Citation: | Qingxin Zheng, Zixian Li, Masaru Watanabe. Production of solid fuels by hydrothermal treatment of wastes of biomass, plastic, and biomass/plastic mixtures: A review[J]. Journal of Bioresources and Bioproducts, 2022, 7(4): 221-244. doi: 10.1016/j.jobab.2022.09.004 |
Akimoto, M., Ninomiya, K., Takami, S., Ishikawa, M., Sato, M., Washio, K., 2002. Hydrothermal dechlorination and denitrogenation of municipal-waste-plastics-derived fuel oil under sub- and supercritical conditions. Ind. Eng. Chem. Res. 41, 5393–5400 doi: 10.1021/ie020338x
|
Álvarez-Murillo, A., Sabio, E., Ledesma, B., Román, S., González-García, C.M., 2016. Generation of biofuel from hydrothermal carbonization of cellulose. Kinet. Modell. Energy 94, 600–608
|
Antero, R.V.P., Domingos, M.E.G.R., Suzuki, L.L., Oliveira, S.B., Ojala, S.A., Mendonça, A.R.V., Brum, S.S., 2019. Obtaining hydrochar via hydrothermal carbonization of Magonia pubescens A. St. Hil. Sapindaceae fruit bark: Characterization and evaluation of its adsorptive properties. Matéria 24, e-12378
|
Awaja, F., Pavel, D., 2005. Recycling of pet. Eur. Polym. J. 41, 1453–1477 doi: 10.1016/j.eurpolymj.2005.02.005
|
Bach, Q.V., Tran, K.Q., Khalil, R.A., Skreiberg, Ø., Seisenbaeva, G., 2013. Comparative assessment of wet torrefaction. Energy Fuels 27, 6743–6753 doi: 10.1021/ef401295w
|
Borrero-López, A.M., Masson, E., Celzard, A., Fierro, V., 2018. Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment. Ind. Crops Prod. 124, 919–930 doi: 10.1016/j.indcrop.2018.08.045
|
Burguete, P., Corma, A., Hitzl, M., Modrego, R., Ponce, E., Renz, M., 2016. Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chem. 18, 1051–1060 doi: 10.1039/C5GC02296G
|
Cao, L.C., Zhang, C., Chen, H.H., Tsang, D.C.W., Luo, G., Zhang, S.C., Chen, J.M., 2017. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol. 245, 1184–1193 doi: 10.1016/j.biortech.2017.08.196
|
Cao, X.Y., Ro, K.S., Libra, J.A., Kammann, C.I., Lima, I., Berge, N., Li, L., Li, Y., Chen, N., Yang, J., Deng, B.L., Mao, J.D., 2013. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars. J. Agric. Food Chem. 61, 9401–9411 doi: 10.1021/jf402345k
|
Carta, D., Cao, G., D'Angeli, C., 2003. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ. Sci. Pollut. Res. Int. 10, 390–394 doi: 10.1065/espr2001.12.104.8
|
Demirbas, A., 2004. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 doi: 10.1016/j.pecs.2003.10.004
|
Elliott, D.C., 2008. Catalytic hydrothermal gasification of biomass. Biofuels, Bioprod. Bioref. 2, 254–265 doi: 10.1002/bbb.74
|
Foong, S.Y., Liew, R.K., Yang, Y.F., Cheng, Y.W., Yek, P.N.Y., Wan Mahari, W.A., Lee, X.Y., Han, C.S., Vo, D.V.N., Van Le, Q., Aghbashlo, M.A., Tabatabaei, M., Sonne, C., Peng, W.X., Lam, S.S., 2020. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 389, 124401 doi: 10.1016/j.cej.2020.124401
|
Forchheim, D., Hornung, U., Kruse, A., Sutter, T., 2014. Kinetic modelling of hydrothermal lignin depolymerisation. Waste Biomass Valoriz. 5, 985–994 doi: 10.1007/s12649-014-9307-6
|
Fuertes, A.B., Arbestain, M.C., Sevilla, M., Maciá-Agulló, J.A., Fiol, S., López, R., Smernik, R.J., Aitkenhead, W.P., Arce, F., Macias, F., 2010. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res. 48, 618–626 doi: 10.1071/SR10010
|
Gao, P., Zhou, Y.Y., Meng, F., Zhang, Y.H., Liu, Z.H., Zhang, W.Q., Xue, G., 2016. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97, 238–245 doi: 10.1016/j.energy.2015.12.123
|
Gollakota, A.R.K., Kishore, N., Gu, S., 2018. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 81, 1378–1392 doi: 10.1016/j.rser.2017.05.178
