Volume 7 Issue 2
May  2022
Turn off MathJax
Article Contents
Tanzina Huq, Avik Khan, David Brown, Natasha Dhayagude, Zhibin He, Yonghao Ni. Sources, production and commercial applications of fungal chitosan: A review[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 85-98. doi: 10.1016/j.jobab.2022.01.002
Citation: Tanzina Huq, Avik Khan, David Brown, Natasha Dhayagude, Zhibin He, Yonghao Ni. Sources, production and commercial applications of fungal chitosan: A review[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 85-98. doi: 10.1016/j.jobab.2022.01.002

Sources, production and commercial applications of fungal chitosan: A review

doi: 10.1016/j.jobab.2022.01.002
More Information
  • Corresponding author: E-mail address: zhe@unb.ca (Z. He)
  • Received Date: 2021-07-20
  • Accepted Date: 2021-12-08
  • Rev Recd Date: 2021-12-01
  • Available Online: 2022-05-06
  • Publish Date: 2022-05-01
  • Chitosan is a type of biopolymer that can be obtained from animal/marine sources, and it can also be extracted or produced from agriculture waste products like mushroom or different fungal sources after the chitin deacetylation. Depending on the size of mushroom farm, the amount of waste ranges between 5% and 20% of the production volume. The cell wall of the filamentous fungi, a good source of chitin, offers an easy way to extract chitin. The physicochemical characteristics such as molecular weight and degree of deacetylation of fungal chitosan can be controlled compared to chitosan obtained from crustacean sources. Fungal sourced chitosan can be used in food, pharmaceutical or biomedical applications for different applications, for example, as an antimicrobial agent, coating material, water purification or bio-pesticide. This review mainly focused on the extraction of chitin from mushroom or different fungal sources and also showed some applications of commercial chitosan products.


  • loading
  • Abdel-Gawad, K.M., Hifney, A.F., Fawzy, M.A., Gomaa, M., 2017. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 63, 593-601. doi: 10.1016/j.foodhyd.2016.10.001
    Acosta, N., Jiménez, C., Borau, V., Heras, A., 1993. Extraction and characterization of chitin from crustaceans. Biomass Bioenergy 5, 145-153. doi: 10.1016/0961-9534(93)90096-M
    Ahmed, S., Ikram, S., 2016. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci. 10, 27-37.
    Aneesh, P.A., Anandan, R., Kumar, L.R.G., Ajeeshkumar, K.K., Kumar, K.A., Mathew, S., 2020. A step to shell biorefinery—Extraction of astaxanthin-rich oil, protein, chitin, and chitosan from shrimp processing waste. Biomass Convers. Biorefinery 1-10.
    Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., Heras, A., 2009a. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3, 203-230.
    Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., Heras, A., 2009b. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3, 203-230.
    Balan, V., Verestiuc, L., 2014. Strategies to improve chitosan hemocompatibility: a review. Eur. Polym. J. 53, 171-188. doi: 10.1016/j.eurpolymj.2014.01.033
    Chatterjee, S., Chatterjee, S., Chatterjee, B.P., Guha, A.K., 2008. Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones. Int. J. Biol. Macromol. 42, 120-126. doi: 10.1016/j.ijbiomac.2007.10.006
    Chen, X., Yang, H.Y., Yan, N., 2016. Shell biorefinery: dream or reality? Chem. Eur. J. 22, 13402-13421. doi: 10.1002/chem.201602389
    Chen, X., Yang, H.Y., Zhong, Z.Y., Yan, N., 2017. Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem. 19, 2783-2792. doi: 10.1039/C7GC00089H
    Dai, L., Wang, Y., Li, Z.X., Wang, X.W., Duan, C., Zhao, W., Xiong, C.Y., Nie, S.X., Xu, Y.J., Ni, Y.H., 2020. A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydr. Polym. 244, 116472. doi: 10.1016/j.carbpol.2020.116472
    Darwesh, O.M., Sultan, Y.Y., Seif, M.M., Marrez, D.A., 2018. Bio-evaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicol. Rep. 5, 348-356. doi: 10.1016/j.toxrep.2018.03.002
    Devi, R., Dhamodharan, R., 2018. Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. ACS Sustainable Chem. Eng. 6, 846-853. doi: 10.1021/acssuschemeng.7b03195
    Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M., 2013. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 33, 379-403. doi: 10.3109/07388551.2012.717217
    Duan, C., Meng, X., Meng, J.R., Khan, M.I.H., Dai, L., Khan, A., An, X.Y., Zhang, J.H., Huq, T., Ni, Y.H., 2019. Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 4, 11-21. doi: 10.21967/jbb.v4i1.189
    Fan, W., Bohlmann, J.A., Trinkle, J.R., Steinke, J.D., Hwang, K.O., Henning, J.P., 2005. Chitosan and method of preparing chitosan. US Patents, 6972284B2.
