Volume 7 Issue 4
Oct.  2022
Turn off MathJax
Article Contents
Peter Nai Yuh Yek, Sieng Huat Kong, Ming Chiat Law, Changlei Xia, Rock Keey Liew, Teck Sung Sie, Jun Wei Lim, Su Shiung Lam. Microwave torrefaction of empty fruit bunch pellet: Simulation and validation of electric field and temperature distribution[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 270-277. doi: 10.1016/j.jobab.2022.09.002
Citation: Peter Nai Yuh Yek, Sieng Huat Kong, Ming Chiat Law, Changlei Xia, Rock Keey Liew, Teck Sung Sie, Jun Wei Lim, Su Shiung Lam. Microwave torrefaction of empty fruit bunch pellet: Simulation and validation of electric field and temperature distribution[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 270-277. doi: 10.1016/j.jobab.2022.09.002

Microwave torrefaction of empty fruit bunch pellet: Simulation and validation of electric field and temperature distribution

doi: 10.1016/j.jobab.2022.09.002
More Information
  • Corresponding author: E-mail address: lam@umt.edu.my (S.S. Lam)
  • Received Date: 2022-07-25
  • Accepted Date: 2022-09-02
  • Rev Recd Date: 2022-08-28
  • Available Online: 2022-10-01
  • Publish Date: 2022-11-01
  • Microwave simulation is significant in identifying a reactor design allowing the biomass to be heated and processed evenly. This study integrated the radio frequency and transient heat transfer modules to simulate the microwave distribution and investigated the performance of microwave heating in the cavity. The simulation results were compared with the experimental findings using the finite element analysis software of COMSOL MULTIPHYSICS to predict the temperature profile and electric field of microwave in the biomass (empty fruit bunch pellets). The higher temperature distribution was observed at the bottom and centre section of the empty fruit bunch pellet bed in the reactor, showing the uniqueness of microwave heating. According to the simulation results, the temperature profile obtained through the specific cavity geometry and dielectric properties agreed with the experimental temperature profile. The simulated temperature profile demonstrated a logarithmic increase of 120 ℃/min at the first 50 s followed by 50 ℃/min until 350 s. The experimental temperature profile showed three different heating rates before reaching 300 ℃, including 78.3 ℃/min (50–120 ℃), 30.6 ℃/min (121–250 ℃), and 105 ℃/min (250–300 ℃). The results of this study might contribute to the improvement of microwave heating in biomass torrefaction.

     

  • Declaration of Competing Interest  The authors declare no competing interests.
  • loading
  • Alamsyah, R., Siregar, N.C., Hasanah, F., 2017. Torrefaction study for energy upgrading on Indonesian biomass as low emission solid fuel. Proceedings of the International Conference on Biomass: Technology, Application, and Sustainable Development, ICB 2016. Institute of Physics Publishing
    Anna, B., Miroslav, M., Vladimír, Š., Himsar, A., Petr, V., 2018. Bio-pellet fuel from oil palm empty fruit bunches (EFB): using European standards for quality testing. Sustainability 10, 4443 doi: 10.3390/su10124443
    Bates, R.B., Ghoniem, A.F., 2013. Biomass torrefaction: modeling of reaction thermochemistry. Bioresour. Technol. 134, 331–340 doi: 10.1016/j.biortech.2013.01.158
    Bridgeman, T.G., Jones, J.M., Shield, I., Williams, P.T., 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844–856 doi: 10.1016/j.fuel.2007.05.041
    Chen, W.H., Kuo, P.C., Liu, S.H., Wu, W., 2014. Thermal characterization of oil palm fiber and eucalyptus in torrefaction. Energy 71, 40–48 doi: 10.1016/j.energy.2014.03.117
    Halim, S.A., Swithenbank, J., 2019. Simulation study of parameters influencing microwave heating of biomass. J. Energy Inst. 92, 1191–1212 doi: 10.1016/j.joei.2018.05.010
    Intani, K., Latif, S., Kabir, A.K.M.R., Müller, J., 2016. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresour. Technol. 218, 541–551 doi: 10.1016/j.biortech.2016.06.114
    Ladd, R.I., 2016. Factors to consider when choosing a laboratory microwave. Available at: http://www.laddresearch.com/general-laboratory-supplies/microwave-oven-lbp125.
    Lam, S.S., Tsang, Y.F., Yek, P.N.Y., Liew, R.K., Osman, M.S., Peng, W.X., Lee, W.H., Park, Y.K., 2019. Co-processing of oil palm waste and waste oil via microwave co-torrefaction: a waste reduction approach for producing solid fuel product with improved properties. Process. Saf. Environ. Prot. 128, 30–35 doi: 10.1016/j.psep.2019.05.034
    Law, M.C., Chang, J.S.L., Chan, Y.S., Pui, D.Y., You, K.Y., 2019. Experimental characterization and modeling of microwave heating of oil palm kernels, mesocarps, and empty fruit bunches. Dry. Technol. 37, 69–91 doi: 10.1080/07373937.2018.1439057
    Mohd Mokhta, Z., Ong, M.Y., Salman, B., Nomanbhay, S., Salleh, S.F., Chew, K.W., Show, P.L., Chen, W.H., 2020. Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location. Energy 190, 116474 doi: 10.1016/j.energy.2019.116474
    Mushtaq, F., Abdullah, T.A.T., Mat, R., Ani, F.N., 2015. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresour. Technol. 190, 442–450 doi: 10.1016/j.biortech.2015.02.055
    Natarajan, P., Suriapparao, D.V., Vinu, R., 2018. Microwave torrefaction of Prosopis juliflora: experimental and modeling study. Fuel Process. Technol. 172, 86–96 doi: 10.1016/j.fuproc.2017.12.007
    National, I.A. o. M. 2013. National Biomass Strategy 2020: New Wealth Creation for Malaysia's Biomass Industry. Agensi Inovasi Malaysia. Available at: https://www.cmtevents.com/MediaLibrary/BStgy2013RptAIM.pdf
    Pitchai, K., Chen, J., Birla, S., Gonzalez, R., Jones, D., Subbiah, J., 2014. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation. J. Food Eng. 128, 60–71 doi: 10.1016/j.jfoodeng.2013.12.015
    Ren, S.J., Lei, H.W., Zhang, Y.Y., Wang, L., Bu, Q., Wei, Y., Ruan, R., 2019. Furfural production from microwave catalytic torrefaction of Douglas fir sawdust. J. Anal. Appl. Pyrolysis 138, 188–195 doi: 10.1016/j.jaap.2018.12.023
    Robinson, J., Kingman, S., Irvine, D., Licence, P., Smith, A., Dimitrakis, G., Obermayer, D., Kappe, C.O., 2010. Understanding microwave heating effects in single mode type cavities—theory and experiment. Phys. Chem. Chem. Phys. 12, 4750–4758 doi: 10.1039/b922797k
    Salema, A.A., Afzal, M.T., 2015. Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system. Int. J. Therm. Sci. 91, 12–24 doi: 10.1016/j.ijthermalsci.2015.01.003
    Salvi, D., Boldor, D., Aita, G.M., Sabliov, C.M., 2011. COMSOL multiphysics model for continuous flow microwave heating of liquids. J. Food Eng. 104, 422–429 doi: 10.1016/j.jfoodeng.2011.01.005
    Sikkema, R., Steiner, M., Junginger, M., Hiegl, W., Hansen, M.T., Faaij, A., 2011. The European wood pellet markets: current status and prospects for 2020. Biofuels, Bioprod. Biorefin. 5, 250 doi: 10.1002/bbb.277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (50) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return