Citation: | Tanzina Huq, Avik Khan, David Brown, Natasha Dhayagude, Zhibin He, Yonghao Ni. Sources, production and commercial applications of fungal chitosan: A review[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 85-98. doi: 10.1016/j.jobab.2022.01.002 |
Abdel-Gawad, K.M., Hifney, A.F., Fawzy, M.A., Gomaa, M., 2017. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 63, 593-601. doi: 10.1016/j.foodhyd.2016.10.001
|
Acosta, N., Jiménez, C., Borau, V., Heras, A., 1993. Extraction and characterization of chitin from crustaceans. Biomass Bioenergy 5, 145-153. doi: 10.1016/0961-9534(93)90096-M
|
Ahmed, S., Ikram, S., 2016. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci. 10, 27-37.
|
Aneesh, P.A., Anandan, R., Kumar, L.R.G., Ajeeshkumar, K.K., Kumar, K.A., Mathew, S., 2020. A step to shell biorefinery—Extraction of astaxanthin-rich oil, protein, chitin, and chitosan from shrimp processing waste. Biomass Convers. Biorefinery 1-10.
|
Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., Heras, A., 2009a. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3, 203-230.
|
Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., Heras, A., 2009b. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3, 203-230.
|
Balan, V., Verestiuc, L., 2014. Strategies to improve chitosan hemocompatibility: a review. Eur. Polym. J. 53, 171-188. doi: 10.1016/j.eurpolymj.2014.01.033
|
Chatterjee, S., Chatterjee, S., Chatterjee, B.P., Guha, A.K., 2008. Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones. Int. J. Biol. Macromol. 42, 120-126. doi: 10.1016/j.ijbiomac.2007.10.006
|
Chen, X., Yang, H.Y., Yan, N., 2016. Shell biorefinery: dream or reality? Chem. Eur. J. 22, 13402-13421. doi: 10.1002/chem.201602389
|
Chen, X., Yang, H.Y., Zhong, Z.Y., Yan, N., 2017. Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem. 19, 2783-2792. doi: 10.1039/C7GC00089H
|
Dai, L., Wang, Y., Li, Z.X., Wang, X.W., Duan, C., Zhao, W., Xiong, C.Y., Nie, S.X., Xu, Y.J., Ni, Y.H., 2020. A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydr. Polym. 244, 116472. doi: 10.1016/j.carbpol.2020.116472
|
Darwesh, O.M., Sultan, Y.Y., Seif, M.M., Marrez, D.A., 2018. Bio-evaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicol. Rep. 5, 348-356. doi: 10.1016/j.toxrep.2018.03.002
|
Devi, R., Dhamodharan, R., 2018. Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. ACS Sustainable Chem. Eng. 6, 846-853. doi: 10.1021/acssuschemeng.7b03195
|
Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M., 2013. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 33, 379-403. doi: 10.3109/07388551.2012.717217
|
Duan, C., Meng, X., Meng, J.R., Khan, M.I.H., Dai, L., Khan, A., An, X.Y., Zhang, J.H., Huq, T., Ni, Y.H., 2019. Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 4, 11-21. doi: 10.21967/jbb.v4i1.189
|
Fan, W., Bohlmann, J.A., Trinkle, J.R., Steinke, J.D., Hwang, K.O., Henning, J.P., 2005. Chitosan and method of preparing chitosan. US Patents, 6972284B2.
|
Fatehi, P., Kititerakun, R., Ni, Y.H., Xiao, H.N., 2010. Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr. Polym. 80, 208-214. doi: 10.1016/j.carbpol.2009.11.012
|
Fischer, R., Zekert, N., Takeshita, N., 2008. Polarized growth in fungi—interplay between the cytoskeleton, positional markers and membrane domains. Mol. Microbiol. 68, 813-826. doi: 10.1111/j.1365-2958.2008.06193.x
|
Ghormade, V., Pathan, E.K., Deshpande, M.V., 2017. Can fungi compete with marine sources for chitosan production? Int. J. Biol. Macromol. 104, 1415-1421. doi: 10.1016/j.ijbiomac.2017.01.112
|
Ghosh, B., Urban, M.W., 2009. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458-1460. doi: 10.1126/science.1167391
|
Giner, M.J., Vegara, S., Funes, L., Martí, N., Saura, D., Micol, V., Valero, M., 2012. Antimicrobial activity of food-compatible plant extracts and chitosan against naturally occurring micro-organisms in tomato juice. J. Sci. Food Agric. 92, 1917-1923. doi: 10.1002/jsfa.5561
|
Goy, R.C., Morais, S.T.B., Assis, O.B.G., 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira De Farmacognosia 26, 122-127. doi: 10.1016/j.bjp.2015.09.010
|
Hafdani, F.N., Sadeghinia, N., 2011. A review on application of chitosan as a natural antimicrobial. World Academic Science, Engineering and Technology, 5, 225-229.