    Fatehi, P., Kititerakun, R., Ni, Y.H., Xiao, H.N., 2010. Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr. Polym. 80, 208-214. doi: 10.1016/j.carbpol.2009.11.012
    Fischer, R., Zekert, N., Takeshita, N., 2008. Polarized growth in fungi—interplay between the cytoskeleton, positional markers and membrane domains. Mol. Microbiol. 68, 813-826. doi: 10.1111/j.1365-2958.2008.06193.x
    Ghormade, V., Pathan, E.K., Deshpande, M.V., 2017. Can fungi compete with marine sources for chitosan production? Int. J. Biol. Macromol. 104, 1415-1421. doi: 10.1016/j.ijbiomac.2017.01.112
    Ghosh, B., Urban, M.W., 2009. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458-1460. doi: 10.1126/science.1167391
    Giner, M.J., Vegara, S., Funes, L., Martí, N., Saura, D., Micol, V., Valero, M., 2012. Antimicrobial activity of food-compatible plant extracts and chitosan against naturally occurring micro-organisms in tomato juice. J. Sci. Food Agric. 92, 1917-1923. doi: 10.1002/jsfa.5561
    Goy, R.C., Morais, S.T.B., Assis, O.B.G., 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira De Farmacognosia 26, 122-127. doi: 10.1016/j.bjp.2015.09.010
    Hafdani, F.N., Sadeghinia, N., 2011. A review on application of chitosan as a natural antimicrobial. World Academic Science, Engineering and Technology, 5, 225-229.
    Hirano, S., Zhang, M., Nakagawa, M., Miyata, T., 2000. Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials 21, 997-1003. doi: 10.1016/S0142-9612(99)00258-6
    Hülsey, M.J., 2018. Shell biorefinery: a comprehensive introduction. Green Energy Environ 3, 318-327. doi: 10.1016/j.gee.2018.07.007
    Jiang, H.J., Sun, Z.M., Jia, R.X., Wang, X.Y., Huang, J.Y., 2016. Effect of chitosan as an antifungal and preservative agent on postharvest blueberry. Journal of Food Quality 39, 516-523. doi: 10.1111/jfq.12211
    Kamoun, E.A., Kenawy, E.R.S., Chen, X., 2017. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217-233. doi: 10.1016/j.jare.2017.01.005
    Kannan, M., Nesakumari, M., Rajarathinam, K., 2010. Production and characterization of mushroom chitosan under solid-State fermentation conditions. Advances in Biological Resaerch 4, 10-13.
    Kaur, S., Dhillon, G.S., 2014. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol. 40, 155-175. doi: 10.3109/1040841X.2013.770385
    Kaya, M., Khadem, S., Cakmak, Y.S., Mujtaba, M., Ilk, S., Akyuz, L., Salaberria, A.M., Labidi, J., Abdulqadir, A.H., Deligöz, E., 2018. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv 8, 3941-3950. doi: 10.1039/C7RA12070B
    Khan, A., Salmieri, S., Fraschini, C., Bouchard, J., Riedl, B., Lacroix, M., 2014. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Appl. Mater. Interfaces 6, 15232-15242. doi: 10.1021/am503564m
    Khan, A., Vu, K.D., Riedl, B., Lacroix, M., 2015. Optimization of the antimicrobial activity of nisin, Na-EDTA and pH against gram-negative and gram-positive bacteria. LWT Food Sci. Technol. 61, 124-129. doi: 10.1016/j.lwt.2014.11.035
    Khan, A., Wang, B.B., Ni, Y.H., 2020. Chitosan-nanocellulose composites for regenerative medicine applications. Curr. Med. Chem. 27, 4584-4592. doi: 10.2174/0929867327666200127152834
