Citation: | Sandra Rodríguez-Fabià, Gary Chinga-Carrasco. Effects of a poly(hydroxyalkanoate) elastomer and kraft pulp fibres on biocomposite properties and three-dimensional (3D) printability of filaments for fused deposition modelling[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 161-172. doi: 10.1016/j.jobab.2022.03.002 |
Three-dimensional (3D) printing is a useful technique that allows the creation of objects with complex structures by deposition of successive layers of material. These materials are often from fossil origin. However, efforts are being made to produce environmentally friendly materials for 3D printing. The addition of lignocellulosic fibres to a polymer matrix is one of the alternatives to replace, for instance, glass fibres in composites as reinforcing materials. The fields of biocomposites and 3D printing open innovative application areas for pulp fibres from the pulp and paper industry. In this work, biocomposites of poly(lactic acid) (PLA), poly(hydroxyalkanoate) (PHA) and kraft pulp fibres were prepared in order to find a suitable formulation for filaments for 3D printing. The effect of two different types of kraft fibres (bleached (B) and unbleached (U)) and of PHA on the mechanical and thermal properties of the biocomposites was assessed. The addition of 30% kraft fibres to PLA resulted in an increase of the tensile modulus from 3074 to ~4800 MPa. In the case of biocomposites containing PHA (50% PLA/20% PHA/30% kraft) the increase in modulus was more moderate (PLA+PHA+U: 3838 MPa, and PLA+PHA+B: 3312 MPa). The tensile strength of PLA (66 MPa) increased to 77 MPa in PLA+kraft biocomposites, while a reduction in strength was observed for PLA+PHA+U (43 MPa) and PLA+PHA+B (32 MPa). Filaments prepared with PLA, PHA and bleached and unbleached pulp fibres showed similar printability of complex geometries, demonstrating that unbleached pulp fibres could also be utilized in the preparation of biocomposites with good mechanical performance and 3D printing properties.
Azmin, S.N.H.M., Hayat, N.A.B.M., Nor, M.S.M., 2020. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 5, 248–255. doi: 10.1016/j.jobab.2020.10.003
|
Bhardwaj, R., Mohanty, A.K., Drzal, L.T., Pourboghrat, F., Misra, M., 2006. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7, 2044–2051. doi: 10.1021/bm050897y
|
Chinga-Carrasco, G., Kuznetsova, N., Garaeva, M., Leirset, I., Galiullina, G., Kostochko, A., Syverud, K., 2012. Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane. J. Nanoparticle Res. 14, 1–10.
|
Cuadri, A.A., Martín-Alfonso, J.E., 2018. Thermal, thermo-oxidative and thermomechanical degradation of PLA: a comparative study based on rheological, chemical and thermal properties. Polym. Degrad. Stab. 150, 37–45. doi: 10.1016/j.polymdegradstab.2018.02.011
|
Delgado-Aguilar, M., Julián, F., Tarrés, Q., Méndez, J.A., Mutjé, P., Espinach, F.X., 2017. Bio composite from bleached pine fibers reinforced polylactic acid as a replacement of glass fiber reinforced polypropylene, macro and micro-mechanics of the Young's modulus. Compos. B Eng. 125, 203–210. doi: 10.1016/j.compositesb.2017.05.058
|
Duigou, A.L., Castro, M., Bevan, R., Martin, N., 2016. 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater. Des. 96, 106–114. doi: 10.1016/j.matdes.2016.02.018
|
Ehman, N., Ponce de León, A., Felissia, F., Vallejos, M., Area, M.C., Chinga-Carrasco, G., 2021. Biocomposites of polyhydroxyalkanoates and lignocellulosic components: a focus on biodegradation and 3D printing. In: Kuddus, M., Roohi (Eds. ), Bioplastics for Sustainable Development. Springer, Singapore, pp. 325–345.
|
Ehman, N.V., Ita-Nagy, D., Felissia, F.E., Vallejos, M.E., Quispe, I., Area, M.C., Chinga-Carrasco, G., 2020. Biocomposites of bio-polyethylene reinforced with a hydrothermal-alkaline sugarcane bagasse pulp and coupled with a bio-based compatibilizer. Molecules 25, 2158. doi: 10.3390/molecules25092158
|
Farah, S., Anderson, D.G., Langer, R., 2016. Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392. doi: 10.1016/j.addr.2016.06.012
|
Graupner, N., 2008. Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J. Mater. Sci. 43, 5222–5229. doi: 10.1007/s10853-008-2762-3
|
Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M., 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. B Eng. 42, 856–873. doi: 10.1016/j.compositesb.2011.01.010
|
Lamm, M.E., Wang, L., Kishore, V., Tekinalp, H., Kunc, V., Wang, J.W., Gardner, D.J., Ozcan, S., 2020. Material extrusion additive manufacturing of wood and lignocellulosic filled composites. Polymers 12, 2115. doi: 10.3390/polym12092115
|
Muhr, A., Rechberger, E.M., Salerno, A., Reiterer, A., Schiller, M., Kwiecień, M., Adamus, G., Kowalczuk, M., Strohmeier, K., Schober, S., Mittelbach, M., Koller, M., 2013. Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React. Funct. Polym. 73, 1391–1398. doi: 10.1016/j.reactfunctpolym.2012.12.009
|
Peltola, H., Immonen, K., Johansson, L.S., Virkajärvi, J., Sandquist, D., 2019. Influence of pulp bleaching and compatibilizer selection on performance of pulp fiber reinforced PLA biocomposites. J. Appl. Polym. Sci. 136, 47955. doi: 10.1002/app.47955
|
Peltola, H., Laatikainen, E., Jetsu, P., 2011. Effects of physical treatment of wood fibres on fibre morphology and biocomposite properties. Plast. Rubber Compos. 40, 86–92. doi: 10.1179/174328911X12988622801016
|
Petchwattana, N., Covavisaruch, S., 2014. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly(lactic acid) and rubber wood sawdust (Hevea brasiliensis). J. Bionic Eng. 11, 630–637. doi: 10.1016/S1672-6529(14)60074-3
|
Ross, G., Ross, S., Tighe, B.J., 2017. Bioplastics: new routes, new products. In: Gilbert, M. (Ed. ), Brydson's Plastics Materials. Butterworth-Heinemann, Oxford, pp. 631–652.
|
Sánchez-Safont, E.L., Aldureid, A., Lagarón, J.M., Gámez-Pérez, J., Cabedo, L., 2018. Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos. B Eng. 145, 215–225. doi: 10.1016/j.compositesb.2018.03.037
|
Shaker, K., Nawab, Y., Jabbar, M., 2020. Bio-composites: eco-friendly substitute of glass fiber composites. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer International Publishing, Cham, pp. 1–25.
|
Sharma, N., Bhardwaj, N.K., Singh, R.B.P., 2020. Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: a review. J. Clean. Prod. 256, 120338. doi: 10.1016/j.jclepro.2020.120338
|
Solala, I., Koistinen, A., Siljander, S., Vuorinen, J., Vuorinen, T., 2015. Composites of high-temperature thermomechanical pulps and polylactic acid. BioResources 11, 1125–1140.
|
Thellen, C., Coyne, M., Froio, D., Auerbach, M., Wirsen, C., Ratto, J.A., 2008. A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films. J. Polym. Environ. 16, 1–11. doi: 10.1007/s10924-008-0079-6
|
Vandi, L.J., Chan, C.M., Werker, A., Richardson, D., Laycock, B., Pratt, S., 2019. Extrusion of wood fibre reinforced poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) biocomposites: statistical analysis of the effect of processing conditions on mechanical performance. Polym. Degrad. Stab. 159, 1–14. doi: 10.1016/j.polymdegradstab.2018.10.015
|
Vink, E.T.H., Rábago, K.R., Glassner, D.A., Gruber, P.R., 2003. Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polym. Degrad. Stab. 80, 403–419. doi: 10.1016/S0141-3910(02)00372-5
|
Wang, Q.Q., Ji, C.C., Sun, L.S., Sun, J.Z., Liu, J., 2020. Cellulose nanofibrils filled poly(lactic acid) biocomposite filament for FDM 3D printing. Molecules 25, 2319. doi: 10.3390/molecules25102319
|
Wang, Q.Q., Sun, J.Z., Yao, Q., Ji, C.C., Liu, J., Zhu, Q.Q., 2018. 3D printing with cellulose materials. Cellulose 25, 4275–4301.
|
Wang, Y., Yin, J., Chen, G.Q., 2014. Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol. 30, 59–65. doi: 10.1016/j.copbio.2014.06.001
|
Yang, J., An, X.Y., Liu, L.Q., Tang, S.Y., Cao, H.B., Xu, Q.L., Liu, H.B., 2020. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydr. Polym. 250, 116881. doi: 10.1016/j.carbpol.2020.116881
|
Yang, Z.Z., Feng, X.H., Xu, M., Rodrigue, D., 2021. Printability and properties of 3D-printed poplar fiber/polylactic acid biocomposite. BioResources 16, 2774–2788. doi: 10.15376/biores.16.2.2774-2788
|
Zhang, L., Chen, Z.H., Dong, H.R., Fu, S., Ma, L., Yang, X.J., 2021. Wood plastic composites based wood wall's structure and thermal insulation performance. J. Bioresour. Bioprod. 6, 65–74. doi: 10.1016/j.jobab.2021.01.005
|