|
Hirano, S., Zhang, M., Nakagawa, M., Miyata, T., 2000. Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials 21, 997-1003. doi: 10.1016/S0142-9612(99)00258-6
|
Hülsey, M.J., 2018. Shell biorefinery: a comprehensive introduction. Green Energy Environ 3, 318-327. doi: 10.1016/j.gee.2018.07.007
|
Jiang, H.J., Sun, Z.M., Jia, R.X., Wang, X.Y., Huang, J.Y., 2016. Effect of chitosan as an antifungal and preservative agent on postharvest blueberry. Journal of Food Quality 39, 516-523. doi: 10.1111/jfq.12211
|
Kamoun, E.A., Kenawy, E.R.S., Chen, X., 2017. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217-233. doi: 10.1016/j.jare.2017.01.005
|
Kannan, M., Nesakumari, M., Rajarathinam, K., 2010. Production and characterization of mushroom chitosan under solid-State fermentation conditions. Advances in Biological Resaerch 4, 10-13.
|
Kaur, S., Dhillon, G.S., 2014. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol. 40, 155-175. doi: 10.3109/1040841X.2013.770385
|
Kaya, M., Khadem, S., Cakmak, Y.S., Mujtaba, M., Ilk, S., Akyuz, L., Salaberria, A.M., Labidi, J., Abdulqadir, A.H., Deligöz, E., 2018. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv 8, 3941-3950. doi: 10.1039/C7RA12070B
|
Khan, A., Salmieri, S., Fraschini, C., Bouchard, J., Riedl, B., Lacroix, M., 2014. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Appl. Mater. Interfaces 6, 15232-15242. doi: 10.1021/am503564m
|
Khan, A., Vu, K.D., Riedl, B., Lacroix, M., 2015. Optimization of the antimicrobial activity of nisin, Na-EDTA and pH against gram-negative and gram-positive bacteria. LWT Food Sci. Technol. 61, 124-129. doi: 10.1016/j.lwt.2014.11.035
|
Khan, A., Wang, B.B., Ni, Y.H., 2020. Chitosan-nanocellulose composites for regenerative medicine applications. Curr. Med. Chem. 27, 4584-4592. doi: 10.2174/0929867327666200127152834
|
Khan, M.I.H., An, X.Y., Dai, L., Li, H.L., Khan, A., Ni, Y.H., 2019. Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery. Curr. Med. Chem. 26, 2502-2513. doi: 10.2174/0929867325666180927100817
|
Klinmalai, P., Hagiwara, T., Sakiyama, T., Ratanasumawong, S., 2017. Chitosan effects on physical properties, texture, and microstructure of flat rice noodles. LWT Food Sci. Technol. 76, 117-123. doi: 10.1016/j.lwt.2016.10.052
|
Kumari, S., Rath, P.K., 2014. Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater. Sci. 6, 482-489. doi: 10.1016/j.mspro.2014.07.062
|
Lenardon, M.D., Munro, C.A., Gow, N.A., 2010. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol. 13, 416-423. doi: 10.1016/j.mib.2010.05.002
|
Lesage, G., Bussey, H., 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317-343. doi: 10.1128/MMBR.00038-05
|
Li, B., Zhang, J.L., Dai, F.T., Xia, W.S., 2012. Purification of chitosan by using Sol-gel immobilized pepsin deproteinization. Carbohydr. Polym. 88, 206-212. doi: 10.1016/j.carbpol.2011.11.092
|
Li, K.C., Xing, R., Liu, S., Li, P.C., 2016. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr. Polym. 139, 178-190. doi: 10.1016/j.carbpol.2015.12.016
|
Lu, H.D., Dai, Y.H., Lv, L., Zhao, H.Q., 2014. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One 9, e84703. doi: 10.1371/journal.pone.0084703
|
Luo, H.Y., Li, J., Chen, X., 2010. Antitumor effect of N-succinyl-chitosan nanoparticles on K562 cells. Biomed. Pharmacother. 64, 521-526. doi: 10.1016/j.biopha.2009.09.002
|
Margoutidis, G., Parsons, V.H., Bottaro, C.S., Yan, N., Kerton, F.M., 2018. Mechanochemical amorphization of α-chitin and conversion into oligomers of N-acetyl-d-glucosamine. ACS Sustainable Chem. Eng. 6, 1662-1669. doi: 10.1021/acssuschemeng.7b02870
|
