Citation: | Yufei Zhang, Xinyue Tian, Qiuyue Zhang, Huifang Xie, Bingyu Wang, Yanfang Feng. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth[J]. Journal of Bioresources and Bioproducts, 2022, 7(2): 116-127. doi: 10.1016/j.jobab.2022.03.003 |
Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202/203, 183-191. doi: 10.1016/j.geoderma.2013.03.003
|
An, X.F., Yu, J.L., Yu, J.Z., Tahmasebi, A., Wu, Z.S., Liu, X.C., Yu, B., 2020. Incorporation of biochar into semi-interpenetrating polymer networks through graft co-polymerization for the synthesis of new slow-release fertilizers. J. Clean. Prod. 272, 122731. doi: 10.1016/j.jclepro.2020.122731
|
Bai, C.Z., Huang, Q.H., Xiong, X.P., 2020. Reinforcement of self-healing polyacrylic acid hydrogel with acrylamide modified microcrystalline cellulose. Chin. J. Chem. 38, 494-500. doi: 10.1002/cjoc.201900458
|
Bao, Y., Ma, J.Z., Li, N., 2011. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 84, 76-82. doi: 10.1016/j.carbpol.2010.10.061
|
Chen, Y.C., Chen, Y.H., 2019. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2 SO4 for water retention and a controlled-release water-soluble fertilizer. Sci. Total Environ. 655, 958-967. doi: 10.1016/j.scitotenv.2018.11.264
|
Da, I.H., Huang, H., 2017. Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose 24, 1-16. doi: 10.1007/s10570-016-1105-9
|
Dai, H.J., Huang, Y., Huang, H.H., 2018. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 185, 1-11. doi: 10.1016/j.carbpol.2017.12.073
|
Dai, Y.J., Wang, W.S., Lu, L., Yan, L.L., Yu, D.Y., 2020. Utilization of biochar for the removal of nitrogen and phosphorus. J. Clean. Prod. 257, 120573. doi: 10.1016/j.jclepro.2020.120573
|
Fei, Y.H., Zhao, D., Cao, Y.D., Huot, H., Tang, Y.T., Zhang, H.G., Xiao, T.F., 2019. Phosphorous retention and release by sludge-derived hydrochar for potential use as a soil amendment. J. Environ. Qual. 48, 502-509. doi: 10.2134/jeq2018.09.0328
|
Fu, H.B., Wang, B.Y., Li, D.T., Xue, L.H., Hua, Y., Feng, Y.F., Xie, H.F., 2021. Anaerobic fermentation treatment improved Cd2+ adsorption of different feedstocks based hydrochars. Chemosphere 263, 127981. doi: 10.1016/j.chemosphere.2020.127981
|
Gao, J.D., Yang, Q., Ran, F.T., Ma, G.F., Lei, Z.Q., 2016. Preparation and properties of novel eco-friendly superabsorbent composites based on raw wheat bran and clays. Appl. Clay Sci. 132/133, 739-747. doi: 10.1016/j.clay.2016.08.021
|
Haraguchi, K., Ning, J.Y., Li, G., 2015. Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer-clay networks. Eur. Polym. J. 68, 630-640. doi: 10.1016/j.eurpolymj.2015.03.061
|
Hashem, M., Sharaf, S., Abd El-Hady, M.M., Hebeish, A., 2013. Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellu-lolse-hydrogel-ZnO-nanocomposites. Carbohydr. Polym. 95, 421-427. doi: 10.1016/j.carbpol.2013.03.013
|
He, F.R., Zhou, Q.F., Wang, L.Z., Yu, G.B., Li, J.C., Feng, Y.H., 2019. Fabrication of a sustained release delivery system for pesticides using interpenetrating polyacry-lamide/alginate/montmorillonite nanocomposite hydrogels. Appl. Clay Sci. 183, 105347. doi: 10.1016/j.clay.2019.105347
|
Hosseini, S.H., Niyungeko, C., Khan, S., Liang, X.Q., 2021. Effects of superabsorbent polyacrylamide hydrogel and gypsum applications on colloidal phosphorus release from agricultural soils. J. Soils Sediments 21, 925-935. doi: 10.1007/s11368-020-02819-5
|
Huang, R.X., Tang, Y.Z., 2016. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: insights from sequential extraction and P K-edge XANES. Water Res. 100, 439-447. doi: 10.1016/j.watres.2016.05.029
|
Katsuyama, Y., Kurokawa, T., Kaneko, T., Gong, J.P., Osada, Y., Yotsukura, N., Motomura, T., 2002. Inhibitory effects of hydrogels on the adhesion, germination, and development of zoospores originating from Laminaria angustata. Macromol. Biosci. 2, 163. doi: 10.1002/1616-5195(20020501)2:4<163::AID-MABI163>3.0.CO;2-2
|
Kumar, S., Chauhan, N., Gopal, M., Kumar, R., Dilbaghi, N., 2015. Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int. J. Biol. Macromol. 81, 631-637. doi: 10.1016/j.ijbiomac.2015.08.062
|
León, O., Soto, D., Antúnez, A., Fernández, R., González, J., Piña, C., Muñoz-Bonilla, A., Fernandez-García, M., 2019. Hydrogels based on oxidized starches from different botanical sources for release of fertilizers. Int. J. Biol. Macromol. 136, 813-822. doi: 10.1016/j.ijbiomac.2019.06.131
|
Li, S.M., Chen, G., 2020. Agricultural waste-derived superabsorbent hydrogels: preparation, performance, and socioeconomic impacts. J. Clean. Prod. 251, 119669. doi: 10.1016/j.jclepro.2019.119669
|
Li, S.M., Chen, G., 2020. Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: present and future. Environ. Dev. Sustain. 22, 2703-2741. doi: 10.1007/s10668-019-00327-2
|
Liu, C.J., Lei, F.H., Li, P.F., Wang, K., Jiang, J.X., 2021. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. Int. J. Biol. Macromol. 182, 1179-1191. doi: 10.1016/j.ijbiomac.2021.04.090
|
Liu, H., Basar, I.A., Nzihou, A., Eskicioglu, C., 2021. Hydrochar derived from municipal sludge through hydrothermal processing: a critical review on its formation, characterization, and valorization. Water Res. 199, 117186. doi: 10.1016/j.watres.2021.117186
|
Liu, X.Q., Li, Y., Meng, Y., Lu, J., Cheng, Y., Tao, Y.H., Wang, H.S., 2021. Pulping black liquor-based polymer hydrogel as water retention material and slow-release fertilizer. Ind. Crops Prod. 165, 113445. doi: 10.1016/j.indcrop.2021.113445
|
Nakasone, K., Kobayashi, T., 2016. Cytocompatible cellulose hydrogels containing trace lignin. Mater. Sci. Eng. C 64, 269-277. doi: 10.1016/j.msec.2016.03.108
|
Namazi, H., Hasani, M., Yadollahi, M., 2019. Antibacterial oxidized starch/ZnO nanocomposite hydrogel: synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int. J. Biol. Macromol. 126, 578-584. doi: 10.1016/j.ijbiomac.2018.12.242
|
Olad, A., Pourkhiyabi, M., Gharekhani, H., Doustdar, F., 2018. Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics. Carbohydr. Polym. 190, 295-306. doi: 10.1016/j.carbpol.2018.02.088
|
Patil, M.D., Patil, V.D., Sapre, A.A., Ambone, T.S., Torris, A T, Shukla, P.G., Shanmuganathan, K., 2018. Tuning controlled release behavior of starch granules using nanofibrillated cellulose derived from waste sugarcane bagasse. ACS Sustain. Chem. Eng. 6, 9208-9217. doi: 10.1021/acssuschemeng.8b01545
|
Patra, T., Pal, A., Dey, J., 2010. A smart supramolecular hydrogel of n-(4-n-alkyloxybenzoyl)-l-histidine exhibiting pH-modulated properties. Langmuir 26, 7761-7767. doi: 10.1021/la904540x
|
Pushpamalar, J., Langford, S.J., Ahmad, M.B., Lim, Y.Y., Hashim, K., 2018. Eco-friendly smart hydrogels for soil conditioning and sustain release fertilizer. Int. J. Environ. Sci. Technol. 15, 2059-2074. doi: 10.1007/s13762-017-1598-2
|
Rashidzadeh, A., Olad, A., Salari, D., Reyhanitabar, A., 2014. On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J. Polym. Res. 21, 1-15.
