Citation: | Hongwei Ma, Zhiyong Cheng, Xiaobai Li, Bin Li, Yujie Fu, Jianchun Jiang. Advances and challenges of cellulose functional materials in sensors[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 15-32. doi: 10.1016/j.jobab.2022.11.001 |
Adstedt, K., Popenov, E.A., Pierce, K.J., Xiong, R., Geryak, R., Cherpak, V., Nepal, D., Bunning, T.J., Tsukruk, V.V., 2020. Chiral cellulose nanocrystals with intercalated amorphous polysaccharides for controlled iridescence and enhanced mechanics. Adv. Funct. Mater. 30, 2003597. doi: 10.1002/adfm.202003597
|
Ahmadian-Fard-Fini, S., Ghanbari, D., Amiri, O., Salavati-Niasari, M., 2020. Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydr. Polym. 229, 115428. doi: 10.1016/j.carbpol.2019.115428
|
Amin, K.N.M., Hosseinmardi, A., Martin, D.J., Annamalai, P.K., 2022. A mixed acid methodology to produce thermally stable cellulose nanocrystal at high yield using phosphoric acid. J. Bioresour. Bioprod. 7, 99–108. doi: 10.1016/j.jobab.2021.12.002
|
Ates, B., Koytepe, S., Ulu, A., Gurses, C., Thakur, V.K., 2020. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120, 9304–9362. doi: 10.1021/acs.chemrev.9b00553
|
Barandun, G., Soprani, M., Naficy, S., Grell, M., Kasimatis, M., Chiu, K.L., Ponzoni, A., Güder, F., 2019. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens. 4, 1662–1669. doi: 10.1021/acssensors.9b00555
|
Bethke, K., Palantöken, S., Andrei, V., Roß, M., Raghuwanshi, V.S., Kettemann, F., Greis, K., Ingber, T.T.K., Stückrath, J.B., Valiyaveettil, S., Rademann, K., 2018. Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv. Funct. Mater. 28, 1800409. doi: 10.1002/adfm.201800409
|
Bumbudsanpharoke, N., Lee, W., Chung, U., Ko, S., 2018. Study of humidity-responsive behavior in chiral nematic cellulose nanocrystal films for colorimetric response. Cellulose 25, 305–317. doi: 10.1007/s10570-017-1571-8
|
Chen, C.C., Wang, Y.R., Wu, Q.J., Wan, Z.M., Li, D.G., Jin, Y.C., 2020a. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chem. Eng. J. 400, 125876. doi: 10.1016/j.cej.2020.125876
|
Chen, S.Q., Wang, Y.D., Fei, B., Long, H.F., Wang, T., Zhang, T.H., Chen, L., 2022. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane. Chem. Eng. J. 430, 131980. doi: 10.1016/j.cej.2021.131980
|
Chen, Y.W., Liu, Y.H., Xia, Y.M., Liu, X.Q., Qiang, Z., Yang, J.Y., Zhang, B.L., Hu, Z.D., Wang, Q., Wu, W.F., Duan, Y.X., Fu, K.K., Zhang, J.M., 2020b. Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite films with enhanced dielectric permittivity and anisotropic light transmission. ACS Appl. Mater. Interfaces 12, 24242–24249. doi: 10.1021/acsami.0c03086
|
Chen, Z.H., Zhuo, H., Hu, Y.J., Lai, H.H., Liu, L.X., Zhong, L.X., Peng, X. W, 2020c. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30, 1910292. doi: 10.1002/adfm.201910292
|
Cheng, H., Du, Y.R., Wang, B.J., Mao, Z.P., Xu, H., Zhang, L.P., Zhong, Y., Jiang, W., Wang, L.J., Sui, X.F., 2018. Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 338, 1–7. doi: 10.1016/j.cej.2017.12.134
|
Cheng, R., Zeng, J.S., Wang, B., Li, J.P., Cheng, Z., Xu, J., Gao, W.H., Chen, K.F., 2021. Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor. Chem. Eng. J. 424, 130565. doi: 10.1016/j.cej.2021.130565
|
Cho, S.Y., Yu, H., Choi, J., Kang, H., Park, S., Jang, J.S., Hong, H.J., Kim, I.D., Lee, S.K., Jeong, H.S., Jung, H.T., 2019. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 13, 9332–9341. doi: 10.1021/acsnano.9b03971
|
Chortos, A., Liu, J., Bao, Z.N., 2016. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950. doi: 10.1038/nmat4671
|
Conley, K., Godbout, L., Whitehead, M.A., van de Ven, T.G.M., 2016. Origin of the twist of cellulosic materials. Carbohydr. Polym. 135, 285–299. doi: 10.1016/j.carbpol.2015.08.029
|
Dai, L., Wang, Y., Zou, X.J., Chen, Z.R., Liu, H., Ni, Y.H., 2020. Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small 16, e1906567. doi: 10.1002/smll.201906567
|
de Espinosa Lucas, M., Worarin, M., Dafni, M., Christoph, W., 2017. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 117, 12851–12892. doi: 10.1021/acs.chemrev.7b00168
|
Diamond, D., Coyle, S., Scarmagnani, S., Hayes, J., 2008. Wireless sensor networks and chemo-/biosensing. Chem. Rev. 108, 652–679. doi: 10.1021/cr0681187
|
Dincer, C., Bruch, R., Costa-Rama, E., Fernández-Abedul, M.T., Merkoçi, A., Manz, A., Urban, G.A., Güder, F., 2019. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 31, e1806739.
|
Dong, Y., Akinoglu, E., Zhang, H.Y., Maasoumi, F., Zhou, J.P., Mulvaney, P., 2019. An optically responsive soft etalon based on ultrathin cellulose hydrogels. Adv. Funct. Mater. 29, 1904290. doi: 10.1002/adfm.201904290
|
Du, H.S., Liu, W., Zhang, M.M., Si, C.L., Zhang, X.Y., Li, B., 2019. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144. doi: 10.1016/j.carbpol.2019.01.020
|
Duan, Z.H., Jiang, Y.D., Zhao, Q.N., Huang, Q., Wang, S., Zhang, Y.J., Wu, Y.W., Liu, B.H., Zhen, Y., Tai, H.L., 2021. Daily writing carbon ink: novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sens. Actuat. B Chem. 339, 129884. doi: 10.1016/j.snb.2021.129884
|
Fan, J., Zhang, S.F., Xu, Y.S., Wei, N., Wan, B., Qian, L.W., Liu, Y., 2020. A polyethylenimine/salicylaldehyde modified cellulose Schiff base for selective and sensitive Fe3+ detection. Carbohydr. Polym. 228, 115379. doi: 10.1016/j.carbpol.2019.115379
|
Fei, G.Q., Wang, Y., Wang, H.H., Ma, Y.N., Guo, Q., Huang, W.H., Yang, D., Shao, Y.M., Ni, Y.H., 2019. Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustainable Chem. Eng. 7, 8215–8225. doi: 10.1021/acssuschemeng.8b06306
|
Fu, Q.L., Chen, Y., Sorieul, M., 2020. Wood-based flexible electronics. ACS Nano 14, 3528–3538. doi: 10.1021/acsnano.9b09817
|
Gao, C.M., Xue, J., Zhang, L.N., Zhao, P.N., Cui, K., Ge, S.G., Yu, J.H., 2019. Paper based modification-free photoelectrochemical sensing platform with single-crystalline aloe like TiO2 as electron transporting material for cTnI detection. Biosens. Bioelectron. 131, 17–23. doi: 10.1016/j.bios.2019.01.038
|
Golmohammadi, H., Morales-Narváez, E., Naghdi, T., Merkoçi, A., 2017. Nanocellulose in sensing and biosensing. Chem. Mater. 29, 5426–5446. doi: 10.1021/acs.chemmater.7b01170
|
Gong, M., Zhang, L.Q., Wan, P.B., 2020. Polymer nanocomposite meshes for flexible electronic devices. Prog. Polym. Sci. 107, 101279. doi: 10.1016/j.progpolymsci.2020.101279
|
Grey, P., Fernandes, S.N., Gaspar, D., Fortunato, E., Martins, R., Godinho, M.H., Pereira, L., 2019. Field-effect transistors: field-effect transistors on photonic cellulose nanocrystal solid electrolyte for circular polarized light sensing (adv. funct. mater. 21/2019). Adv. Funct. Mater. 29, 1970145. doi: 10.1002/adfm.201970145
|
Grosse-Puppendahl, T., Holz, C., Cohn, G., Wimmer, R., Bechtold, O., Hodges, S., Reynolds, M.S., Smith, J.R., 2017. Finding common ground: a survey of capacitive sensing in human-computer interaction. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver, Colorado, USA. New York: ACM, pp. 3293–3315.
|
Guan, X., Hou, Z.N., Wu, K., Zhao, H.R., Liu, S., Fei, T., Zhang, T., 2021. Flexible humidity sensor based on modified cellulose paper. Sens. Actuat. B Chem. 339, 129879. doi: 10.1016/j.snb.2021.129879
|
Güder, F., Ainla, A., Redston, J., Mosadegh, B., Glavan, A.C., Martin, T.J., Whitesides, G., 2016. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732. doi: 10.1002/anie.201511805
|
Gui, Z., Zhu, H.L., Gillette, E., Han, X.G., Rubloff, G.W., Hu, L.B., Lee, S.B., 2013. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7, 6037–6046. doi: 10.1021/nn401818t
|
Gullapalli, H., Vemuru, V.S.M., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., Ajayan, P.M., 2010. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 6, 1641–1646. doi: 10.1002/smll.201000254
|
Han, S., Alvi, N.U.H., Granlöf, L., Granberg, H., Berggren, M., Fabiano, S., Crispin, X., 2019. A multiparameter pressure-temperature-humidity sensor based on mixed ionic–electronic cellulose aerogels. Adv. Sci. 6, 1802128. doi: 10.1002/advs.201802128
|
Heinze, T., Liebert, T., 2001. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 26, 1689–1762. doi: 10.1016/S0079-6700(01)00022-3
|
Homola, J., 2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493. doi: 10.1021/cr068107d
|
Hosseini, H., Kokabi, M., Mousavi, S.M., 2018. Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohydr. Polym. 201, 228–235. doi: 10.1016/j.carbpol.2018.08.054