Martín-Diana, A.B., Rico, D., Barat, J.M., Barry-Ryan, C., 2009. Orange juices enriched with chitosan: Optimisation for extending the shelf-life. Innov. Food Sci. Emerg. Technol. 10, 590-600. doi: 10.1016/j.ifset.2009.05.003
|
Merzendorfer, H., 2011. The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur. J. Cell Biol. 90, 759-769. doi: 10.1016/j.ejcb.2011.04.014
|
Mourya, V.K., Inamdar, N.N., Choudhari, Y.M., 2011. Chitooligosaccharides: synthesis, characterization and applications. Polym. Sci. Ser. A 53, 583-612. doi: 10.1134/S0965545X11070066
|
Moussa, S.H., Tayel, A.A., Al-Hassan, A.A., Farouk, A., 2013. Tetrazolium/formazan test as an efficient method to determine fungal chitosan antimicrobial activity. J. Mycol. 2013, 1-7.
|
Naknean, P., Jutasukosol, K., Mankit, T., 2015. Utilization of chitosan as an antimicrobial agent for pasteurized palm Sap (Borassus flabellifer Linn. ) during storage. J. Food Sci. Technol. 52, 731-741. doi: 10.1007/s13197-013-1104-x
|
Nwe, N., Stevens, W.F., 2008. Production of chitin and chitosan and their applications in the medical and biological sector. Recent Research in Biomedical Aspects of Chitin and Chitosan 978, 161.
|
Nwe, N., Tetsuya, Tamur, H., 2010. Production of fungal chitosan by enzymatic method and applications in plant tissue culture and tissue engineering: 11 years of our progress, present situation and future prospects. Biopolymers. InTech: Sciyo 135-162.
|
Ouyang, Q.Q., Zhao, S., Li, S.D., Song, C., 2017. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer's disease. Mar. Drugs 15, 322. doi: 10.3390/md15110322
|
Philibert, T., Lee, B.H., Fabien, N., 2017. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 181, 1314-1337. doi: 10.1007/s12010-016-2286-2
|
Plascencia-Jatomea, M., Viniegra, G., Olayo, R., Castillo-Ortega, M.M., Shirai, K., 2003. Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromol. Biosci. 3, 582-586. doi: 10.1002/mabi.200350024
|
Quesada, J., Sendra, E., Navarro, C., Sayas-Barberá, E., 2016. Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods 5, 57. doi: 10.3390/foods5030057
|
Rachtanapun, C., Tantala, J., Klinmalai, P., Ratanasumawong, S., 2015. Effect of chitosan on Bacillus cereus inhibition and quality of cooked rice during storage. Int. J. Food Sci. Technol. 50, 2419-2426. doi: 10.1111/ijfs.12908
|
Saeed, A., Fatehi, P., Ni, Y.H., 2011. Chitosan as a flocculant for pre-hydrolysis liquor of kraft-based dissolving pulp production process. Carbohydr. Polym. 86, 1630-1636. doi: 10.1016/j.carbpol.2011.06.075
|
Sagheer, F.A.A., Al-Sughayer, M.A., Muslim, S., Elsabee, M.Z., 2009. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410-419. doi: 10.1016/j.carbpol.2009.01.032
|
Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L., Griffin, P.M., 2011. Foodborne illness acquired in the United States: major pathogens. Emerg. Infect. Dis. 17, 7-15. doi: 10.3201/eid1701.P11101
|
Severino, R., Vu, K.D., Donsì, F., Salmieri, S., Ferrari, G., Lacroix, M., 2014. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int. J. Food Microbiol. 191, 82-88. doi: 10.1016/j.ijfoodmicro.2014.09.007
|
Shen, J., Fatehi, P., Ni, Y.H., 2014. Biopolymers for surface engineering of paper-based products. Cellulose 21, 3145-3160. doi: 10.1007/s10570-014-0380-6
|
Silva, S.S., Popa, E.G., Gomes, M.E., Cerqueira, M., Marques, A.P., Caridade, S.G., Teixeira, P., Sousa, C., Mano, J.F., Reis, R.L., 2013. An investigation of the potential application of chitosan/Aloe-based membranes for regenerative medicine. Acta Biomater 9, 6790-6797. doi: 10.1016/j.actbio.2013.02.027
|
Sinno, H., Prakash, S., 2013. Complements and the wound healing cascade: an updated review. Plast. Surg. Int., 146764 2013.