|
Ritger, P.L., Peppas, N.A., 1987. A simple equation for description of solute release Ⅱ. Fickian and anomalous release from swellable devices. J. Control. Release 5, 37-42.
|
Wang, D.Y., Li, C.Y., Parikh, S.J., Scow, K.M., 2019. Impact of biochar on water retention of two agricultural soils: a multi-scale analysis. Geoderma 340, 185-191. doi: 10.1016/j.geoderma.2019.01.012
|
Wang, L.Z., Yu, G.B., Li, J.C., Feng, Y.H., Peng, Y., Zhao, X.Y., Tang, Y.Y., Zhang, Q., 2019. Stretchable hydrophobic modified alginate double-network nanocomposite hydrogels for sustained release of water-insoluble pesticides. J. Clean. Prod. 226, 122-132. doi: 10.1016/j.jclepro.2019.03.341
|
Wang, Y., Xiong, Y., Wang, J.Y., Zhang, X.D., 2017. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly effcient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 520, 903-913. doi: 10.1016/j.colsurfa.2017.02.050
|
Wen, P., Wu, Z.S., He, Y.H., Ye, B.C., Han, Y.J., Wang, J., Guan, X.Y., 2016. Microwave-assisted synthesis of a semi-interpenetrating polymer network slow-release nitrogen fertilizer with water absorbency from cotton stalks. ACS Sustain. Chem. Eng. 4, 6572-6579. doi: 10.1021/acssuschemeng.6b01466
|
Wu, F., Zhang, Y., Liu, L., Yao, J.M., 2012. Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr. Polym. 87, 2519-2525. doi: 10.1016/j.carbpol.2011.11.028
|
Xiang, A.H., Qi, R.Y., Wang, M.F., Zhang, K., Jiang, E. C, Ren, Y.Z., Hu, Z.W., 2020. Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation. Ind. Crops Prod. 153, 112558. doi: 10.1016/j.indcrop.2020.112558
|
Yan, X.Q., Yang, J., Chen, F., Zhu, L., Tang, Z.Q., Qin, G., Chen, Q., Chen, G.M., 2018. Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels. Compos. Sci. Technol. 163, 81-88. doi: 10.1016/j.compscitech.2018.05.011
|
Yu, H.W., Zou, W.X., Chen, J.J., Chen, H., Yu, Z.B., Huang, J., Tang, H.R., Wei, X.Y., Gao, B., 2019. Biochar amendment improves crop production in problem soils: a review. J. Environ. Manag. 232, 8-21. doi: 10.1016/j.jenvman.2018.10.117
|
Yu, S., Feng, Y.F., Xue, L.H., Sun, H.J., Han, L.F., Yang, L.Z., Sun, Q.Y., Chu, Q.N., 2019. Biowaste to treasure: application of microbial-aged hydrochar in rice paddy could improve nitrogen use effciency and rice grain free amino acids. J. Clean. Prod. 240, 118180. doi: 10.1016/j.jclepro.2019.118180
|
Zhang, J., Liang, X.Y., Zhang, Y., Shang, Q., 2016. Fabrication and evaluation of a novel polymeric hydrogel of carboxymethyl chitosan-g-polyacrylic acid (CMC-g-PAA) for oral insulin delivery. RSC Adv. 6, 52858-52867. doi: 10.1039/C6RA05078F
|
Zhou, S.Y., Kong, X.Y., Zheng, B., Huo, F.W., Strømme, M., Xu, C., 2019. Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578-9586. doi: 10.1021/acsnano.9b04670
|
Zhou, Y.M., Fu, S.Y., Zhang, L.L., Zhan, H.Y., 2013. Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr. Polym. 97, 429-435. doi: 10.1016/j.carbpol.2013.04.088
|
Zonatto, F., Muniz, E.C., Tambourgi, E.B., Paulino, A.T., 2017. Adsorption and controlled release of potassium, phosphate and ammonia from modified Arabic gum-based hydrogel. Int. J. Biol. Macromol. 105, 363-369. doi: 10.1016/j.ijbiomac.2017.07.051
|