|
Hou, C.J., Dong, J.L., Zhang, G.P., Lei, Y., Yang, M., Zhang, Y.C., Liu, Z., Zhang, S.Y., Huo, D.Q., 2011. Colorimetric artificial tongue for protein identification. Biosens. Bioelectron. 26, 3981–3986. doi: 10.1016/j.bios.2010.11.025
|
Hou, K., Nie, Y.L., Tendo Mugaanire, I., Guo, Y., Zhu, M.F., 2020. A novel leaf inspired hydrogel film based on fiber reinforcement as rapid steam sensor. Chem. Eng. J. 382, 122948. doi: 10.1016/j.cej.2019.122948
|
Hu, J., Stein, A., Bühlmann, P., 2016. A disposable planar paper-based potentiometric ion-sensing platform. Angew. Chem. Int. Ed. 55, 7544–7547. doi: 10.1002/anie.201603017
|
Hu, R., Feng, J., Hu, D.H., Wang, S.Q., Li, S.Y., Li, Y., Yang, G.Q., 2010. A rapid aqueous fluoride ion sensor with dual output modes. Angew. Chem. Int. Ed Engl. 49, 4915–4918. doi: 10.1002/anie.201000790
|
Hu, S.Q., Wu, S.N., Li, C.X., Chen, R.Z., Forsberg, E., He, S.L., 2020. SNR-enhanced temperature-insensitive microfiber humidity sensor based on upconversion nanoparticles and cellulose liquid crystal coating. Sens. Actuat. B Chem. 305, 127517. doi: 10.1016/j.snb.2019.127517
|
Huang, J., Matsunaga, N., Shimanoe, K., Yamazoe, N., Kunitake, T., 2005. Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing. Chem. Mater. 17, 3513–3518. doi: 10.1021/cm047819m
|
Huang, J.Y., Li, D.W., Zhao, M., Ke, H.Z., Mensah, A., Lv, P.F., Tian, X.J., Wei, Q.F., 2019. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem. Eng. J. 373, 1357–1366. doi: 10.1016/j.cej.2019.05.136
|
Hulanicki, A., Glab, S., Ingman, F., 1991. Chemical sensors: definitions and classification. Pure Appl. Chem. 63, 1247–1250. doi: 10.1351/pac199163091247
|
Jelinek, R., Kolusheva, S., 2004. Carbohydrate biosensors. Chem. Rev. 104, 5987–6015. doi: 10.1021/cr0300284
|
Jiang, X.Y., Xia, J., Luo, X.G., 2020. Simple, rapid, and highly sensitive colorimetric sensor strips from a porous cellulose membrane stained with Victoria blue B for efficient detection of trace Cd(II) in water. ACS Sustainable Chem. Eng. 8, 5184–5191. doi: 10.1021/acssuschemeng.9b07614
|
Jing, X., Li, H., Mi, H.Y., Liu, Y.J., Feng, P.Y., Tan, Y.M., Turng, L.S., 2019. Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens. Actuat. B Chem. 295, 159–167. doi: 10.1016/j.snb.2019.05.082
|
Johnson, K.S., Needoba, J.A., Riser, S.C., Showers, W.J., 2007. Chemical sensor networks for the aquatic environment. Chem. Rev. 107, 623–640. doi: 10.1021/cr050354e
|
Johri, N., Jacquillet, G., Unwin, R., 2010. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine. Biometals 23, 783–792. doi: 10.1007/s10534-010-9328-y
|
Jurs, P.C., Bakken, G.A., McClelland, H.E., 2000. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 100, 2649–2678. doi: 10.1021/cr9800964
|
Kang, J., Son, D., Wang, G.J.N., Liu, Y.X., Lopez, J., Kim, Y., Oh, J.Y., Katsumata, T., Mun, J., Lee, Y., Jin, L.H., Tok, J.B.H., Bao, Z.N., 2018. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846. doi: 10.1002/adma.201706846
|
Kang, X.L., Yip, S., Meng, Y., Wang, W., Li, D.J., Liu, C.T., Ho, J.C., 2021. High-performance electrically transduced hazardous gas sensors based on low-dimensional nanomaterials. Nanoscale Adv. 3, 6254–6270. doi: 10.1039/d1na00433f
|
Khattab, T.A., Dacrory, S., Abou-Yousef, H., Kamel, S., 2019. Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas. Carbohydr. Polym. 210, 196–203. doi: 10.1016/j.carbpol.2019.01.067
|
Khine, Y.Y., Stenzel, M.H., 2020. Surface modified cellulose nanomaterials: a source of non-spherical nanoparticles for drug delivery. Mater. Horiz. 7, 1727–1758. doi: 10.1039/c9mh01727e
|
Kim, D., Lee, D.K., Yoon, J., Hahm, D., Lee, B., Oh, E., Kim, G., Seo, J., Kim, H., Hong, Y., 2021. Electronic skin based on a cellulose/carbon nanotube fiber network for large-area 3D touch and real-time 3D surface scanning. ACS Appl. Mater. Interfaces, 2021Oct28.
|
Kim, J., Yun, S., Ounaies, Z., 2006. Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206. doi: 10.1021/ma060261e
|
Koga, H., Nagashima, K., Huang, Y.T., Zhang, G.Z., Wang, C., Takahashi, T., Inoue, A., Yan, H., Kanai, M., He, Y., Uetani, K., Nogi, M., Yanagida, T., 2019. Paper-based disposable molecular sensor constructed from oxide nanowires, cellulose nanofibers, and pencil-drawn electrodes. ACS Appl. Mater. Interfaces 11, 15044–15050. doi: 10.1021/acsami.9b01287
|
Kontturi, E., Laaksonen, P., Linder, M.B., Nonappa, Gröschel, A.H., Rojas, O.J., Ikkala, O., 2018. Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, e1703779. doi: 10.1002/adma.201703779
|
Kuang, Y.D., Chen, C.J., Pastel, G., Li, Y.J., Song, J.W., Mi, R.Y., Kong, W.Q., Liu, B.Y., Jiang, Y.Q., Yang, K., Hu, L.B., 2018. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398. doi: 10.1002/aenm.201802398
|
Kwon, O.S., Song, H.S., Park, T.H., Jang, J., 2019. Conducting nanomaterial sensor using natural receptors. Chem. Rev. 119, 36–93. doi: 10.1021/acs.chemrev.8b00159
|
Lai, C.W., Yu, S.S., 2020. 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Appl. Mater. Interfaces 12, 34235–34244. doi: 10.1021/acsami.0c11152
|
Lai, Y.C., Deng, J.N., Niu, S.M., Peng, W.B., Wu, C.S., Liu, R.Y., Wen, Z., Wang, Z.L., 2016. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 28, 10024–10032. doi: 10.1002/adma.201603527
|
Le, X.X., Lu, W., Zhang, J.W., Chen, T., 2019. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. (Weinh) 6, 1801584. doi: 10.1002/advs.201801584
|
Lee, H., Shin, T.H., Cheon, J., Weissleder, R., 2015. Recent developments in magnetic diagnostic systems. Chem. Rev. 115, 10690–10724. doi: 10.1021/cr500698d
|
Lee, J.S., Cho, A.N., Jin, Y., Kim, J., Kim, S., Cho, S.W., 2018. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials 151, 24–37. doi: 10.3847/1538-4365/aadcad
|
Lee, W.S., Choi, J., 2019. Hybrid integration of carbon nanotubes and transition metal dichalcogenides on cellulose paper for highly sensitive and extremely deformable chemical sensors. ACS Appl. Mater. Interfaces 11, 19363–19371. doi: 10.1021/acsami.9b03296
|
Lee, Y.B., Choi, H., Zhang, H.Y., Wu, Y., Lee, D.B., Wong, W.S., Tang, X.S., Park, J., Yu, H.Y., Tam, K.C., 2021. Sensitive, stretchable, and sustainable conductive cellulose nanocrystal composite for human motion detection. ACS Sustainable Chem. Eng. 9, 17351–17361. doi: 10.1021/acssuschemeng.1c06741
|
Lewis, F.L., 2005. Wireless sensor networks. Smart Environments. Hoboken: John Wiley & Sons, Inc., pp. 11–46.
|
Li, G.C., Chu, Z.Y., Gong, X.F., Xiao, M., Dong, Q.C., Zhao, Z.K., Hu, T.J., Zhang, Y., Wang, J., Tan, Y.L., Jiang, Z.H., 2022. A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels. Adv. Mater. Technol. 7, 2101021. doi: 10.1002/admt.202101021
|
Li, L.Y., Lu, F.X., Wang, C., Zhang, F.L., Liang, W.H., Kuga, S., Dong, Z.C., Zhao, Y., Huang, Y., Wu, M., 2018. Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator. J. Mater. Chem. A 6, 24468–24478. doi: 10.1039/c8ta07751g
|
Li, M.C., Wu, Q.L., Song, K., Lee, S.Y., Qing, Y., Wu, Y.Q., 2015. Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain. Chem. Eng. 3, 821–832. doi: 10.1021/acssuschemeng.5b00144
|
Li, Q.M., Yin, R., Zhang, D.B., Liu, H., Chen, X.Y., Zheng, Y.J., Guo, Z.H., Liu, C.T., Shen, C.Y., 2020a. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 8, 21131–21141. doi: 10.1039/d0ta07832h
|
Li, Z.X., Wang, J., Dai, L., Sun, X.H., An, M., Duan, C., Li, J., Ni, Y.H., 2020b. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl. Mater. Interfaces 12, 55205–55214. doi: 10.1021/acsami.0c17970
|
Liang, Q.Q., Zhang, D., Wu, Y.C., Chen, S.Y., Han, Z.L., Wang, B.X., Wang, H.P., 2022. Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers. ACS Appl. Mater. Interfaces 14, 21319–21329. doi: 10.1021/acsami.2c00960
|
Ling, H., Chen, R.W., Huang, Q.B., Shen, F., Wang, Y.Y., Wang, X.H., 2020. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing. Green Chem. 22, 3208–3215. doi: 10.1039/d0gc00658k
|
Ling, S.J., Chen, W.S., Fan, Y.M., Zheng, K., Jin, K., Yu, H.P., Buehler, M.J., Kaplan, D.L., 2018. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56. doi: 10.1016/j.progpolymsci.2018.06.004
|
Liu, G.J., Tian, S.N., Li, C.Y., Xing, G.W., Zhou, L., 2017a. Aggregation-induced-emission materials with different electric charges as an artificial tongue: design, construction, and assembly with various pathogenic bacteria for effective bacterial imaging and discrimination. ACS Appl. Mater. Interfaces 9, 28331–28338. doi: 10.1021/acsami.7b09848
|
Liu, H.Y., Du, H.S., Zheng, T., Liu, K., Ji, X.X., Xu, T., Zhang, X.Y., Si, C.L., 2021. Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817. doi: 10.1016/j.cej.2021.130817
|
Liu, J., Wang, H.Y., Liu, T., Wu, Q.N., Ding, Y.H., Ou, R.X., Guo, C.G., Liu, Z.Z., Wang, Q.W., 2022. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32, 2204686. doi: 10.1002/adfm.202204686
|
Liu, Y.Y., Xu, B., Sun, S.T., Wei, J., Wu, L.M., Yu, Y.L., 2017b. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv. Mater. 29, 1604792. doi: 10.1002/adma.201604792
|
Lu, J.S., Han, X., Dai, L., Li, C.Y., Wang, J.F., Zhong, Y.D., Yu, F.X., Si, C.L., 2020. Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness. Carbohydr. Polym. 250, 117010. doi: 10.1016/j.carbpol.2020.117010
|
Luo, M.Y., Li, M.F., Li, Y.Q., Chang, K.Q., Liu, K., Liu, Q.Z., Wang, Y.D., Lu, Z.T., Liu, X., Wang, D., 2017. In-situ polymerization of PPy/cellulose composite sponge with high elasticity and conductivity for the application of pressure sensor. Compos. Commun. 6, 68–72. doi: 10.1016/j.coco.2017.10.001
|
Ma, C.X., Lu, W., Yang, X.X., He, J., Le, X.X., Wang, L., Zhang, J.W., Serpe, M.J., Huang, Y.J., Chen, T., 2018. Actuators: bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors (adv. funct. mater. 7/2018). Adv. Funct. Mater. 28, 1870043. doi: 10.1002/adfm.201870043
|
Mahadeva, S.K., Yun, S., Kim, J., 2011. Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sens. Actuat. A Phys. 165, 194–199. doi: 10.1016/j.sna.2010.10.018
|
Matsuguchi, M., Kuroiwa, T., Miyagishi, T., Suzuki, S., Ogura, T., Sakai, Y., 1998. Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films. Sens. Actuat. B Chem. 52, 53–57. doi: 10.1016/S0925-4005(98)00255-X
|
Mei, Q.S., Jing, H.R., Li, Y., Yisibashaer, W., Chen, J., Bing, N.L., Zhang, Y., 2016. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens. Bioelectron. 75, 427–432. doi: 10.1016/j.bios.2015.08.054
|
Miao, X.R., Lin, J.Y., Bian, F.G., 2020. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J. Bioresour. Bioprod. 5, 26–36. doi: 10.1016/j.jobab.2020.03.003
|
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994. doi: 10.1039/c0cs00108b
|
Nassar, J.M., Cordero, M.D., Kutbee, A.T., Karimi, M.A., Sevilla, G.A.T., Hussain, A.M., Shamim, A., Hussain, M.M., 2016. Paper skin multisensory platform for simultaneous environmental monitoring. Adv. Mater. Technol. 1, 1600004. doi: 10.1002/admt.201600004
|
Park, T., Kim, N., Kim, D., Kim, S.W., Oh, Y., Yoo, J.K., You, J., Um, M.K., 2019. An organic/inorganic nanocomposite of cellulose nanofibers and ZnO nanorods for highly sensitive, reliable, wireless, and wearable multifunctional sensor applications. ACS Appl. Mater. Interfaces 11, 48239–48248. doi: 10.1021/acsami.9b17824
|
Peng, N, Huang, D, Gong, C, Wang, Y, Zhou, J, Chang, C., 2020. Controlled arrangement of nanocellulose in polymeric matrix: from reinforcement to functionality. ACS Nano, 2020Dec14.
|
Potyrailo, R.A., 2016. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116, 11877–11923. doi: 10.1021/acs.chemrev.6b00187
|
Pu, X., Liu, M.M., Chen, X.Y., Sun, J.M., Du, C.H., Zhang, Y., Zhai, J.Y., Hu, W.G., Wang, Z.L., 2017. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3, e1700015. doi: 10.1126/sciadv.1700015
|
Qian, C.C., Li, L.H., Gao, M., Yang, H.Y., Cai, Z.R., Chen, B.D., Xiang, Z.Y., Zhang, Z.J., Song, Y.L., 2019. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 63, 103885. doi: 10.1016/j.nanoen.2019.103885
|
Qin, Y., Mo, J.L., Liu, Y.H., Zhang, S., Wang, J.L., Fu, Q., Wang, S.F., Nie, S.X., 2022. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32, 2201846. doi: 10.1002/adfm.202201846
|
Ragazzini, I., Gualandi, I., Selli, S., Polizzi, C., Cassani, M.C., Nanni, D., Gambassi, F., Tarterini, F., Tonelli, D., Scavetta, E., Ballarin, B., 2021. A simple and industrially scalable method for making a PANI-modified cellulose touch sensor. Carbohydr. Polym. 254, 117304. doi: 10.1016/j.carbpol.2020.117304
|
Sakai, Y., Sadaoka, Y., Matsuguchi, M., 1996. Humidity sensors based on polymer thin films. Sens. Actuat. B Chem. 35, 85–90. doi: 10.1016/S0925-4005(96)02019-9
|
Shao, C.Y., Wang, M., Meng, L., Chang, H.L., Wang, B., Xu, F., Yang, J., and Wan, P.B., 2018. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30, 3110–3121. doi: 10.1021/acs.chemmater.8b01172
|
Shaukat, R.A., Khan, M.U., Saqib, Q.M., Chougale, M.Y., Kim, J., Bae, J., 2021. All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuat. B Chem. 345, 130371. doi: 10.1016/j.snb.2021.130371
|
Sheng, N., Ji, P., Zhang, M.H., Wu, Z.T., Liang, Q.Q., Chen, S.Y., Wang, H.P., 2021. High sensitivity polyurethane-based fiber strain sensor with porous structure via incorporation of bacterial cellulose nanofibers. Adv. Electron. Mater. 7, 2001235. doi: 10.1002/aelm.202001235
|
Shi, K.M., Zou, H.Y., Sun, B., Jiang, P.K., He, J.L., Huang, X.Y., 2020. Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 30, 1904536. doi: 10.1002/adfm.201904536
|
Siripongpreda, T., Somchob, B., Rodthongkum, N., Hoven, V.P., 2021. Bacterial cellulose-based re-swellable hydrogel: facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. Carbohydr. Polym. 256, 117506. doi: 10.1016/j.carbpol.2020.117506
|
Son, D., Kang, J., Vardoulis, O., Kim, Y., Matsuhisa, N., Oh, J.Y., To, J.W., Mun, J., Katsumata, T., Liu, Y.X., McGuire, A.F., Krason, M., Molina-Lopez, F., Ham, J., Kraft, U., Lee, Y., Yun, Y., Tok, J.B.H., Bao, Z.N., 2018. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065. doi: 10.1038/s41565-018-0244-6
|
Song, M.L., Yu, H.Y., Zhu, J.Y., Ouyang, Z.F., Abdalkarim, S.Y.H., Tam, K.C., Li, Y.Z., 2020. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 398, 125547. doi: 10.1016/j.cej.2020.125547
|
Spencer, B.F., Ruiz-Sandoval, M.E., Kurata, N., 2004. Smart sensing technology: opportunities and challenges. Struct. Control Health Monit. 11, 349–368. doi: 10.1002/stc.48
|
Spinks, G.M., 2020. Advanced actuator materials powered by biomimetic helical fiber topologies. Adv. Mater. 32, 1904093. doi: 10.1002/adma.201904093
|
Stern, R., Jedrzejas, M.J., 2008. Carbohydrate polymers at the center of life's origins: the importance of molecular processivity. Chem. Rev. 108, 5061–5085. doi: 10.1021/cr078240l
|
Su, T, Liu, N, Lei, D, Wang, L, Ren, Z, Zhang, Q, Su, J, Zhang, Z, Gao, Y., 2022. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano, 2022May3.
|
Su, T.Y., Liu, N.S., Gao, Y.H., Lei, D.D., Wang, L.X., Ren, Z.Q., Zhang, Q.X., Su, J., Zhang, Z., 2021. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151. doi: 10.1016/j.nanoen.2021.106151
|
Sun, C.Y., Zhu, D.D., Jia, H.Y., Lei, K., Zheng, Z., Wang, X.L., 2019. Humidity and heat dual response cellulose nanocrystals/poly(N-isopropylacrylamide) composite films with cyclic performance. ACS Appl. Mater. Interfaces 11, 39192–39200. doi: 10.1021/acsami.9b14201
|
Sun, F., Wu, K., Hung, H.C., Zhang, P., Che, X.R., Smith, J., Lin, X.J., Li, B.W., Jain, P., Yu, Q.M., Jiang, S.Y., 2017. Paper sensor coated with a poly(carboxybetaine)-multiple DOPA conjugate via dip-coating for biosensing in complex media. Anal. Chem. 89, 10999–11004. doi: 10.1021/acs.analchem.7b02876
|
Tai, H.L., Duan, Z.H., Wang, Y., Wang, S., Jiang, Y.D., 2020. Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl. Mater. Interfaces 12, 31037–31053. doi: 10.1021/acsami.0c06435
|
Tang, J.T., Sisler, J., Grishkewich, N., Tam, K.C., 2017. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494, 397–409. doi: 10.1016/j.jcis.2017.01.077
|
Thomas, B., Raj, M.C., Athira K.B., Rubiyah M.H., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625. doi: 10.1021/acs.chemrev.7b00627
|
Tong, R.P., Chen, G.X., Pan, D.H., Qi, H.S., Li, R.A., Tian, J.F., Lu, F.C., He, M.H., 2019. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules 20, 2096–2104. doi: 10.1021/acs.biomac.9b00322
|
Tu, H., Zhu, M.X., Duan, B., Zhang, L.N., 2021. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33, e2000682. doi: 10.1002/adma.202000682
|
Ummartyotin, S., Manuspiya, H., 2015. A critical review on cellulose: from fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 41, 402–412. doi: 10.1016/j.rser.2014.08.050
|
Uzun, S., Seyedin, S., Stoltzfus, A.L., Levitt, A.S., Alhabeb, M., Anayee, M., Strobel, C.J., Razal, J.M., Dion, G., Gogotsi, Y., 2019. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015. doi: 10.1002/adfm.201905015
|
Walters, C.M., Matharu, G.K., Hamad, W.Y., Lizundia, E., MacLachlan, M.J., 2021. Chiral nematic cellulose nanocrystal/Germania and carbon/Germania composite aerogels as supercapacitor materials. Chem. Mater. 33, 5197–5209. doi: 10.1021/acs.chemmater.1c01272
|
Wang, C., Pan, Z.Z., Lv, W., Liu, B.L., Wei, J., Lv, X.H., Luo, Y., Nishihara, H., Yang, Q.H., 2019. A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 15, e1805363. doi: 10.1002/smll.201805363
|
Wang, D.C., Yu, H.Y., Fan, X.M., Gu, J.P., Ye, S.N., Yao, J.M., Ni, Q.Q., 2018a. High aspect ratio carboxylated cellulose nanofibers cross-linked to robust aerogels for superabsorption-flocculants: paving way from nanoscale to macroscale. ACS Appl. Mater. Interfaces 10, 20755–20766. doi: 10.1021/acsami.8b04211
|
Wang, G.F., Li, Y.S., Cai, Z.Z., Dou, X.C., 2020a. A colorimetric artificial olfactory system for airborne improvised explosive identification. Adv. Mater. 32, e1907043. doi: 10.1002/adma.201907043
|
Wang, H.Q., Li, J.C., Yu, X., Yan, G.H., Tang, X., Sun, Y., Zeng, X.H., Lin, L., 2021a. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydr. Polym. 255, 117443. doi: 10.1016/j.carbpol.2020.117443
|
Wang, H.Q., Luo, H.S., Zhou, H.K., Zhou, X.D., Zhang, X.X., Lin, W.J., Yi, G.B., Zhang, Y.H., 2018b. Dramatically enhanced strain- and moisture-sensitivity of bioinspired fragmentized carbon architectures regulated by cellulose nanocrystals. Chem. Eng. J. 345, 452–461. doi: 10.1016/j.cej.2018.04.003
|
Wang, J.L., Guo, Y.J., Long, G.D., Tang, Y.L., Tang, Q.B., Zu, X.T., Ma, J.Y., Du, B., Torun, H., Fu, Y.Q., 2020b. Integrated sensing layer of bacterial cellulose and polyethyleneimine to achieve high sensitivity of ST-cut quartz surface acoustic wave formaldehyde gas sensor. J. Hazard. Mater. 388, 121743. doi: 10.1016/j.jhazmat.2019.121743
|
Wang, L., Guo, W., Zhu, H.X., He, H., Wang, S. F, 2021b. Preparation and properties of a dual-function cellulose nanofiber-based bionic biosensor for detecting silver ions and acetylcholinesterase. J. Hazard. Mater. 403, 123921. doi: 10.1016/j.jhazmat.2020.123921
|
Wang, L., Zhang, M.Y., Yang, B., Tan, J.J., Ding, X.Y., 2020c. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14, 10633–10647. doi: 10.1021/acsnano.0c04888
|
Wang, L.L., Chen, D., Jiang, K., Shen, G.Z., 2017. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46, 6764–6815. doi: 10.1039/C7CS00278E
|
Wang, X.D., Wang, Z.S., Wang, X.Y., Shi, L.Y., Ran, R., 2021c. Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel. Carbohydr. Polym. 257, 117665. doi: 10.1016/j.carbpol.2021.117665
|
Wang, Y., Zhang, L.N., Zhou, J.P., Lu, A, 2020d. Flexible and transparent cellulose-based ionic film as a humidity sensor. ACS Appl. Mater. Interfaces 12, 7631–7638. doi: 10.1021/acsami.9b22754
|
Wu, B.L., Zhu, G., Dufresne, A., Lin, N., 2019. Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor. ACS Appl. Mater. Interfaces 11, 16048–16058. doi: 10.1021/acsami.9b02754
|
Wu, Z.L., Yang, J., Sun, X., Wu, Y.J., Wang, L., Meng, G., Kuang, D.L., Guo, X.Z., Qu, W.J., Du, B.S., Liang, C.Y., Fang, X.D., Tang, X.S., He, Y., 2021. An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring. Sens. Actuat. B Chem. 337, 129772. doi: 10.1016/j.snb.2021.129772
|
Xu, M.C., Wu, X.Y., Yang, Y., Ma, C.H., Li, W., Yu, H.P., Chen, Z.J., Li, J., Zhang, K., Liu, S.X., 2020. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. ACS Nano 14, 11130–11139. doi: 10.1021/acsnano.0c02060
|
Xu, X.R., Wu, S.N., Cui, J., Yang, L.Y., Wu, K., Chen, X., Sun, D.P., 2021. Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection. Compos. B Eng. 211, 108665. doi: 10.1016/j.compositesb.2021.108665
|
Yang, L.Y., Xu, X.R., Liu, M.D., Chen, C., Cui, J., Chen, X., Wu, K., Sun, D.P., 2021. Wearable and flexible bacterial cellulose/polyaniline ammonia sensor based on a synergistic doping strategy. Sens. Actuat. B Chem. 334, 129647. doi: 10.1016/j.snb.2021.129647
|
Yang, Y., Lu, Y.T., Zeng, K., Heinze, T., Groth, T., and Zhang, K., 2020. Recent progress on cellulose-based ionic compounds for biomaterials. Adv. Mater. 33, 2000717.
|
Ye, Y.H., Zhang, Y.F., Chen, Y., Han, X.S., Jiang, F., 2020. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430. doi: 10.1002/adfm.202003430
|
Yeom, J., Choe, A., Lim, S., Lee, Y., Na, S.Y., Ko, H., 2020. Soft and ion-conducting hydrogel artificial tongue for astringency perception. Sci. Adv. 6, eaba5785. doi: 10.1126/sciadv.aba5785
|
Yun, S., Kim, J., 2010. Multi-walled carbon nanotubes-cellulose paper for a chemical vapor sensor. Sens. Actuat. B Chem. 150, 308–313. doi: 10.1016/j.snb.2010.06.068
|
Zhai, J.Y., Zhang, Y., Cui, C., Li, A., Wang, W.J., Guo, R.H., Qin, W.F., Ren, E.H., Xiao, H.Y., Zhou, M., 2021. Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor. ACS Sustainable Chem. Eng. 9, 14029–14039. doi: 10.1021/acssuschemeng.1c03068
|
Zhang, C.L., Cha, R.T., Zhang, P., Luo, H.Z., Jiang, X.Y., 2022. Cellulosic substrate materials with multi-scale building blocks: fabrications, properties and applications in bioelectronic devices. Chem. Eng. J. 430, 132562. doi: 10.1016/j.cej.2021.132562
|
Zhang, G.J., Liao, Q.L., Ma, M.Y., Gao, F.F., Zhang, Z., Kang, Z., Zhang, Y., 2018. Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 52, 501–509. doi: 10.1016/j.nanoen.2018.08.020
|
Zhang, S.D., Sun, K., Liu, H., Chen, X.Y., Zheng, Y.J., Shi, X.Z., Zhang, D.B., Mi, L.W., Liu, C.T., Shen, C.Y., 2020. Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal. Chem. Eng. J. 387, 124045. doi: 10.1016/j.cej.2020.124045
|
Zhao, D.W., Zhu, Y., Cheng, W.K., Chen, W.S., Wu, Y.Q., Yu, H.P., 2021. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619. doi: 10.1002/adma.202000619
|
Zhao, G.M., Zhang, Y., Zhai, S.C., Sugiyama, J., Pan, M.Z., Shi, J.B., Lu, H.Y., 2020b. Dual response of photonic films with chiral nematic cellulose nanocrystals: humidity and formaldehyde. ACS Appl. Mater. Interfaces 12, 17833–17844. doi: 10.1021/acsami.0c00591
|
Zhao, T.H., Parker, R.M., Williams, C.A., Lim, K.T.P., Frka-Petesic, B., Vignolini, S., 2019. Printing of responsive photonic cellulose nanocrystal microfilm arrays. Adv. Funct. Mater. 29, 1804531. doi: 10.1002/adfm.201804531
|
Zhi, H., Zhang, X.B., Wang, F.Y., Wan, P., Feng, L, 2021. Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987–45994. doi: 10.1021/acsami.1c12991
|
Zhou, S.Y., Qiu, Z., Strømme, M., Wang, Z.H., 2020. Highly crystalline PEDOT nanofiber templated by highly crystalline nanocellulose. Adv. Funct. Mater. 30, 2005757. doi: 10.1002/adfm.202005757
|
Zhou, Z., Shi, Z., Cai, X., Zhang, S., Corder, S.G., Li, X., Zhang, Y., Zhang, G., Chen, L., and Liu, M., Kaplan, D.L., Omenetto, F.G., Mao, Y., Tao, Z., Tao, T.H., 2017. The use of functionalized silk fibroin films as a platform for optical diffraction-based sensing applications. Adv. Mater. 29, 1605471. doi: 10.1002/adma.201605471
|
Zhu, H.L., Luo, W., Ciesielski, P.N., Fang, Z.Q., Zhu, J.Y., Henriksson, G., Himmel, M.E., Hu, L.B., 2016. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374. doi: 10.1021/acs.chemrev.6b00225
|
Zhu, Q.Q., Liu, S.M., Sun, J.Z., Liu, J., Kirubaharan, C.J., Chen, H.L., Xu, W.H., Wang, Q.Q., 2020. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr. Polym. 235, 115933. doi: 10.1016/j.carbpol.2020.115933
|
Zou, Z.N., Zhu, C.P., Li, Y., Lei, X.F., Zhang, W., Xiao, J.L., 2018. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508. doi: 10.1126/sciadv.aaq0508
|