Citation: | Khairatun Najwa Mohd Amin, Alireza Hosseinmardi, Darren J. Martin, Pratheep K. Annamalai. A mixed acid methodology to produce thermally stable cellulose nanocrystal at high yield using phosphoric acid[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 99-108. doi: 10.1016/j.jobab.2021.12.002 |
Amin, K.N.M., Amiralian, N., Annamalai, P.K., Edwards, G., Chaleat, C., Martin, D.J., 2016. Scalable processing of thermoplastic polyurethane nanocomposites toughened with nanocellulose. Chem. Eng. J. 302, 406-416. doi: 10.1016/j.cej.2016.05.067
|
Annamalai, P.K., Dagnon, K.L., Monemian, S., Foster, E.J., Rowan, S.J., Weder, C., 2014. Water-responsive mechanically adaptive nanocomposites based on styrene-bu-tadiene rubber and cellulose nanocrystals: processing matters. ACS Appl. Mater. Interfaces 6, 967-976. doi: 10.1021/am404382x
|
Baek, J., Wahid-Pedro, F., Kim, K., Kim, K., Tam, K.C., 2019. Phosphorylated-CNC/modified-chitosan nano complexes for the stabilization of Pickering emulsions. Carbohydr. Polym. 206, 520-527. doi: 10.1016/j.carbpol.2018.11.006
|
Bagheriasl, D., Carreau, P.J., Dubois, C., Riedl, B., 2015. Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos. Sci. Technol. 117, 357-363. doi: 10.1016/j.compscitech.2015.07.012
|
Bai, W., Holbery, J., Li, K.C., 2009. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16, 455-465. doi: 10.1007/s10570-009-9277-1
|
Bashar, M.M., Zhu, H.E., Yamamoto, S., Mitsuishi, M., 2019. Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26, 3671-3684. doi: 10.1007/s10570-019-02363-7
|
Beck-Candanedo, S., Roman, M., Gray, D.G., 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacro-molecules 6, 1048-1054. doi: 10.1021/bm049300p
|
Ben Azouz, K., Ramires, E.C., van den Fonteyne, W., El Kissi, N., Dufresne, A., 2012. Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1, 236-240. doi: 10.1021/mz2001737
|
Boerstoel, H., Maatman, H., Westerink, J.B., Koenders, B.M., 2001. Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42, 7371-7379. doi: 10.1016/S0032-3861(01)00210-5
|
Bondeson, D., Mathew, A., Oksman, K., 2006. Optimization of the isolation of nanocrystals from microcrystalline celluloseby acid hydrolysis. Cellulose 13, 171-180. doi: 10.1007/s10570-006-9061-4
|
Camarero Espinosa, S., Kuhnt, T., Foster, E.J., Weder, C., 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223-1230. doi: 10.1021/bm400219u
|
Capadona, J.R., van den Berg, O., Capadona, L.A., Schroeter, M., Rowan, S.J., Tyler, D.J., Weder, C., 2007. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765-769. doi: 10.1038/nnano.2007.379
|
Chen, L.H., Wang, Q.Q., Hirth, K., Baez, C., Agarwal, U.P., Zhu, J.Y., 2015. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22, 1753-1762. doi: 10.1007/s10570-015-0615-1
|
Chen, L.H., Zhu, J.Y., Baez, C., Kitin, P., Elder, T., 2016. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18, 3835-3843. doi: 10.1039/C6GC00687F
|
Corrêa, A.C., Morais Teixeira, E., Pessan, L.A., Mattoso, L.H.C., 2010. Cellulose nanofibers from curaua fibers. Cellulose 17, 1183-1192. doi: 10.1007/s10570-010-9453-3
|
Dunlop, M.J., Acharya, B., Bissessur, R., 2018. Isolation of nanocrystalline cellulose from tunicates. J. Environ. Chem. Eng. 6, 4408-4412. doi: 10.1016/j.jece.2018.06.056
|
Fan, L.H., Lu, Y.Q., Yang, L.Y., Huang, F.F., Ouyang, X.K., 2019. Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core-shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J. Colloid Interface Sci. 554, 48-58. doi: 10.1016/j.jcis.2019.06.099
|
Filson, P.B., Dawson-Andoh, B.E., 2009. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol. 100, 2259-2264. doi: 10.1016/j.biortech.2008.09.062
|
Gray, N., Hamzeh, Y., Kaboorani, A., Abdulkhani, A., 2018. Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Ind. Crops Prod. 115, 298-305. doi: 10.1016/j.indcrop.2018.02.017
|
Hamdan, M.A., Khairatun Najwa, M.A., Jose, R., Martin, D., Adam, F., 2021. Tuning mechanical properties of seaweeds for hard capsules: a step forward for a sustainable drug delivery medium. Food Hydrocoll. Heal. 1, 100023. doi: 10.1016/j.fhfh.2021.100023
|
Hasani, M., Cranston, E.D., Westman, G., Gray, D.G., 2008. Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4, 2238-2244. doi: 10.1039/B806789A
|
Hendren, K.D., Baughman, T.W., Deck, P.A., Foster, E.J., 2020. In situ dispersion and polymerization of polyethylene cellulose nanocrystal-based nanocomposites. J. Appl. Polym. Sci. 137, 48500. doi: 10.1002/app.48500
|
Hirayama, J., Kobayashi, H., Fukuoka, A., 2020. Amorphization and semi-dry conversion of crystalline cellulose to oligosaccharides by impregnated phosphoric acid. Bull. Chem. Soc. Jpn. 93, 273-278. doi: 10.1246/bcsj.20190287
|
Hosseinmardi, A., Annamalai, P.K., Martine, B., Pennells, J., Martin, D.J., Amiralian, N., 2018. Facile tuning of the surface energy of cellulose nanofibers for nanocom-posite reinforcement. ACS Omega 3, 15933-15942. doi: 10.1021/acsomega.8b02104
|
Jia, X.J., Chen, Y.W., Shi, C., Ye, Y.F., Wang, P., Zeng, X.X., Wu, T., 2013. Preparation and characterization of cellulose regenerated from phosphoric acid. J. Agric. Food Chem. 61, 12405-12414. doi: 10.1021/jf4042358
|
Jordan, J.H., Easson, M.W., Dien, B., Thompson, S., Condon, B.D., 2019. Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 26, 5959-5979. doi: 10.1007/s10570-019-02533-7
|
Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y., Sheltami, R.M., 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855-866. doi: 10.1007/s10570-012-9684-6
|
Kupiainen, L., Ahola, J., Tanskanen, J., 2012. Distinct effect of formic and sulfuric acids on cellulose hydrolysis at high temperature. Ind. Eng. Chem. Res. 51, 3295-3300. doi: 10.1021/ie202323u
|
Lazko, J., Sénéchal, T., Landercy, N., Dangreau, L., Raquez, J.M., Dubois, P., 2014. Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21, 4195-4207. doi: 10.1007/s10570-014-0417-x
|
Leszczyńska, A., Radzik, P., Haraźna, K., Pielichowski, K., 2018. Thermal stability of cellulose nanocrystals prepared by succinic anhydride assisted hydrolysis. Thermochimica Acta 663, 145-156. doi: 10.1016/j.tca.2018.03.015
|
Li, D., Henschen, J., Ek, M., 2017. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem 19, 5564-5567. doi: 10.1039/C7GC02489D
|
Li, W., Yue, J.Q., Liu, S.X., 2012. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason. Sonochem. 19, 479-485. doi: 10.1016/j.ultsonch.2011.11.007
|
Lin, N., Dufresne, A., 2013. Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46, 5570-5583. doi: 10.1021/ma4010154
|
Mahmud, M.M., Perveen, A., Jahan, R.A., Matin, M.A., Wong, S.Y., Li, X., Arafat, M.T., 2019. Preparation of different polymorphs of cellulose from different acid hydrolysis medium. Int. J. Biol. Macromol. 130, 969-976. doi: 10.1016/j.ijbiomac.2019.03.027
|
Mendez, J., Annamalai, P.K., Eichhorn, S.J., Rusli, R., Rowan, S.J., Foster, E.J., Weder, C., 2011. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44, 6827-6835. doi: 10.1021/ma201502k
|
Miao, C.W., Hamad, W.Y., 2019. Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Curr. Opin. Solid State Mater. Sci. 23, 100761. doi: 10.1016/j.cossms.2019.06.005
|
Mohd Amin, K.N., Annamalai, P.K., Morrow, I.C., Martin, D., 2015. Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5, 57133-57140. doi: 10.1039/C5RA06862B
|
Molnes, S.N., Paso, K.G., Strand, S., Syverud, K., 2017. The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose 24, 4479-4491. doi: 10.1007/s10570-017-1437-0
|
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941. doi: 10.1039/c0cs00108b
|
Nagalakshmaiah, M., Nechyporchuk, O, El Kissi, N., Dufresne, A., 2017. Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly [(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur. Polym. J. 91, 297-306. doi: 10.1016/j.eurpolymj.2017.04.020
|
Norrrahim, M.N.F., Nurazzi, N.M., Jenol, M.A., Farid, M.A.A., Janudin, N., Ujang, F.A., Yasim-Anuar, T.A.T., Syed Najmuddin, S.U.F., Ilyas, R.A., 2021. Emerging development of nanocellulose as an antimicrobial material: an overview. Mater. Adv. 2, 3538-3551. doi: 10.1039/D1MA00116G
|
Pei, A.H., Malho, J.M., Ruokolainen, J., Zhou, Q., Berglund, L.A., 2011. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44, 4422-4427. doi: 10.1021/ma200318k
|
Rahimi, S.K., Otaigbe, J.U., 2017. The effects of the interface on microstructure and rheo-mechanical properties of polyamide 6/cellulose nanocrystal nanocomposites prepared by in situ ring-opening polymerization and subsequent melt extrusion. Polymer 127, 269-285. doi: 10.1016/j.polymer.2017.08.064
|
Rämänen, P., Penttilä, P.A., Svedström, K., Maunu, S.L., Serimaa, R., 2012. The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19, 901-912. doi: 10.1007/s10570-012-9695-3
|
Reid, M.S., Erlandsson, J., Wågberg, L., 2019. Interfacial polymerization of cellulose nanocrystal polyamide Janus nanocomposites with controlled architectures. ACS Macro Lett 8, 1334-1340. doi: 10.1021/acsmacrolett.9b00692
|
Roman, M., Winter, W.T., 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5, 1671-1677. doi: 10.1021/bm034519+
|
Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44, 2489-2498. doi: 10.1016/j.eurpolymj.2008.05.024
|
Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H., 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83-92. doi: 10.1016/j.carbpol.2010.01.059
|
Sadeghifar, H., Filpponen, I., Clarke, S.P., Brougham, D.F., Argyropoulos, D.S., 2011. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J. Mater. Sci. 46, 7344-7355. doi: 10.1007/s10853-011-5696-0
|
Segal, L., Creely, J.J., Martin Jr, A.E., Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffrac-tometer. Text. Res. J. 29, 786-794. doi: 10.1177/004051755902901003
|
Shamshina, J.L., Abidi, N., 2021. Cellulose nanocrystals from ionic liquids: a critical review. Green Chem 23, 6205-6222. doi: 10.1039/D1GC02507D
|
Sojoudiasli, H., Heuzey, M.C., Carreau, P.J., 2018. Mechanical and morphological properties of cellulose nanocrystal-polypropylene composites. Polym. Compos. 39, 3605-3617. doi: 10.1002/pc.24383
|
Song, X.Y., Zhou, L.J., Ding, B.B., Cui, X., Duan, Y.X., Zhang, J.M., 2018. Simultaneous improvement of thermal stability and redispersibility of cellulose nanocrystals by using ionic liquids. Carbohydr. Polym. 186, 252-259. doi: 10.1016/j.carbpol.2018.01.055
|
Sperotto, G., Stasiak, L.G., Godoi, J.P.M.G., Gabiatti, N.C., de Souza, S.S., 2021. A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations. Cellulose 28, 2649-2673. doi: 10.1007/s10570-021-03754-5
|
Sun, Y., Lin, L., Deng, H.B., Peng, H., Li, J.Z., Sun, R.C., Liu, S.J., 2008. Hydrolysis of bamboo fiber cellulose in formic acid. Front. For. China 3, 480-486. doi: 10.1007/s11461-008-0072-1
|
Tang, L.R., Huang, B., Ou, W., Chen, X.R., Chen, Y.D., 2011. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour. Technol. 102, 10973-10977. doi: 10.1016/j.biortech.2011.09.070
|
Vanderfleet, O.M., Reid, M.S., Bras, J., Heux, L., Godoy-Vargas, J., Panga, M.K.R., Cranston, E.D., 2019. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26, 507-528. doi: 10.1007/s10570-018-2175-7
|
Viet, D., Beck-Candanedo, S., Gray, D.G., 2007. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14, 109-113. doi: 10.1007/s10570-006-9093-9
|
Vinogradov, V.V., Mizerovskii, L.N., Akaev, O.P., 2002. Reaction of cellulose with aqueous solutions of orthophosphoric acid. Fibre Chem 34, 167-171. doi: 10.1023/A:1020558829106
|
Wang, N., Ding, E.Y., Cheng, R.S., 2007. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48, 3486-3493. doi: 10.1016/j.polymer.2007.03.062
|
Wei, S., Kumar, V., Banker, G.S., 1996. Phosphoric acid mediated depolymerization and decrystallization of cellulose: preparation of low crystallinity cellulose—A new pharmaceutical excipient. Int. J. Pharm. 142, 175-181. doi: 10.1016/0378-5173(96)04673-X
|
Xie, H.X., Zou, Z.F., Du, H.S., Zhang, X.Y., Wang, X.M., Yang, X.H., Wang, H., Li, G.B., Li, L., Si, C.L., 2019. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydr. Polym. 223, 115116. doi: 10.1016/j.carbpol.2019.115116
|
Yu, H.Y., Abdalkarim, S.Y.H., Zhang, H., Wang, C., Tam, K.C., 2019. Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids. ACS Sustainable Chem. Eng. 7, 4912-4923. doi: 10.1021/acssuschemeng.8b05526
|
Yu, H.Y., Qin, Z.Y., Liang, B.L., Liu, N., Zhou, Z., Chen, L., 2013. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1, 3938. doi: 10.1039/c3ta01150j
|
Yue, Y.Y., Zhou, C.J., French, A.D., Xia, G., Han, G.P., Wang, Q.W., Wu, Q.L., 2012. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173-1187. doi: 10.1007/s10570-012-9714-4
|
Zhang, J.H., Zhang, J.Q., Lin, L., Chen, T.M., Zhang, J., Liu, S.J., Li, Z.J., Ouyang, P.K., 2009. Dissolution of microcrystalline cellulose in phosphoric acid: molecular changes and kinetics. Molecules 14, 5027-5041. doi: 10.3390/molecules14125027
|
Zhang, Y.H., Cui, J.B., Lynd, L.R., Kuang, L.R., 2006. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7, 644-648. doi: 10.1021/bm050799c
|