Citation: | Peter Nai Yuh Yek, Sieng Huat Kong, Ming Chiat Law, Changlei Xia, Rock Keey Liew, Teck Sung Sie, Jun Wei Lim, Su Shiung Lam. Microwave torrefaction of empty fruit bunch pellet: Simulation and validation of electric field and temperature distribution[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 270-277. doi: 10.1016/j.jobab.2022.09.002 |
Alamsyah, R., Siregar, N.C., Hasanah, F., 2017. Torrefaction study for energy upgrading on Indonesian biomass as low emission solid fuel. Proceedings of the International Conference on Biomass: Technology, Application, and Sustainable Development, ICB 2016. Institute of Physics Publishing
|
Anna, B., Miroslav, M., Vladimír, Š., Himsar, A., Petr, V., 2018. Bio-pellet fuel from oil palm empty fruit bunches (EFB): using European standards for quality testing. Sustainability 10, 4443 doi: 10.3390/su10124443
|
Bates, R.B., Ghoniem, A.F., 2013. Biomass torrefaction: modeling of reaction thermochemistry. Bioresour. Technol. 134, 331–340 doi: 10.1016/j.biortech.2013.01.158
|
Bridgeman, T.G., Jones, J.M., Shield, I., Williams, P.T., 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844–856 doi: 10.1016/j.fuel.2007.05.041
|
Chen, W.H., Kuo, P.C., Liu, S.H., Wu, W., 2014. Thermal characterization of oil palm fiber and eucalyptus in torrefaction. Energy 71, 40–48 doi: 10.1016/j.energy.2014.03.117
|
Halim, S.A., Swithenbank, J., 2019. Simulation study of parameters influencing microwave heating of biomass. J. Energy Inst. 92, 1191–1212 doi: 10.1016/j.joei.2018.05.010
|
Intani, K., Latif, S., Kabir, A.K.M.R., Müller, J., 2016. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresour. Technol. 218, 541–551 doi: 10.1016/j.biortech.2016.06.114
|
Ladd, R.I., 2016. Factors to consider when choosing a laboratory microwave. Available at: http://www.laddresearch.com/general-laboratory-supplies/microwave-oven-lbp125.
|
Lam, S.S., Tsang, Y.F., Yek, P.N.Y., Liew, R.K., Osman, M.S., Peng, W.X., Lee, W.H., Park, Y.K., 2019. Co-processing of oil palm waste and waste oil via microwave co-torrefaction: a waste reduction approach for producing solid fuel product with improved properties. Process. Saf. Environ. Prot. 128, 30–35 doi: 10.1016/j.psep.2019.05.034
|
Law, M.C., Chang, J.S.L., Chan, Y.S., Pui, D.Y., You, K.Y., 2019. Experimental characterization and modeling of microwave heating of oil palm kernels, mesocarps, and empty fruit bunches. Dry. Technol. 37, 69–91 doi: 10.1080/07373937.2018.1439057
|
Mohd Mokhta, Z., Ong, M.Y., Salman, B., Nomanbhay, S., Salleh, S.F., Chew, K.W., Show, P.L., Chen, W.H., 2020. Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location. Energy 190, 116474 doi: 10.1016/j.energy.2019.116474
|
Mushtaq, F., Abdullah, T.A.T., Mat, R., Ani, F.N., 2015. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresour. Technol. 190, 442–450 doi: 10.1016/j.biortech.2015.02.055
|
Natarajan, P., Suriapparao, D.V., Vinu, R., 2018. Microwave torrefaction of Prosopis juliflora: experimental and modeling study. Fuel Process. Technol. 172, 86–96 doi: 10.1016/j.fuproc.2017.12.007
|
National, I.A. o. M. 2013. National Biomass Strategy 2020: New Wealth Creation for Malaysia's Biomass Industry. Agensi Inovasi Malaysia. Available at: https://www.cmtevents.com/MediaLibrary/BStgy2013RptAIM.pdf
|
Pitchai, K., Chen, J., Birla, S., Gonzalez, R., Jones, D., Subbiah, J., 2014. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation. J. Food Eng. 128, 60–71 doi: 10.1016/j.jfoodeng.2013.12.015
|
Ren, S.J., Lei, H.W., Zhang, Y.Y., Wang, L., Bu, Q., Wei, Y., Ruan, R., 2019. Furfural production from microwave catalytic torrefaction of Douglas fir sawdust. J. Anal. Appl. Pyrolysis 138, 188–195 doi: 10.1016/j.jaap.2018.12.023
|
Robinson, J., Kingman, S., Irvine, D., Licence, P., Smith, A., Dimitrakis, G., Obermayer, D., Kappe, C.O., 2010. Understanding microwave heating effects in single mode type cavities—theory and experiment. Phys. Chem. Chem. Phys. 12, 4750–4758 doi: 10.1039/b922797k
|
Salema, A.A., Afzal, M.T., 2015. Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system. Int. J. Therm. Sci. 91, 12–24 doi: 10.1016/j.ijthermalsci.2015.01.003
|
Salvi, D., Boldor, D., Aita, G.M., Sabliov, C.M., 2011. COMSOL multiphysics model for continuous flow microwave heating of liquids. J. Food Eng. 104, 422–429 doi: 10.1016/j.jfoodeng.2011.01.005
|
Sikkema, R., Steiner, M., Junginger, M., Hiegl, W., Hansen, M.T., Faaij, A., 2011. The European wood pellet markets: current status and prospects for 2020. Biofuels, Bioprod. Biorefin. 5, 250 doi: 10.1002/bbb.277
|