Citation: | Taku Michael Aida, Yasuaki Kumagai, Smith Jr Richard Lee. Mechanism of selective hydrolysis of alginates under hydrothermal conditions[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 173-179. doi: 10.1016/j.jobab.2022.04.001 |
Mechanisms of selective hydrolysis of alginates under hydrothermal conditions were investigated by comparing reactivities of sodium alginate (Na-ALG, 960 ku) solutions and calcium alginate (Ca-ALG) gels as substrates. Under hydrothermal conditions (150 ℃), hydrolysis of Na-ALG gave product molecular weights of 223, 66, 26 and 17 ku while those of Ca-ALG gave product molecular weights of 340, 102, 45 and 31 ku for reaction times of 10, 20, 30 and 60 min, respectively. The ratios of mannuronic acid (M) to guluronic acid (G) varied only slightly (from 1.3 to 1.2) for Na-ALG over the range of reaction times at 150 ℃, while ratios (M/G) for Ca-ALG exhibited a remarkable decrease (from 1.1 to 0.8). Diad sequence of alginate products obtained for Na-ALG were 17%, 23%, 27% and 31% (GG); 30%, 32%, 36% and 38% (MM); and 53%, 46%, 37% and 32% (GM+MG); while for Ca-ALG they were 18%, 22%, 24% and 33% (GG); 26%, 23%, 26% and 18% (MM); and 56%, 54%, 50% and 48% (GM+MG). Reaction mechanisms are proposed for hydrolysis of alginate solutions and alginate gels under hydrothermal conditions; de-polymerization of alginates into monomers and monomeric sequences can be controlled not only by hydrothermal conditions, but also by varying the physical state (solution, gel) of the starting materials.
Aida, T.M., 2022. Fundamental of Hydrothermal Processing of Biomass-Related Molecules for Converting Organic Solid Wastes into Chemical Products in Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste. Springer-Nature, Singapore.
|
Aida, T.M., Oshima, M., Smith, R.L., 2017. Controlled conversion of proteins into high-molecular-weight peptides without additives with high-temperature water and fast heating rates. ACS Sustain. Chem. Eng. 5, 7709–7715. doi: 10.1021/acssuschemeng.7b01146
|
Aida, T.M., Yamagata, T., Abe, C., Kawanami, H., Watanabe, M., Smith, R.L., 2012. Production of organic acids from alginate in high temperature water. J. Supercrit. Fluids 65, 39–44. doi: 10.1016/j.supflu.2012.02.021
|
Aida, T.M., Yamagata, T., Watanabe, M., Smith, R.L., 2010. Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr. Polym. 80, 296–302. doi: 10.1016/j.carbpol.2009.11.032
|
Augst, A.D., Kong, H.J., Mooney, D.J., 2006. Alginate hydrogels as biomaterials. Macromol. Biosci. 6, 623–633. doi: 10.1002/mabi.200600069
|
Burana-Osot, J., Hosoyama, S., Nagamoto, Y., Suzuki, S., Linhardt, R.J., Toida, T., 2009. Photolytic depolymerization of alginate. Carbohydr. Res. 344, 2023–2027. doi: 10.1016/j.carres.2009.06.027
|
Draget, K.I., Smidsrod, O., Skjak-Braek, G., 2002. Biopolymers. Polysaccharides II: Polysaccharides from Eukaryotes. Wiley-VCH Verlag GmbH, Weinheim, pp. 215–245.
|
Feng, L.P., Cao, Y.P., Xu, D.X., Wang, S.J., Zhang, J., 2017. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrason. Sonochem. 34, 609–615. doi: 10.1016/j.ultsonch.2016.06.038
|
Fenoradosoa, T.A., Ali, G., Delattre, C., Laroche, C., Petit, E., Wadouachi, A., Michaud, P., 2010. Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides grunow. J. Appl. Phycol. 22, 131–137. doi: 10.1007/s10811-009-9432-y
|
Fernando, I.P.S., Kim, D., Nah, J.W., Jeon, Y.J., 2019. Advances in functionalizing fucoidans and alginates (bio)polymers by structural modifications: a review. Chem. Eng. J. 355, 33–48. doi: 10.1016/j.cej.2018.08.115
|
Goh, C.H., Heng, P.W.S., Chan, L.W., 2012. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 88, 1–12. doi: 10.1016/j.carbpol.2011.11.012
|
Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D., 1973. Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32, 195–198. doi: 10.1016/0014-5793(73)80770-7
|
Grasdalen, H., 1983. High-field, 1H-NMR spectroscopy of alginate: sequential structure and linkage conformations. Carbohydr. Res. 118, 255–260. doi: 10.1016/0008-6215(83)88053-7
|
Haug, A., Larsen, B., Smidsrød, O., Haug, A., Hagen, G., 1967. Alkaline degradation of alginate. Acta Chem. Scand. 21, 2859–2870. doi: 10.3891/acta.chem.scand.21-2859
|
Haug, A., Larsen, B., Smidsrød, O., Møller, J., Brunvoll, J., Bunnenberg, E., Djerassi, C., Records, R., 1966. A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand. 20, 183–190. doi: 10.3891/acta.chem.scand.20-0183
|
Haug, A., Larsen, B., Smidsröd, O., Munch-Petersen, J., Munch-Petersen, J., 1963. The degradation of alginates at different pH values. Acta Chem. Scand. 17, 1466–1468. doi: 10.3891/acta.chem.scand.17-1466
|
Hernández-González, A.C., Téllez-Jurado, L., Rodríguez-Lorenzo, L.M., 2020. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr. Polym. 229, 115514. doi: 10.1016/j.carbpol.2019.115514
|
Holme, H.K., Lindmo, K., Kristiansen, A., Smidsrød, O., 2003. Thermal depolymerization of alginate in the solid state. Carbohydr. Polym. 54, 431–438. doi: 10.1016/S0144-8617(03)00134-6
|
Ikeda, A., Takemura, A., Ono, H., 2000. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr. Polym. 42, 421–425. doi: 10.1016/S0144-8617(99)00183-6
|
Kelishomi, Z.H., Goliaei, B., Mahdavi, H., Nikoofar, A., Rahimi, M., Moosavi-Movahedi, A.A., Mamashli, F., Bigdeli, B., 2016. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem 196, 897–902. doi: 10.1016/j.foodchem.2015.09.091
|
Lee, K.Y., Mooney, D.J., 2012. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126. doi: 10.1016/j.progpolymsci.2011.06.003
|
Li, X.X., Xu, A.H., Xie, H.G., Yu, W.T., Xie, W.Y., Ma, X.J., 2010. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr. Polym. 79, 660–664. doi: 10.1016/j.carbpol.2009.09.020
|
Liu, J., Yang, S.Q., Li, X.T., Yan, Q.J., Reaney, M.J.T., Jiang, Z.Q., 2019. Alginate oligosaccharides: production, biological activities, and potential applications. Compr. Rev. Food Sci. Food Saf. 18, 1859–1881. doi: 10.1111/1541-4337.12494
|
Matsushima, K., Minoshima, H., Kawanami, H., Ikushima, Y., Nishizawa, M., Kawamukai, A., Hara, K., 2005. Decomposition reaction of alginic acid using subcritical and supercritical water. Ind. Eng. Chem. Res. 44, 9626–9630. doi: 10.1021/ie0502640
|
Meillisa, A., Woo, H.C., Chun, B.S., 2015. Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem 171, 70–77. doi: 10.1016/j.foodchem.2014.08.097
|
Pina, S., Oliveira, J.M., Reis, R.L., 2015. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv. Mater. 27, 1143–1169. doi: 10.1002/adma.201403354
|
Rehm, B.H.A., Valla, S., 1997. Bacterial alginates: biosynthesis and applications. Appl. Microbiol. Biotechnol. 48, 281–288. doi: 10.1007/s002530051051
|
Smidsrød, O., Glover, R.M., Whittington, S.G., 1973. The relative extension of alginates having different chemical composition. Carbohydr. Res. 27, 107–118. doi: 10.1016/S0008-6215(00)82430-1
|
Stokke, B.T., Smidsrød, O., Brant, D.A., 1993. Predicted influence of monomer sequence distribution and acetylation on the extension of naturally occurring alginates. Carbohydr. Polym. 22, 57–66. doi: 10.1016/0144-8617(93)90166-2
|
Sun, J.Y., Zhao, X.H., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z.G., 2012. Highly stretchable and tough hydrogels. Nature 489, 133–136. doi: 10.1038/nature11409
|
Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P., Winnicka, K., 2016. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. 2016, 7697031.
|
Vold, I.M.N., Kristiansen, K.A., Christensen, B.E., 2006. A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 7, 2136–2146. doi: 10.1021/bm060099n
|
Wang, C.Y., Yokota, T., Someya, T., 2021. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146. doi: 10.1021/acs.chemrev.0c00897
|
Yang, Z., Li, J.P., Guan, H.S., 2004. Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydr. Polym. 58, 115–121. doi: 10.1016/j.carbpol.2004.04.022
|
Yue, W., Zhang, H.H., Yang, Z.N., Xie, Y., 2021. Preparation of low-molecular-weight sodium alginate by ozonation. Carbohydr. Polym. 251, 117104. doi: 10.1016/j.carbpol.2020.117104
|
Zhao, X.H., Kim, J., Cezar, C.A., Huebsch, N., Lee, K., Bouhadir, K., Mooney, D.J., 2011. Active scaffolds for on-demand drug and cell delivery. Proce. Natl. Acad. Sci. U.S.A. 108, 67–72. doi: 10.1073/pnas.1007862108
|