    Khan, M.I.H., An, X.Y., Dai, L., Li, H.L., Khan, A., Ni, Y.H., 2019. Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery. Curr. Med. Chem. 26, 2502-2513. doi: 10.2174/0929867325666180927100817
    Klinmalai, P., Hagiwara, T., Sakiyama, T., Ratanasumawong, S., 2017. Chitosan effects on physical properties, texture, and microstructure of flat rice noodles. LWT Food Sci. Technol. 76, 117-123. doi: 10.1016/j.lwt.2016.10.052
    Kumari, S., Rath, P.K., 2014. Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater. Sci. 6, 482-489. doi: 10.1016/j.mspro.2014.07.062
    Lenardon, M.D., Munro, C.A., Gow, N.A., 2010. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol. 13, 416-423. doi: 10.1016/j.mib.2010.05.002
    Lesage, G., Bussey, H., 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317-343. doi: 10.1128/MMBR.00038-05
    Li, B., Zhang, J.L., Dai, F.T., Xia, W.S., 2012. Purification of chitosan by using Sol-gel immobilized pepsin deproteinization. Carbohydr. Polym. 88, 206-212. doi: 10.1016/j.carbpol.2011.11.092
    Li, K.C., Xing, R., Liu, S., Li, P.C., 2016. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr. Polym. 139, 178-190. doi: 10.1016/j.carbpol.2015.12.016
    Lu, H.D., Dai, Y.H., Lv, L., Zhao, H.Q., 2014. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One 9, e84703. doi: 10.1371/journal.pone.0084703
    Luo, H.Y., Li, J., Chen, X., 2010. Antitumor effect of N-succinyl-chitosan nanoparticles on K562 cells. Biomed. Pharmacother. 64, 521-526. doi: 10.1016/j.biopha.2009.09.002
    Margoutidis, G., Parsons, V.H., Bottaro, C.S., Yan, N., Kerton, F.M., 2018. Mechanochemical amorphization of α-chitin and conversion into oligomers of N-acetyl-d-glucosamine. ACS Sustainable Chem. Eng. 6, 1662-1669. doi: 10.1021/acssuschemeng.7b02870
    Martín-Diana, A.B., Rico, D., Barat, J.M., Barry-Ryan, C., 2009. Orange juices enriched with chitosan: Optimisation for extending the shelf-life. Innov. Food Sci. Emerg. Technol. 10, 590-600. doi: 10.1016/j.ifset.2009.05.003
    Merzendorfer, H., 2011. The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur. J. Cell Biol. 90, 759-769. doi: 10.1016/j.ejcb.2011.04.014
    Mourya, V.K., Inamdar, N.N., Choudhari, Y.M., 2011. Chitooligosaccharides: synthesis, characterization and applications. Polym. Sci. Ser. A 53, 583-612. doi: 10.1134/S0965545X11070066
    Moussa, S.H., Tayel, A.A., Al-Hassan, A.A., Farouk, A., 2013. Tetrazolium/formazan test as an efficient method to determine fungal chitosan antimicrobial activity. J. Mycol. 2013, 1-7.
    Naknean, P., Jutasukosol, K., Mankit, T., 2015. Utilization of chitosan as an antimicrobial agent for pasteurized palm Sap (Borassus flabellifer Linn. ) during storage. J. Food Sci. Technol. 52, 731-741. doi: 10.1007/s13197-013-1104-x
    Nwe, N., Stevens, W.F., 2008. Production of chitin and chitosan and their applications in the medical and biological sector. Recent Research in Biomedical Aspects of Chitin and Chitosan 978, 161.
    Nwe, N., Tetsuya, Tamur, H., 2010. Production of fungal chitosan by enzymatic method and applications in plant tissue culture and tissue engineering: 11 years of our progress, present situation and future prospects. Biopolymers. InTech: Sciyo 135-162.
