L.S., Dierre, B., Fang, X.S., Bando, Y., Sekiguchi, T., Govindaraj, A., Golberg, D., Rao, C.N.R., 2009. Solvothermal synthesis, cathodolumi-nescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv. Funct. Mater. 19, 131-140. doi: 10.1002/adfm.200801259
    Giri, B.S., Goswami, M., Singh, R.S., 2017. Review on application of agro-waste biomass biochar for adsorption and bioremediation dye. Biomed. J. Sci. Tech. Res. 1, 1-3.
    Gupta, D.K., Gupta, C.K., Dubey, R., Fagodiya, R.K., Sharma, G., Keerthika, A., Noor Mohamed, M.B., Dev, R., Shukla, A.K., 2020. Role of biochar in carbon sequestration and greenhouse gas mitigation. Biochar Applications in Agriculture and Environment Management. Springer International Publishing, Heidelberg, pp. 141-165.
    Hashem, F.S., Amin, M.S., 2016. Adsorption of methylene blue by activated carbon derived from various fruit peels. Desalinat. Water Treat. 57, 22573-22584. doi: 10.1080/19443994.2015.1132476
    Hevira, L., Ighalo, J.O., Aziz, H., Zein, R., 2021. Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J. Ind. Eng. Chem. 97, 188-199. doi: 10.1016/j.jiec.2021.01.028
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process. Biochem. 34, 451-465. doi: 10.1016/S0032-9592(98)00112-5
    Jafarisani, M., Cheshme Khavar, A.H., Mahjoub, A.R., Luque, R., Rodríguez-Padrón, D., Satari, M., Gharravi, A.M., Khastar, H., Kazemi, S.S., Masoumikarimi, M., 2020. Enhanced visible-light-driven photocatalytic degradation of emerging water contaminants by a modified zinc oxide-based photocatalyst; In-vivo and in-vitro toxicity evaluation of wastewater and PCO-treated water. Sep. Purif. Technol. 243, 116430. doi: 10.1016/j.seppur.2019.116430
    Kong, W.X., Zhao, F., Guan, H.J., Zhao, Y.F., Zhang, H.S., Zhang, B., 2016. Highly adsorptive mesoporous carbon from biomass using molten-salt route. J. Mater. Sci. 51, 6793-6800. doi: 10.1007/s10853-016-9966-8
    Kumar, K.V., 2007. Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes Pigments 74, 595-597. doi: 10.1016/j.dyepig.2006.03.026
    Kumar, M., Giri, B.S., Kim, K.H., Singh, R.P., Rene, E.R., López, M.E., Rai, B.N., Singh, H., Prasad, D., Singh, R.S., 2019. Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. Bioresour. Technol. 285, 121317. doi: 10.1016/j.biortech.2019.121317
    Lagergren, S., 1898. About the theory of so-called adsorption of solution substances. Sven. Vetenskapsakad. Handingarl. 24, 1-39.
    Liu, S.J., Liu, Y.G., Tan, X.F., Liu, S.B., Li, M.F., Liu, N., Yin, Z.H., Tian, S.R., Zhou, Y.H., 2019. Facile synthesis of MnOx-loaded biochar for the removal of doxycycline hydrochloride: effects of ambient conditions and co-existing heavy metals. J. Chem. Technol. Biotechnol. 94, 2187-2197.
    Mahmoud Nasef, M., Saidi, H., Ujang, Z., Mohd Dahlan, K.Z., 2010. Removal of metal ions from aqueous solutions using crosslinked polyethylene-gtmfj-polystyrene sulfonic acid adsorbent prepared by radiation grafting. J. Chil. Chem. Soc. 55, 421-427. doi: 10.4067/S0717-97072010000400002
    Mazari, S.A., Alaba, P., Saeed, I.M., 2019. Formation and elimination of nitrosamines and nitramines in freshwaters involved in post-combustion carbon capture process. J. Environ. Chem. Eng. 7, 103111. doi: 10.1016/j.jece.2019.103111
    McBeath, A.V., Wurster, C.M., Bird, M.I., 2015. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass Bioenergy 73, 155-173. doi: 10.1016/j.biombioe.2014.12.022
    Meyer, S., Bright, R.M., Fischer, D., Schulz, H., Glaser, B., 2012. Albedo impact on the suitability of biochar systems to mitigate global warming. Environ. Sci. Technol. 46, 12726-12734. doi: 10.1021/es302302g
    O'Connor, D., Peng, T.Y., Zhang, J.L., Tsang, D.C.W., Alessi, D.S., Shen, Z.T., Bolan, N.S., Hou, D.Y., 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total. Environ. 619/620, 815-826. doi: 10.1016/j.scitotenv.2017.11.132
    Pulicharla, R., Proulx, F., Behmel, S., Sérodes, J.B., Rodriguez, M.J., 2021. Occurrence and seasonality of raw and drinking water contaminants of emerging interest in five water facilities. Sci. Total. Environ. 751, 141748. doi: 10.1016/j.scitotenv.2020.141748
    Rai, M.K., Giri, B.S., Nath, Y., Bajaj, H., Soni, S., Singh, R.P., Singh, R.S., Rai, B.N., 2018. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: kinetics, equilibrium and thermodynamics study. J. Water Supply 67, 724-737. doi: 10.2166/aqua.2018.047
    Taha, S.M., Amer, M.E., Elmarsafy, A.E., Elkady, M.Y., 2014. Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. J. Environ. Chem. Eng. 2, 2013-2025. doi: 10.1016/j.jece.2014.09.001
    Ubando, A.T., Africa, A.D.M., Maniquiz-Redillas, M.C., Culaba, A.B., Chen, W.H., Chang, J.S., 2021. Microalgal biosorption of heavy metals: a comprehensive biblio-metric review. J. Hazard. Mater. 402, 123431. doi: 10.1016/j.jhazmat.2020.123431
    Vikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., Singh, R.S., 2018. Recent advancements in bioremediation of dye: current status and challenges. Bioresour. Technol. 253, 355-367. doi: 10.1016/j.biortech.2018.01.029
    Weber, W.J., Jr, Morris, J.C., 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Engrg. Div. 89, 31-59. doi: 10.1061/JSEDAI.0000430
    Whitman, T., Nicholson, C.F., Torres, D., Lehmann, J., 2011. Climate change impact of biochar cook stoves in western Kenyan farm households: system dynamics model analysis. Environ. Sci. Technol. 45, 3687-3694. doi: 10.1021/es103301k
    Yang, P.G., Mao, R.Z., Shao, H.B., Gao, Y.F., 2009. An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. J. Hazard. Mater. 167, 1246-1251. doi: 10.1016/j.jhazmat.2009.01.127
    Zhao, L., Cao, X.D., Mašek, O., Zimmerman, A., 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256/257, 1-9. doi: 10.1016/j.jhazmat.2013.04.015
    Zhou, L., Liu, Y.G., Liu, S.B., Yin, Y.C., Zeng, G.M., Tan, X.F., Hu, X., Hu, X.J., Jiang, L.H., Ding, Y., Liu, S.H., Huang, X.X., 2016. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour. Technol. 218, 351-359. doi: 10.1016/j.biortech.2016.06.102
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (3) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint