Volume 7 Issue 2
May  2022
Turn off MathJax
Article Contents
Yufei Zhang, Xinyue Tian, Qiuyue Zhang, Huifang Xie, Bingyu Wang, Yanfang Feng. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 116-127. doi: 10.1016/j.jobab.2022.03.003
Citation: Yufei Zhang, Xinyue Tian, Qiuyue Zhang, Huifang Xie, Bingyu Wang, Yanfang Feng. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 116-127. doi: 10.1016/j.jobab.2022.03.003

Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth

doi: 10.1016/j.jobab.2022.03.003
More Information
  • Corresponding author: E-mail addresses: huifangxie@njust.edu.cn (H. Xie); E-mail addresses: bingyuwang@njust.edu.cn (B. Wang)
  • Received Date: 2021-11-20
  • Accepted Date: 2022-01-27
  • Rev Recd Date: 2022-01-21
  • Available Online: 2022-05-06
  • Publish Date: 2022-05-01
  • The cellulose-based hydrogel has been widely applied for soil water retention and nutrient re-lease agents for several decades. Embedding the inorganic materials into hydrogels is an excellent strategy to improve the inherent limits of the cellulose-based hydrogel. Notably, municipal sludge-derived hydrochar (HC) has reduced the environmental burden and offered a potential hydrogel carrier to control water-retention and nutrient-release. However, the above function for plant growth of hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) (CMC-g-PAA/HC) is unknown, and relevant reports are lacking. This study investigated the water retention, nutri-ent release behavior, and effect of germination and plant growth of CMC-g-PAA/HC hydrogel. Characterization results showed that HC was successfully incorporated into CMC-g-PAA/HC with 6.0% higher thermostability, 7.2-21.0% lower swelling ratio (SR) in water, and substantial SR in phosphate solution (P-solution). The water loss rate of CMC-g-PAA/HC in P-solution or wa-ter owned a more significant temperature response (7.9-15.0 folds) than CMC-g-PAA (8.2-10.0 folds). Moreover, 4.0% higher n value and more 18.5% released P for CMC-g-PAA/HC were also observed. These phenomena were due to restricting the polymer chains movement and the wa-ter molecules diffusion inside the hydrogels with HC. Phytotoxicity assessments showed that HC in CMC-g-PAA/HC could effectively alleviate the inhibition effects on rape germination retained with 78.3% germination vigor and 80.0% germination ratio, even dramatically improved plant growth to 28 d. The results of this study demonstrated a new route for developing eco-friendly CMC-g-PAA/HC hydrogel, advantageous as a water retention agent and nutrient carrier in arid and semiarid regions.


  • 1These authors contributed equally to this work.
  • loading
  • Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202/203, 183-191. doi: 10.1016/j.geoderma.2013.03.003
    An, X.F., Yu, J.L., Yu, J.Z., Tahmasebi, A., Wu, Z.S., Liu, X.C., Yu, B., 2020. Incorporation of biochar into semi-interpenetrating polymer networks through graft co-polymerization for the synthesis of new slow-release fertilizers. J. Clean. Prod. 272, 122731. doi: 10.1016/j.jclepro.2020.122731
    Bai, C.Z., Huang, Q.H., Xiong, X.P., 2020. Reinforcement of self-healing polyacrylic acid hydrogel with acrylamide modified microcrystalline cellulose. Chin. J. Chem. 38, 494-500. doi: 10.1002/cjoc.201900458
    Bao, Y., Ma, J.Z., Li, N., 2011. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 84, 76-82. doi: 10.1016/j.carbpol.2010.10.061
    Chen, Y.C., Chen, Y.H., 2019. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2 SO4 for water retention and a controlled-release water-soluble fertilizer. Sci. Total Environ. 655, 958-967. doi: 10.1016/j.scitotenv.2018.11.264
    Da, I.H., Huang, H., 2017. Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose 24, 1-16. doi: 10.1007/s10570-016-1105-9
    Dai, H.J., Huang, Y., Huang, H.H., 2018. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 185, 1-11. doi: 10.1016/j.carbpol.2017.12.073
    Dai, Y.J., Wang, W.S., Lu, L., Yan, L.L., Yu, D.Y., 2020. Utilization of biochar for the removal of nitrogen and phosphorus. J. Clean. Prod. 257, 120573. doi: 10.1016/j.jclepro.2020.120573
    Fei, Y.H., Zhao, D., Cao, Y.D., Huot, H., Tang, Y.T., Zhang, H.G., Xiao, T.F., 2019. Phosphorous retention and release by sludge-derived hydrochar for potential use as a soil amendment. J. Environ. Qual. 48, 502-509. doi: 10.2134/jeq2018.09.0328
    Fu, H.B., Wang, B.Y., Li, D.T., Xue, L.H., Hua, Y., Feng, Y.F., Xie, H.F., 2021. Anaerobic fermentation treatment improved Cd2+ adsorption of different feedstocks based hydrochars. Chemosphere 263, 127981. doi: 10.1016/j.chemosphere.2020.127981