    Ouyang, Q.Q., Zhao, S., Li, S.D., Song, C., 2017. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer's disease. Mar. Drugs 15, 322. doi: 10.3390/md15110322
    Philibert, T., Lee, B.H., Fabien, N., 2017. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 181, 1314-1337. doi: 10.1007/s12010-016-2286-2
    Plascencia-Jatomea, M., Viniegra, G., Olayo, R., Castillo-Ortega, M.M., Shirai, K., 2003. Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromol. Biosci. 3, 582-586. doi: 10.1002/mabi.200350024
    Quesada, J., Sendra, E., Navarro, C., Sayas-Barberá, E., 2016. Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods 5, 57. doi: 10.3390/foods5030057
    Rachtanapun, C., Tantala, J., Klinmalai, P., Ratanasumawong, S., 2015. Effect of chitosan on Bacillus cereus inhibition and quality of cooked rice during storage. Int. J. Food Sci. Technol. 50, 2419-2426. doi: 10.1111/ijfs.12908
    Saeed, A., Fatehi, P., Ni, Y.H., 2011. Chitosan as a flocculant for pre-hydrolysis liquor of kraft-based dissolving pulp production process. Carbohydr. Polym. 86, 1630-1636. doi: 10.1016/j.carbpol.2011.06.075
    Sagheer, F.A.A., Al-Sughayer, M.A., Muslim, S., Elsabee, M.Z., 2009. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410-419. doi: 10.1016/j.carbpol.2009.01.032
    Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L., Griffin, P.M., 2011. Foodborne illness acquired in the United States: major pathogens. Emerg. Infect. Dis. 17, 7-15. doi: 10.3201/eid1701.P11101
    Severino, R., Vu, K.D., Donsì, F., Salmieri, S., Ferrari, G., Lacroix, M., 2014. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int. J. Food Microbiol. 191, 82-88. doi: 10.1016/j.ijfoodmicro.2014.09.007
    Shen, J., Fatehi, P., Ni, Y.H., 2014. Biopolymers for surface engineering of paper-based products. Cellulose 21, 3145-3160. doi: 10.1007/s10570-014-0380-6
    Silva, S.S., Popa, E.G., Gomes, M.E., Cerqueira, M., Marques, A.P., Caridade, S.G., Teixeira, P., Sousa, C., Mano, J.F., Reis, R.L., 2013. An investigation of the potential application of chitosan/Aloe-based membranes for regenerative medicine. Acta Biomater 9, 6790-6797. doi: 10.1016/j.actbio.2013.02.027
    Sinno, H., Prakash, S., 2013. Complements and the wound healing cascade: an updated review. Plast. Surg. Int., 146764 2013.
    Suryawanshi, N., Eswari, J.S., 2021. Shrimp shell waste as a potential raw material for biorefinery: a revisit. Biomass Convers. Biorefinery 1-8.
    Tang, R.H., Li, M., Liu, L.N., Zhang, S.F., Alam, N., You, M.L., Ni, Y.H., Li, Z.D., 2020. Chitosan-modified nitrocellulose membrane for paper-based point-of-care testing. Cellulose 27, 3835-3846. doi: 10.1007/s10570-020-03031-x
    Tasar, O.C., Erdal, S., Taskin, M., 2016. Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. Int. J. Biol. Macromol. 89, 428-433. doi: 10.1016/j.ijbiomac.2016.05.007
    Thomas, M.K., Murray, R., Flockhart, L., Pintar, K., Pollari, F., Fazil, A., Nesbitt, A., Marshall, B., 2013. Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathog. Dis. 10, 639-648. doi: 10.1089/fpd.2012.1389
    Wang, Y.L., Khan, A., Liu, Y.X., Feng, J., Dai, L., Wang, G.H., Alam, N., Tong, L., Ni, Y.H., 2019. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydr. Polym. 223, 115061. doi: 10.1016/j.carbpol.2019.115061
    Watanabe, H., Azuma, M., Igarashi, K., Ooshima, H., 2005. Analysis of chitin at the hyphal tip of Candida albicans using calcofluor white. Biosci. Biotechnol. Biochem. 69, 1798-1801. doi: 10.1271/bbb.69.1798
    Wu, H., Zhao, H.D., Song, X.J., Li, S., Ma, X.J., Tan, M.Q., 2014. Self-assembly-induced near-infrared fluorescent nanoprobes for effective tumor molecular imaging. J. Mater. Chem. B 2, 5302-5308. doi: 10.1039/C4TB00761A
    Yang, H.Y., Gözaydın, G., Nasaruddin, R.R., Har, J.R.G., Chen, X., Wang, X.N., Yan, N., 2019. Toward the shell biorefinery: processing crustacean shell waste using hot water and carbonic acid. ACS Sustainable Chem. Eng. 7, 5532-5542. doi: 10.1021/acssuschemeng.8b06853
    Yu, H.J., Xu, X.Y., Chen, X.S., Hao, J.Q., Jing, X.B., 2006. Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. J. Appl. Polym. Sci. 101, 2453-2463. doi: 10.1002/app.23344
    Yu, H.L., Hou, J.J., Namin, R.B., Ni, Y.H., Liu, S.W., Yu, S.T., Liu, Y.X., Wu, Q., Nie, S.X., 2021. Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst. Carbon 173, 800-808. doi: 10.1016/j.carbon.2020.11.069
    Zubareva, A., Ily'Ina, A., Prokhorov, A., Kurek, D., Efremov, M., Varlamov, V., Senel, S., Ignatyev, P., Svirshchevskaya, Е., 2013. Characterization of protein and peptide binding to nanogels formed by differently charged chitosan derivatives. Mol. Basel Switz. 18, 7848-7864.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint