Citation: | Bidhan Nath, Guangnan Chen, Les Bowtell, Ahmed Mahmood Raid. Assessment of densified fuel quality parameters: A case study for wheat straw pellet[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 45-58. doi: 10.1016/j.jobab.2022.10.001 |
Agar, D.A., Rudolfsson, M., Kalén, G., Campargue, M., da Silva Perez, D., Larsson, S.H., 2018. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Process. Technol. 180, 47–55. doi: 10.1016/j.fuproc.2018.08.006
|
Al-Widyan, M.I., Al-Jalil, H.F., 2001. Stress-density relationship and energy requirement of compressed olive cake. Appl. Eng. Agric. 17, 749–753.
|
Assi, A., Bilo, F., Zanoletti, A., Ponti, J., Valsesia, A., Spina, R.L., Depero, L.E., Bontempi, E., 2020. Review of the reuse possibilities concerning ash residues from thermal process in a medium-sized urban system in northern Italy. Sustainability 12, 4193. doi: 10.3390/su12104193
|
Brand, M.A., Jacinto, R.C., Antunes, R., da Cunha, A.B., 2017. Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing. Renew. Energy 111, 116–123. doi: 10.1016/j.renene.2017.03.084
|
Carroll, J.P., Finnan, J., 2012. Physical and chemical properties of pellets from energy crops and cereal straws. Biosyst. Eng. 112, 151–159. doi: 10.1016/j.biosystemseng.2012.03.012
|
Carvalho, L., Wopienka, E., Pointner, C., Lundgren, J., Verma, V.K., Haslinger, W., Schmidl, C., 2013. Performance of a pellet boiler fired with agricultural fuels. Appl. Energy 104, 286–296. doi: 10.1016/j.apenergy.2012.10.058
|
Demirbas, A., 2004. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230. doi: 10.1016/j.pecs.2003.10.004
|
El-Sayed, S.A., Elsaid Mohamed, M.K., 2018. Mechanical properties and characteristics of wheat straw and pellets. Energy Environ. 29, 1224–1246. doi: 10.1177/0958305x18772414
|
El-Sobky, E.S.E.A., 2017. Effect of burned rice straw, phosphorus and nitrogen fertilization on wheat (Triticum aestivum L. ). Ann. Agric. Sci. 62, 113–120. doi: 10.1016/j.aoas.2017.05.007
|
Emami, S., Tabil, L., Adapa, P., George, E., Tilay, A., Dalai, A., Drisdelle, M., Ketabi, L., 2014. Effect of fuel additives on agricultural straw pellet quality. Int. J. Agric. Biol. Eng. 7, 92–100.
|
Fasina, O.O., 2008. Physical properties of peanut hull pellets. Bioresour. Technol. 99, 1259–1266. doi: 10.1016/j.biortech.2007.02.041
|
Gil, M.V., Oulego, P., Casal, M.D., Pevida, C., Pis, J.J., Rubiera, F., 2010. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour. Technol. 101, 8859–8867. doi: 10.1016/j.biortech.2010.06.062
|
Halder P.K., Hossain, M.A., Paul, N., Khan, I., 2014. Agricultural residue potential for electricity generation in Bangladesh. IOSR J. Mech. Civil Eng., 11, 89–95. doi: 10.9790/1684-11238995
|
Holt, G.A., Blodgett, T.L., Nakayama, F.S., 2006. Physical and combustion characteristics of pellet fuel from cotton gin by-products produced by select processing treatments. Ind. Crops Prod. 24, 204–213. doi: 10.1016/j.indcrop.2006.06.005
|
Huangfu, Y.B., Li, H.X., Chen, X.F., Xue, C.Y., Chen, C., Liu, G.Q., 2014. Effects of moisture content in fuel on thermal performance and emission of biomass semi-gasified cookstove. Energy Sustain. Dev. 21, 60–65. doi: 10.1016/j.esd.2014.05.007
|
Iroba, K., Tabil, L., Sokhansanj, S., Venkatesh, M., 2014. Producing durable pellets from barley straw subjected to radio frequency-alkaline and steam explosion pretreatments. Int. J. Agric. Biol. Eng. 7, 68–82.
|
Ishii, K., Furuichi, T., 2014. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets. Waste Manag. 34, 2621–2626. doi: 10.1016/j.wasman.2014.08.008
|
Islam, M., Hashem, M.A., Islam, S., Alam, M., Rahim, M., Akterruzzaman, M., 2021. Utilization of crop residues in rural household of Bangladesh. Progressive Agric. 31, 164–177. doi: 10.3329/pa.v31i3.52119
|
Järvinen, T., Agar, D., 2014. Experimentally determined storage and handling properties of fuel pellets made from torrefied whole-tree pine chips, logging residues and beech stem wood. Fuel 129, 330–339. doi: 10.1016/j.fuel.2014.03.057
|
Jiang, L.B., Yuan, X.Z., Li, H., Chen, X.H., Xiao, Z.H., Liang, J., Leng, L.J., Guo, Z., Zeng, G.M., 2016. Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits. Fuel Process. Technol. 145, 109–115. doi: 10.1016/j.fuproc.2016.01.027
|
Kaliyan, N., Vance Morey, R., 2009. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33, 337–359. doi: 10.1016/j.biombioe.2008.08.005
|
Karim, M., Karim, R., Islam, M., Muhammad-Sukki, F., Bani, N., Muhtazaruddin, M.N., 2019. Renewable energy for sustainable growth and development: an evaluation of law and policy of Bangladesh. Sustainability 11, 1–30.
|
Kashaninejad, M., Tabil, L.G., 2011. Effect of microwave–chemical pre-treatment on compression characteristics of biomass grinds. Biosyst. Eng. 108, 36–45. doi: 10.1016/j.biosystemseng.2010.10.008
|
Kashaninejad, M., Tabil, L.G., Knox, R., 2014. Effect of compressive load and particle size on compression characteristics of selected varieties of wheat straw grinds. Biomass Bioenergy 60, 1–7. doi: 10.1016/j.biombioe.2013.11.017
|
Khan, M., Hussain, M., Deviatkin, I., Havukainen, J., Horttanainen, M., 2021, Environmental impacts of wooden, plastic, and wood-polymer composite pallet: a life cycle assessment approach. Int. J. Life Cycle Assessment 26, 1607–1622. doi: 10.1007/s11367-021-01953-7
|
Liu, Z.J., Liu, X.E., Fei, B.H., Jiang, Z.H., Cai, Z.Y., Yu, Y., 2013. The properties of pellets from mixing bamboo and rice straw. Renew. Energy 55, 1–5. doi: 10.1016/j.renene.2012.12.014
|
Liu, Z.J., Mi, B.B., Jiang, Z.H., Fei, B.H., Cai, Z.Y., Liu, X.E., 2016. Improved bulk density of bamboo pellets as biomass for energy production. Renew. Energy 86, 1–7. doi: 10.1016/j.renene.2015.08.011
|
Mahapatra, A.K., Harris, D.L., Durham, D.L., Lucas, S., Terrill, T.H., Kouakou, B., Kannan, G., 2010. Effects of moisture change on the physical and thermal properties of sericea lespedeza pellets. Int. Agricult. Eng. J. 19, 23–29.
|
Mani, S., Tabil, L.G., Sokhansanj, S., 2004. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27, 339–352. doi: 10.1016/j.biombioe.2004.03.007
|
Mani, S., Tabil, L.G., Sokhansanj, S., 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30, 648–654. doi: 10.1016/j.biombioe.2005.01.004
|
Masud, M.H., Nuruzzaman, M., Ahamed, R., Ananno, A.A., Tomal, A.N.M.A., 2019. Renewable energy in Bangladesh: current situation and future prospect. Int. J. Sustain. Energy 39, 132–175.
|
Nguyen, Q.N., Cloutier, A., Stevanovic, T., Achim, A., 2017. Pressurized hot water treatment of sugar maple and yellow birch wood particles for high quality fuel pellet production. Biomass Bioenergy 98, 206–213. doi: 10.1016/j.biombioe.2017.01.028
|
Niedziółka, I., Szpryngiel, M., Kachel-Jakubowska, M., Kraszkiewicz, A., Zawiślak, K., Sobczak, P., Nadulski, R., 2015. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renew. Energy 76, 312–317. doi: 10.1016/j.renene.2014.11.040
|
Nilsson, D., Bernesson, S., Hansson, P.A., 2011. Pellet production from agricultural raw materials: a systems study. Biomass Bioenergy 35, 679–689. doi: 10.1016/j.biombioe.2010.10.016
|
Nunes, L.J.R., Matias, J.C.O., Catalão, J.P.S., 2014. Mixed biomass pellets for thermal energy production: a review of combustion models. Appl. Energy 127, 135–140. doi: 10.1016/j.apenergy.2014.04.042
|
Núñez-Retana, V.D., Rosales-Serna, R., Prieto-Ruíz, J. Á., Wehenkel, C., Carrillo-Parra, A., 2020. Improving the physical, mechanical and energetic properties of Quercus spp. wood pellets by adding pine sawdust. PeerJ 8, e9766. doi: 10.7717/peerj.9766
|
Olsson, A.M., Salmén, L., 1997. The effect of lignin composition on the viscoelastic properties of wood. Nord. Pulp Pap. Res. J. 12, 140–144. doi: 10.3183/npprj-1997-12-03-p140-144
|
Pampuro, N., Busato, P., Cavallo, E., 2018. Effect of densification conditions on specific energy requirements and physical properties of compacts made from hop cone. Energies 11, 2389. doi: 10.3390/en11092389
|
Pokhrel, G., Han, Y., Gardner, D.J., 2021. Comparative study of the properties of wood flour and wood pellets manufactured from secondary processing mill residues. Polymers 13, 2487. doi: 10.3390/polym13152487
|
Pradhan, P., Mahajani, S.M., Arora, A., 2018. Production and utilization of fuel pellets from biomass: a review. Fuel Process. Technol. 181, 215–232. doi: 10.1016/j.fuproc.2018.09.021
|
Ríos-Badrán, I.M., Luzardo-Ocampo, I., García-Trejo, J.F., Santos-Cruz, J., Gutiérrez-Antonio, C., 2020. Production and characterization of fuel pellets from rice husk and wheat straw. Renew. Energy 145, 500–507. doi: 10.1016/j.renene.2019.06.048
|
Romasanta, R.R., Sander, B.O., Gaihre, Y.K., Alberto, M.C., Gummert, M., Quilty, J., Nguyen, V.H., Castalone, A.G., Balingbing, C., Sandro, J., Correa, T. Jr, Wassmann, R., 2017. How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agric. Ecosyst. Environ. 239, 143–153. doi: 10.1016/j.agee.2016.12.042
|
Sadaka, S., Negi, S., 2009. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ. Prog. Sustain. Energy 28, 427–434. doi: 10.1002/ep.10392
|
Samuelsson, R., Larsson, S.H., Thyrel, M., Lestander, T.A., 2012. Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Appl. Energy 99, 109–115. doi: 10.1016/j.apenergy.2012.05.004
|
Serrano, C., Monedero, E., Lapuerta, M., Portero, H., 2011. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 92, 699–706. doi: 10.1016/j.fuproc.2010.11.031
|
Shaw, M.D., Karunakaran, C., Tabil, L.G., 2009. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds. Biosyst. Eng. 103, 198–207. doi: 10.1016/j.biosystemseng.2009.02.012
|
Stelte, W., Clemons, C., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B., Sanadi, A.R., 2011. Thermal transitions of the amorphous polymers in wheat straw. Ind. Crops Prod. 34, 1053–1056. doi: 10.1016/j.indcrop.2011.03.014
|
Tabil, L.G., 1996. Binding and pelleting characteristics of alfalfa. Saskatchewan: University of Saskatchewan, Saskatchewan.
|
Telmo, C., Lousada, J., 2011. Heating values of wood pellets from different species. Biomass Bioenergy 35, 2634–2639. doi: 10.1016/j.biombioe.2011.02.043
|
Theerarattananoon, K., Xu, F., Wilson, J., Staggenborg, S., McKinney, L., Vadlani, P., Pei, Z.J., Wang, D.H., 2012. Effects of the pelleting conditions on chemical composition and sugar yield of corn stover, big bluestem, wheat straw, and sorghum stalk pellets. Bioprocess Biosyst. Eng. 35, 615–623. doi: 10.1007/s00449-011-0642-8
|
Tilay, A., Azargohar, R., Drisdelle, M., Dalai, A., Kozinski, J., 2015. Canola meal moisture-resistant fuel pellets: study on the effects of process variables and additives on the pellet quality and compression characteristics. Ind. Crops Prod. 63, 337–348. doi: 10.1016/j.indcrop.2014.10.008
|
Ungureanu, N., Vladut, V., Voicu, G., Dinca, M.N., Zabava, B.S., 2018. Influence of biomass moisture content on pellet properties: review. Engineering for Rural Development 1876–1883.
|
Yılmaz, H., Çanakcı, M., Topakcı, M., Karayel, D., 2021. The effect of raw material moisture and particle size on agri-pellet production parameters and physical properties: a case study for greenhouse melon residues. Biomass Bioenergy 150, 106125. doi: 10.1016/j.biombioe.2021.106125
|
Zafari A., Kianmehr M.H., 2014. Factors affecting mechanical properties of biomass pellet from compost. Environ. Technol. 35, 478–486. doi: 10.1080/09593330.2013.833639
|