    Gao, J.D., Yang, Q., Ran, F.T., Ma, G.F., Lei, Z.Q., 2016. Preparation and properties of novel eco-friendly superabsorbent composites based on raw wheat bran and clays. Appl. Clay Sci. 132/133, 739-747. doi: 10.1016/j.clay.2016.08.021
    Haraguchi, K., Ning, J.Y., Li, G., 2015. Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer-clay networks. Eur. Polym. J. 68, 630-640. doi: 10.1016/j.eurpolymj.2015.03.061
    Hashem, M., Sharaf, S., Abd El-Hady, M.M., Hebeish, A., 2013. Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellu-lolse-hydrogel-ZnO-nanocomposites. Carbohydr. Polym. 95, 421-427. doi: 10.1016/j.carbpol.2013.03.013
    He, F.R., Zhou, Q.F., Wang, L.Z., Yu, G.B., Li, J.C., Feng, Y.H., 2019. Fabrication of a sustained release delivery system for pesticides using interpenetrating polyacry-lamide/alginate/montmorillonite nanocomposite hydrogels. Appl. Clay Sci. 183, 105347. doi: 10.1016/j.clay.2019.105347
    Hosseini, S.H., Niyungeko, C., Khan, S., Liang, X.Q., 2021. Effects of superabsorbent polyacrylamide hydrogel and gypsum applications on colloidal phosphorus release from agricultural soils. J. Soils Sediments 21, 925-935. doi: 10.1007/s11368-020-02819-5
    Huang, R.X., Tang, Y.Z., 2016. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: insights from sequential extraction and P K-edge XANES. Water Res. 100, 439-447. doi: 10.1016/j.watres.2016.05.029
    Katsuyama, Y., Kurokawa, T., Kaneko, T., Gong, J.P., Osada, Y., Yotsukura, N., Motomura, T., 2002. Inhibitory effects of hydrogels on the adhesion, germination, and development of zoospores originating from Laminaria angustata. Macromol. Biosci. 2, 163. doi: 10.1002/1616-5195(20020501)2:4<163::AID-MABI163>3.0.CO;2-2
    Kumar, S., Chauhan, N., Gopal, M., Kumar, R., Dilbaghi, N., 2015. Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int. J. Biol. Macromol. 81, 631-637. doi: 10.1016/j.ijbiomac.2015.08.062
    León, O., Soto, D., Antúnez, A., Fernández, R., González, J., Piña, C., Muñoz-Bonilla, A., Fernandez-García, M., 2019. Hydrogels based on oxidized starches from different botanical sources for release of fertilizers. Int. J. Biol. Macromol. 136, 813-822. doi: 10.1016/j.ijbiomac.2019.06.131
    Li, S.M., Chen, G., 2020. Agricultural waste-derived superabsorbent hydrogels: preparation, performance, and socioeconomic impacts. J. Clean. Prod. 251, 119669. doi: 10.1016/j.jclepro.2019.119669
    Li, S.M., Chen, G., 2020. Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: present and future. Environ. Dev. Sustain. 22, 2703-2741. doi: 10.1007/s10668-019-00327-2
    Liu, C.J., Lei, F.H., Li, P.F., Wang, K., Jiang, J.X., 2021. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. Int. J. Biol. Macromol. 182, 1179-1191. doi: 10.1016/j.ijbiomac.2021.04.090
    Liu, H., Basar, I.A., Nzihou, A., Eskicioglu, C., 2021. Hydrochar derived from municipal sludge through hydrothermal processing: a critical review on its formation, characterization, and valorization. Water Res. 199, 117186. doi: 10.1016/j.watres.2021.117186
    Liu, X.Q., Li, Y., Meng, Y., Lu, J., Cheng, Y., Tao, Y.H., Wang, H.S., 2021. Pulping black liquor-based polymer hydrogel as water retention material and slow-release fertilizer. Ind. Crops Prod. 165, 113445. doi: 10.1016/j.indcrop.2021.113445
    Nakasone, K., Kobayashi, T., 2016. Cytocompatible cellulose hydrogels containing trace lignin. Mater. Sci. Eng. C 64, 269-277. doi: 10.1016/j.msec.2016.03.108
    Namazi, H., Hasani, M., Yadollahi, M., 2019. Antibacterial oxidized starch/ZnO nanocomposite hydrogel: synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int. J. Biol. Macromol. 126, 578-584. doi: 10.1016/j.ijbiomac.2018.12.242
    Olad, A., Pourkhiyabi, M., Gharekhani, H., Doustdar, F., 2018. Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics. Carbohydr. Polym. 190, 295-306. doi: 10.1016/j.carbpol.2018.02.088
    Patil, M.D., Patil, V.D., Sapre, A.A., Ambone, T.S., Torris, A T, Shukla, P.G., Shanmuganathan, K., 2018. Tuning controlled release behavior of starch granules using nanofibrillated cellulose derived from waste sugarcane bagasse. ACS Sustain. Chem. Eng. 6, 9208-9217. doi: 10.1021/acssuschemeng.8b01545
    Patra, T., Pal, A., Dey, J., 2010. A smart supramolecular hydrogel of n-(4-n-alkyloxybenzoyl)-l-histidine exhibiting pH-modulated properties. Langmuir 26, 7761-7767. doi: 10.1021/la904540x
    Pushpamalar, J., Langford, S.J., Ahmad, M.B., Lim, Y.Y., Hashim, K., 2018. Eco-friendly smart hydrogels for soil conditioning and sustain release fertilizer. Int. J. Environ. Sci. Technol. 15, 2059-2074. doi: 10.1007/s13762-017-1598-2
    Rashidzadeh, A., Olad, A., Salari, D., Reyhanitabar, A., 2014. On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J. Polym. Res. 21, 1-15.
    Ritger, P.L., Peppas, N.A., 1987. A simple equation for description of solute release Ⅱ. Fickian and anomalous release from swellable devices. J. Control. Release 5, 37-42.
    Wang, D.Y., Li, C.Y., Parikh, S.J., Scow, K.M., 2019. Impact of biochar on water retention of two agricultural soils: a multi-scale analysis. Geoderma 340, 185-191. doi: 10.1016/j.geoderma.2019.01.012
    Wang, L.Z., Yu, G.B., Li, J.C., Feng, Y.H., Peng, Y., Zhao, X.Y., Tang, Y.Y., Zhang, Q., 2019. Stretchable hydrophobic modified alginate double-network nanocomposite hydrogels for sustained release of water-insoluble pesticides. J. Clean. Prod. 226, 122-132. doi: 10.1016/j.jclepro.2019.03.341
    Wang, Y., Xiong, Y., Wang, J.Y., Zhang, X.D., 2017. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly effcient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 520, 903-913. doi: 10.1016/j.colsurfa.2017.02.050
    Wen, P., Wu, Z.S., He, Y.H., Ye, B.C., Han, Y.J., Wang, J., Guan, X.Y., 2016. Microwave-assisted synthesis of a semi-interpenetrating polymer network slow-release nitrogen fertilizer with water absorbency from cotton stalks. ACS Sustain. Chem. Eng. 4, 6572-6579. doi: 10.1021/acssuschemeng.6b01466
    Wu, F., Zhang, Y., Liu, L., Yao, J.M., 2012. Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr. Polym. 87, 2519-2525. doi: 10.1016/j.carbpol.2011.11.028
    Xiang, A.H., Qi, R.Y., Wang, M.F., Zhang, K., Jiang, E. C, Ren, Y.Z., Hu, Z.W., 2020. Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation. Ind. Crops Prod. 153, 112558. doi: 10.1016/j.indcrop.2020.112558
    Yan, X.Q., Yang, J., Chen, F., Zhu, L., Tang, Z.Q., Qin, G., Chen, Q., Chen, G.M., 2018. Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels. Compos. Sci. Technol. 163, 81-88. doi: 10.1016/j.compscitech.2018.05.011
    Yu, H.W., Zou, W.X., Chen, J.J., Chen, H., Yu, Z.B., Huang, J., Tang, H.R., Wei, X.Y., Gao, B., 2019. Biochar amendment improves crop production in problem soils: a review. J. Environ. Manag. 232, 8-21. doi: 10.1016/j.jenvman.2018.10.117
    Yu, S., Feng, Y.F., Xue, L.H., Sun, H.J., Han, L.F., Yang, L.Z., Sun, Q.Y., Chu, Q.N., 2019. Biowaste to treasure: application of microbial-aged hydrochar in rice paddy could improve nitrogen use effciency and rice grain free amino acids. J. Clean. Prod. 240, 118180. doi: 10.1016/j.jclepro.2019.118180
    Zhang, J., Liang, X.Y., Zhang, Y., Shang, Q., 2016. Fabrication and evaluation of a novel polymeric hydrogel of carboxymethyl chitosan-g-polyacrylic acid (CMC-g-PAA) for oral insulin delivery. RSC Adv. 6, 52858-52867. doi: 10.1039/C6RA05078F
    Zhou, S.Y., Kong, X.Y., Zheng, B., Huo, F.W., Strømme, M., Xu, C., 2019. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578-9586. doi: 10.1021/acsnano.9b04670
    Zhou, Y.M., Fu, S.Y., Zhang, L.L., Zhan, H.Y., 2013. Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr. Polym. 97, 429-435. doi: 10.1016/j.carbpol.2013.04.088
    Zonatto, F., Muniz, E.C., Tambourgi, E.B., Paulino, A.T., 2017. Adsorption and controlled release of potassium, phosphate and ammonia from modified Arabic gum-based hydrogel. Int. J. Biol. Macromol. 105, 363-369. doi: 10.1016/j.ijbiomac.2017.07.051
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (315) PDF downloads(14) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint