Volume 7 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
Mingquan Zhang, Jamshed Bobokalonov, Abduvali Dzhonmurodov, Zhouyang Xiang. Optimizing yield and chemical compositions of dimethylsulfoxide-extracted birchwood xylan[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 211-219. doi: 10.1016/j.jobab.2022.07.001
Citation: Mingquan Zhang, Jamshed Bobokalonov, Abduvali Dzhonmurodov, Zhouyang Xiang. Optimizing yield and chemical compositions of dimethylsulfoxide-extracted birchwood xylan[J]. Journal of Bioresources and Bioproducts, 2022, 7(3): 211-219. doi: 10.1016/j.jobab.2022.07.001

Optimizing yield and chemical compositions of dimethylsulfoxide-extracted birchwood xylan

doi: 10.1016/j.jobab.2022.07.001
More Information
  • Corresponding author: E-mail address: fezyxiang@scut.edu.cn (Z. Xiang)
  • Received Date: 2022-03-20
  • Accepted Date: 2022-05-19
  • Rev Recd Date: 2022-05-14
  • Available Online: 2022-07-09
  • Publish Date: 2022-07-31
  • Dimethylsulfoxide (DMSO) extraction is commonly used to study the chemical structures of original xylan in the plant cell wall, since the DMSO can preserve the original structure of the xylan as much as possible during the extracting process. In addition, the DMSO-extracted xylans have unique properties allowing their potential applications in emulsifying or filming materials. However, the yield of DMSO-extracted xylan is always low and the effects of different DMSO extraction conditions on the chemical compositions of xylan have not been fully studied, which greatly hinders its researches and applications. In this study, we have found that extensive delignification before DMSO extraction results in destruction of lignin-carbohydrate complex (LCC), leading to xylan yield and xylose unit content increased by up to 220% and 20%, respectively. Tert-butanol washing of the holocellulose can further increase the DMSO extracted xylan yield by ∼10%. The yield of xylan extracted by the DMSO at 80 ℃ for 7 h was obviously higher than that at room temperature for 3 d by 30%–40%. Thermal analysis showed that the xylans extracted at different conditions had thermal stability without obvious differences. The results indicate that the DMSO-extracted xylan with a high yield, a high purity and a high degree of acetylation can be extracted at a high delignification level, a high reaction temperature and a short reaction time. This study is of great significance for studying xylan structure-property relationships and promoting the applications of DMSO-extracted xylan.

     

  • loading
  • Belmokaddem, F.Z., Pinel, C., Huber, P., Petit-Conil, M., Perez, D., 2011. Green synthesis of xylan hemicellulose esters. Carbohydr. Res. 346, 2896–2904. doi: 10.1016/j.carres.2011.10.012
    Berglund, J., Mikkelsen, D., Flanagan, B.M., Dhital, S., Gaunitz, S., Henriksson, G., Lindström, M.E., Yakubov, G.E., Gidley, M.J., Vilaplana, F., 2020. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat. Commun. 11, 4692. doi: 10.1038/s41467-020-18390-z
    Bhalla, A., Cai, C.M., Xu, F., Singh, S.K., Bansal, N., Phongpreecha, T., Dutta, T., Foster, C.E., Kumar, R., Simmons, B.A., Singh, S., Wyman, C.E., Hegg, E.L., Hodge, D.B., 2019. Performance of three delignifying pretreatments on hardwoods: hydrolysis yields, comprehensive mass balances, and lignin properties. Biotechnol. Biofuels 12, 213. doi: 10.1186/s13068-019-1546-0
    Bian, J., Peng, F., Peng, P., Xu, F., Sun, R.C., 2010. Isolation and fractionation of hemicelluloses by graded ethanol precipitation from Caragana korshinskii. Carbohydr. Res. 345, 802–809. doi: 10.1016/j.carres.2010.01.014
    Bouveng, H.O., Garegg, P.J., Lindberg, B., Levitin, N.E., Westin, G., 1960. Position of the O-acetyl groups in birch xylan. Acta Chem. Scand. 14, 742–748. doi: 10.3891/acta.chem.scand.14-0742
    Carvalho, D.M., Berglund, J., Marchand, C., Lindström, M.E., Vilaplana, F., Sevastyanova, O., 2019. Improving the thermal stability of different types of xylan by acetylation. Carbohydr. Polym. 220, 132–140. doi: 10.1016/j.carbpol.2019.05.063
    Ebringerová, A., Heinze, T., 2000. Xylan and xylan derivatives: biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun. 21, 542–556. doi: 10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7
    Filisetti-Cozzi, T.M., Carpita, N.C., 1991. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 197, 157–162. doi: 10.1016/0003-2697(91)90372-Z
    Fukagawa, N., Meshitsuka, G., Ishizu, A., 1991. A two-dimensional NMR study of birch milled wood lignin. J. Wood Chem. Technol. 11, 373–396. doi: 10.1080/02773819108050280
    Fundador, N.G.V., Enomoto-Rogers, Y., Takemura, A., Iwata, T., 2012. Acetylation and characterization of xylan from hardwood kraft pulp. Carbohydr. Polym. 87, 170–176. doi: 10.1016/j.carbpol.2011.07.034
    Gabrielii, I., Gatenholm, P., Glasser, W.G., Jain, R.K., Kenne, L., 2000. Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydr. Polym. 43, 367–374. doi: 10.1016/S0144-8617(00)00181-8
    Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R., 2010. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800. doi: 10.1016/j.biortech.2010.01.088
    Giummarella, N., Lawoko, M., 2016. Structural basis for the formation and regulation of lignin-xylan bonds in birch. ACS Sustain. Chem. Eng. 4, 5319–5326. doi: 10.1021/acssuschemeng.6b00911
    Hägglund, E., Lindberg, B., McPherson, J., Sillén, L.G., Thorell, B., 1956. Dimethylsulphoxide, a solvent for hemicelluloses. Acta Chem. Scand. 10, 1160–1164. doi: 10.3891/acta.chem.scand.10-1160
    Hanif, Z., Jeon, H., Tran, T.H., Jegal, J., Park, S.A., Kim, S.M., Park, J., Hwang, S.Y., Oh, D.X., 2017. Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. J. Polym. Res. 25, 1–11.
    Huang, Y., Wang, L.S., Chao, Y.S., Nawawi, D.S., Akiyama, T., Yokoyama, T., Matsumoto, Y., 2016. Relationships between hemicellulose composition and lignin structure in woods. J. Wood Chem. Technol. 36, 9–15. doi: 10.1080/02773813.2015.1039543
    Hutterer, C., Schild, G., Potthast, A., 2016. A precise study on effects that trigger alkaline hemicellulose extraction efficiency. Bioresour. Technol. 214, 460–467. doi: 10.1016/j.biortech.2016.04.114
    Jiang, F., Hsieh, Y.L., 2014. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl. Mater. Interfaces 6, 20075–20084. doi: 10.1021/am505626a
    Jiang, F., Hsieh, Y.L., 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 122, 60–68. doi: 10.1016/j.carbpol.2014.12.064
    Jin, A.X., Ren, J.L., Peng, F., Xu, F., Zhou, G.Y., Sun, R.C., Kennedy, J.F., 2009. Comparative characterization of degraded and non-degradative hemicelluloses from barley straw and maize stems: composition, structure, and thermal properties. Carbohydr. Polym. 78, 609–619. doi: 10.1016/j.carbpol.2009.05.024
    Kim, J.S., Daniel, G., 2018. Heterogeneous distribution of pectin and hemicellulose epitopes in the phloem of four hardwood species. Trees 32, 393–414. doi: 10.1007/s00468-017-1638-z
    Kim, J.S., Lee, Y.Y., Kim, T.H., 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48. doi: 10.1016/j.biortech.2015.08.085
    Kosiková, B., Ebringerová, A., Naran, R., 1999. Characterization of lignin-carbohydrate fractions isolated from the wood parasite cistance deserticola Y.C. Ma. Holzforschung 53, 33–38. doi: 10.1515/HF.1999.006
    Min, D.Y., Li, Q.Z., Jameel, H., Chiang, V., Chang, H.M., 2011. Comparison of pretreatment protocols for cellulase-mediated saccharification of wood derived from transgenic low-xylan lines of cottonwood (P. trichocarpa). Biomass Bioenergy 35, 3514–3521. doi: 10.1016/j.biombioe.2011.04.034
    Mud, J., Otto, C., de Mul, F.F.M., Greve, J., 1985. Raman microspectroscopy of LiDNA fibres in ethanol and tert-butanol. J. Raman Spectrosc. 16, 373–376. doi: 10.1002/jrs.1250160605
    Nieduszynski, I., Marchessault, R.H., 1971. Structure of β-D-(1→4')xylan hydrate. Nature 232, 46–47. doi: 10.1038/232046a0
    Peng, F., Peng, P., Xu, F., Sun, R.C., 2012. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 30, 879–903. doi: 10.1016/j.biotechadv.2012.01.018
    Rabemanolontsoa, H., Saka, S., 2016. Various pretreatments of lignocellulosics. Bioresour. Technol. 199, 83–91. doi: 10.1016/j.biortech.2015.08.029
    Rosell, K.G., Svensson, S., 1975. Studies of the distribution of the 4-O-methyl-d-glucuronic acid residues in birch xylan. Carbohydr. Res. 42, 297–304. doi: 10.1016/S0008-6215(00)84271-8
    Shakhmatov, E.G., Udoratina, E.V., Atukmaev, K.V., Makarova, E.N., 2015. Extraction and structural characteristics of pectic polysaccharides from Abies sibirica L. Carbohydr. Polym. 123, 228–236. doi: 10.1016/j.carbpol.2015.01.041
    Simmons, T.J., Mortimer, J.C., Bernardinelli, O.D., Pöppler, A.C., Brown, S.P., DeAzevedo, E.R., Dupree, R., Dupree, P., 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 7, 13902. doi: 10.1038/ncomms13902
    Sun, J.X., Sun, X.F., Sun, R.C., Fowler, P., Baird, M.S., 2003. Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J. Agric. Food Chem. 51, 6719–6725. doi: 10.1021/jf034633j
    Sun, R.C., Fang, J.M., Mott, L., Bolton, J., 1999. Extraction and characterization of hemicelluloses and cellulose from oil palm trunk and empty fruit bunch fibres. J. Wood Chem. Technol. 19, 167–185. doi: 10.1080/02773819909349606
    Tang, N., Tan, X., Cai, Y., He, M.Y., Xiang, Z.Y., Ye, H., Ma, J.L., 2022. Characterizations and application potentials of the hemicelluloses in waste oil-tea Camellia fruit shells from Southern China. Ind. Crops Prod. 178, 114551. doi: 10.1016/j.indcrop.2022.114551
    Teleman, A., Lundqvist, J., Tjerneld, F., Stålbrand, H., Dahlman, O., 2000. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr. Res. 329, 807–815. doi: 10.1016/S0008-6215(00)00249-4
    Teleman, A., Nordström, M., Tenkanen, M., Jacobs, A., Dahlman, O., 2003. Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr. Res. 338, 525–534. doi: 10.1016/S0008-6215(02)00491-3
    Teleman, A., Tenkanen, M., Jacobs, A., Dahlman, O., 2002. Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr. Res. 337, 373–377. doi: 10.1016/S0008-6215(01)00327-5
    Timell, T.E., 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1, 45–70. doi: 10.1007/BF00592255
    Wrigstedt, P., Kylli, P., Pitkänen, L., Nousiainen, P., Tenkanen, M., Sipilä, J., 2010. Synthesis and antioxidant activity of hydroxycinnamic acid xylan esters. J. Agric. Food Chem. 58, 6937–6943. doi: 10.1021/jf9043953
    Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C., 2011. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative C-13 and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604–10614.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (435) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return