|
Gupta, D., Mahajani, S.M., Garg, A., 2019. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresour. Technol. 285, 121329 doi: 10.1016/j.biortech.2019.121329
|
Helmer Pedersen, T., Conti, F., 2017. Improving the circular economy via hydrothermal processing of high-density waste plastics. Waste Manag. 68, 24–31 doi: 10.1016/j.wasman.2017.06.002
|
Hoekman, S.K., Broch, A., Robbins, C., Zielinska, B., Felix, L., 2013. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conv. Bioref. 3, 113–126 doi: 10.1007/s13399-012-0066-y
|
Hongthong, S., Raikova, S., Leese, H.S., Chuck, C.J., 2020. Co-processing of common plastics with pistachio hulls via hydrothermal liquefaction. Waste Manag. 102, 351–361 doi: 10.1016/j.wasman.2019.11.003
|
Hu, Y.L., Gong, M.Y., Xing, X.L., Wang, H.Y., Zeng, Y.M., Xu, C.C., 2020. Supercritical water gasification of biomass model compounds: a review. Renew. Sustain. Energy Rev. 118, 109529 doi: 10.1016/j.rser.2019.109529
|
Huang, N., Zhao, P.T., Ghosh, S., Fedyukhin, A., 2019. Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production. Appl. Energy 240, 882–892 doi: 10.1016/j.apenergy.2019.02.050
|
Iñiguez, M.E., Conesa, J.A., Fullana, A., 2019. Hydrothermal carbonization (HTC) of marine plastic debris. Fuel 257, 116033 doi: 10.1016/j.fuel.2019.116033
|
Janajreh, I., Alshrah, M., Zamzam, S., 2015. Mechanical recycling of PVC plastic waste streams from cable industry: a case study. Sustain. Cities Soc. 18, 13–20 doi: 10.1016/j.scs.2015.05.003
|
Kruse, A., Funke, A., Titirici, M.M., 2013. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17, 515–521 doi: 10.1016/j.cbpa.2013.05.004
|
Kumar, V., Pathak, P., Bhardwaj, N.K., 2020. Waste paper: an underutilized but promising source for nanocellulose mining. Waste Manag. 102, 281–303 doi: 10.22190/fume200218028k
|
Lee, J., Kwon, E.E., Lam, S.S., Chen, W.H., Rinklebe, J., Park, Y.K., 2021. Chemical recycling of plastic waste via thermocatalytic routes. J. Clean. Prod. 321, 128989 doi: 10.1016/j.jclepro.2021.128989
|
Li, L., Hale, M., Olsen, P., Berge, N.D., 2014. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes. Waste Manag. 34, 2185–2195 doi: 10.1016/j.wasman.2014.06.024
|
Lin, Y.S., Ma, X.Q., Peng, X.W., Yu, Z.S., 2017. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior. Bioresour. Technol. 243, 539–547 doi: 10.1016/j.biortech.2017.06.117
|
Liu, Z.G., Quek, A., Kent Hoekman, S., Balasubramanian, R., 2013. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943–949 doi: 10.1016/j.fuel.2012.07.069
|
Loppinet-Serani, A., Aymonier, C., Cansell, F., 2008. Current and foreseeable applications of supercritical water for energy and the environment. ChemSusChem 1, 486–503 doi: 10.1002/cssc.200700167
|
Lu, J.W., Watson, J., Liu, Z.D., Wu, Y.L., 2022. Elemental migration and transformation during hydrothermal liquefaction of biomass. J. Hazard. Mater. 423, 126961 doi: 10.1016/j.jhazmat.2021.126961
|
Lucian, M., Volpe, M., Gao, L.H., Piro, G., Goldfarb, J.L., Fiori, L., 2018. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233, 257–268 doi: 10.1016/j.fuel.2018.06.060
|
Marzbali, M.H., Kundu, S., Halder, P., Patel, S., Hakeem, I.G., Paz-Ferreiro, J., Madapusi, S., Surapaneni, A., Shah, K., 2021. Wet organic waste treatment via hydrothermal processing: a critical review. Chemosphere 279, 130557 doi: 10.1016/j.chemosphere.2021.130557
|
Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., Kern, J., 2011. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 102, 9255–9260 doi: 10.1016/j.biortech.2011.06.099
|
Nguyen, S.T., Feng, J.D., Le, N.T., Le, A.T.T., Hoang, N., Tan, V.B.C., Duong, H.M., 2013. Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 52, 18386–18391 doi: 10.1021/ie4032567
|
OECD, 2022. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. Available at: doi: 10.1787/de747aef-en
|
Onwudili, J.A., Yildirir, E., Williams, P.T., 2013. Catalytic hydrothermal degradation of carbon reinforced plastic wastes for carbon fibre and chemical feedstock recovery. Waste Biomass Valoriz. 4, 87–93 doi: 10.1007/s12649-013-9204-4
|
Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, M.J., Tester, J.W., 2008. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1, 32–65 doi: 10.1039/b810100k
|
Poerschmann, J., Weiner, B., Woszidlo, S., Koehler, R., Kopinke, F.D., 2015. Hydrothermal carbonization of poly(vinyl chloride). Chemosphere 119, 682–689 doi: 10.1016/j.chemosphere.2014.07.058
|
Sarker, T.R., Pattnaik, F., Nanda, S., Dalai, A.K., Meda, V., Naik, S., 2021. Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere 284, 131372 doi: 10.1016/j.chemosphere.2021.131372
|
Schmieder, H., Abeln, J., Boukis, N., Dinjus, E., Kruse, A., Kluth, M., Petrich, G., Sadri, E., Schacht, M., 2000. Hydrothermal gasification of biomass and organic wastes. J. Supercrit. Fluids 17, 145–153 doi: 10.1016/S0896-8446(99)00051-0
|
Sevilla, M., Maciá-Agulló, J.A., Fuertes, A.B., 2011. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35, 3152–3159 doi: 10.1016/j.biombioe.2011.04.032
|
Shen, M.C., Huang, W., Chen, M., Song, B., Zeng, G.M., Zhang, Y.X., 2020. (Micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 254, 120138 doi: 10.1016/j.jclepro.2020.120138
|
Shen, Y.F., 2016. Dechlorination of Poly(vinyl chloride) wastes via hydrothermal carbonization with lignin for clean solid fuel production. Ind. Eng. Chem. Res. 55, 11638–11644 doi: 10.1021/acs.iecr.6b03365
|
Shen, Y.F., Yu, S.L., Ge, S., Chen, X.M., Ge, X.L., Chen, M.D., 2017. Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale. Energy 118, 312–323 doi: 10.1016/j.energy.2016.12.047
|
Shen, Y.F., Zhao, R., Wang, J.F., Chen, X.M., Ge, X.L., Chen, M.D., 2016. Waste-to-energy: dehalogenation of plastic-containing wastes. Waste Manag. 49, 287–303 doi: 10.1016/j.wasman.2015.12.024
|
Sun, L., Gong, Y.N., Li, D.L., Pan, C.X., 2022. Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chem. 24, 3864–3894 doi: 10.1039/d2gc00099g
|
Takeshita, Y., Kato, K., Takahashi, K., Sato, Y., Nishi, S., 2004. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. J. Supercrit. Fluids 31, 185–193 doi: 10.1016/j.supflu.2003.10.006
|
Toor, S.S., Rosendahl, L., Rudolf, A., 2011. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36, 2328–2342 doi: 10.1016/j.energy.2011.03.013
|
Tournier, V., Topham, C.M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., Marty, A., 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 doi: 10.1038/s41586-020-2149-4
|
Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481 doi: 10.1016/j.rser.2015.10.122
|
Uddin, M.A., Bhaskar, T., Kusaba, T., Hamano, K., Muto, A., Sakata, Y., 2003. Debromination of flame retardant high impact polystyrene (HIPS-Br) by hydrothermal treatment and recovery of bromine free plastics. Green Chem. 5, 260–263 doi: 10.1039/b206704h
|
Vijayakumar, M., Sankar, A.B., Rohita, D.S., Rao, T.N., Karthik, M., 2019. Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications. ACS Sustain. Chem. Eng. 7, 17175–17185 doi: 10.1021/acssuschemeng.9b03568
|
Vlaskin, M., Vladimirov, G.N., 2018. Hydrothermal carbonization of organic components from municipal solid waste. Theor. Found. Chem. Eng. 52, 996–1003 doi: 10.1134/s0040579518050421
|
Vollmer, I., Jenks, M.J.F., Roelands, M.C.P., White, R.J., van Harmelen, T., de Wild, P., van der Laan, G.P., Meirer, F., Keurentjes, J.T.F., Weckhuysen, B.M., 2020. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed Engl. 59, 15402–15423 doi: 10.1002/anie.201915651
|
Waldner, M.H., Vogel, F., 2005. Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind. Eng. Chem. Res. 44, 4543–4551 doi: 10.1021/ie050161h
|
Wang, B.F., Huang, Y.R., Zhang, J.J., 2015. Sulfur distribution during hydrothermal liquefaction of lignite, wheat straw and plastic waste in sub-critical water. China Petrol. Process. Petrochem. Technol. 17, 24–30
|
Wang, Y.Z., Wang, Y., Zhu, Y.T., Fang, C.Q., Xu, D.H., Zheng, X., 2021. Interactions of the main components in paper-plastic-aluminum complex packaging wastes during the hydrothermal liquefaction process. Chem. Eng. Technol. 44, 1519–1527 doi: 10.1002/ceat.202100124
|
Watanabe, M., Kanaguri, Y., Smith, R.L., 2018. Hydrothermal separation of lignin from bark of Japanese cedar. J. Supercrit. Fluids 133, 696–703 doi: 10.1016/j.supflu.2017.09.009
|
Wikberg, H., Grönqvist, S., Niemi, P., Mikkelson, A., Siika-aho, M., Kanerva, H., Käsper, A., Tamminen, T., 2017. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues. Bioresour. Technol. 235, 70–78 doi: 10.1016/j.biortech.2017.03.095
|
Wu, X.Y., Fu, J., Lu, X.Y., 2013. Kinetics and mechanism of hydrothermal decomposition of lignin model compounds. Ind. Eng. Chem. Res. 52, 5016–5022 doi: 10.1021/ie302898q
|
Xiao, L.P., Shi, Z.J., Xu, F., Sun, R.C., 2012. Hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 118, 619–623 doi: 10.1016/j.biortech.2012.05.060
|
Xu, Y.H., Li, M.F., 2021. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour. Technol. 342, 126035 doi: 10.1016/j.biortech.2021.126035
|
Yoshimura, M., Byrappa, K., 2008. Hydrothermal processing of materials: past, present and future. J. Mater. Sci. 43, 2085–2103 doi: 10.1007/s10853-007-1853-x
|
Zeng, M.X., Ge, Z.F., Ma, Y.N., Zha, Z.T., Zhang, H.Y., 2021. On-line analysis of the correlation between gasification characteristics and microstructure of woody biowaste after hydrothermal carbonization. Bioresour. Technol. 342, 126009 doi: 10.1016/j.biortech.2021.126009
|
Zhao, P.T., Shen, Y.F., Ge, S.F., Chen, Z.Q., Yoshikawa, K., 2014a. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy 131, 345–367 doi: 10.1016/j.apenergy.2014.06.038
|
Zhao, X.Y., Xia, Y.H., Zhan, L., Xie, B., Gao, B., Wang, J.L., 2019. Hydrothermal treatment of E-waste plastics for tertiary recycling: product slate and decomposition mechanisms. ACS Sustain. Chem. Eng. 7, 1464–1473 doi: 10.1021/acssuschemeng.8b05147
|
Zhao, X.Y., Zhan, L., Xie, B., Gao, B., 2018. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: characterization and potential applications. Chemosphere 207, 742–752 doi: 10.1016/j.chemosphere.2018.05.156
|
Zhao, Y., Lu, W.J., Chen, J.J., Zhang, X.F., Wang, H.T., 2014b. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Front. Environ. Sci. Eng. 8, 151–161 doi: 10.1007/s11783-013-0607-z
|
Zhao, Y.L., Jia, G.C., Shang, Y.L., Zhao, P.T., Cui, X., Guo, Q.J., 2022. Chlorine migration during hydrothermal carbonization of recycled paper wastes and fuel performance of hydrochar. Process. Saf. Environ. Prot. 158, 495–502 doi: 10.1016/j.psep.2021.12.041
|