|
Suryawanshi, N., Eswari, J.S., 2021. Shrimp shell waste as a potential raw material for biorefinery: a revisit. Biomass Convers. Biorefinery 1-8.
|
Tang, R.H., Li, M., Liu, L.N., Zhang, S.F., Alam, N., You, M.L., Ni, Y.H., Li, Z.D., 2020. Chitosan-modified nitrocellulose membrane for paper-based point-of-care testing. Cellulose 27, 3835-3846. doi: 10.1007/s10570-020-03031-x
|
Tasar, O.C., Erdal, S., Taskin, M., 2016. Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. Int. J. Biol. Macromol. 89, 428-433. doi: 10.1016/j.ijbiomac.2016.05.007
|
Thomas, M.K., Murray, R., Flockhart, L., Pintar, K., Pollari, F., Fazil, A., Nesbitt, A., Marshall, B., 2013. Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathog. Dis. 10, 639-648. doi: 10.1089/fpd.2012.1389
|
Wang, Y.L., Khan, A., Liu, Y.X., Feng, J., Dai, L., Wang, G.H., Alam, N., Tong, L., Ni, Y.H., 2019. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydr. Polym. 223, 115061. doi: 10.1016/j.carbpol.2019.115061
|
Watanabe, H., Azuma, M., Igarashi, K., Ooshima, H., 2005. Analysis of chitin at the hyphal tip of Candida albicans using calcofluor white. Biosci. Biotechnol. Biochem. 69, 1798-1801. doi: 10.1271/bbb.69.1798
|
Wu, H., Zhao, H.D., Song, X.J., Li, S., Ma, X.J., Tan, M.Q., 2014. Self-assembly-induced near-infrared fluorescent nanoprobes for effective tumor molecular imaging. J. Mater. Chem. B 2, 5302-5308. doi: 10.1039/C4TB00761A
|
Yang, H.Y., Gözaydın, G., Nasaruddin, R.R., Har, J.R.G., Chen, X., Wang, X.N., Yan, N., 2019. Toward the shell biorefinery: processing crustacean shell waste using hot water and carbonic acid. ACS Sustainable Chem. Eng. 7, 5532-5542. doi: 10.1021/acssuschemeng.8b06853
|
Yu, H.J., Xu, X.Y., Chen, X.S., Hao, J.Q., Jing, X.B., 2006. Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. J. Appl. Polym. Sci. 101, 2453-2463. doi: 10.1002/app.23344
|
Yu, H.L., Hou, J.J., Namin, R.B., Ni, Y.H., Liu, S.W., Yu, S.T., Liu, Y.X., Wu, Q., Nie, S.X., 2021. Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst. Carbon 173, 800-808. doi: 10.1016/j.carbon.2020.11.069
|
Zubareva, A., Ily'Ina, A., Prokhorov, A., Kurek, D., Efremov, M., Varlamov, V., Senel, S., Ignatyev, P., Svirshchevskaya, Е., 2013. Characterization of protein and peptide binding to nanogels formed by differently charged chitosan derivatives. Mol. Basel Switz. 18, 7848-7864.
|